Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/44399
Title: Regularity for anisotropic fully nonlinear integro-differential equations
Authors: Caffarelli, Luis A.
Leitão, Raimundo
Urbano, José Miguel
Issue Date: 2014
Publisher: Springer
Abstract: We consider fully nonlinear integro-differential equations governed by kernels that have different homogeneities in different directions. We prove a nonlocal version of the ABP estimate, a Harnack inequality and the interior \(C^{1, \gamma }\) regularity, extending the results of Caffarelli and Silvestre (Comm Pure Appl Math 62:597–638, 2009) to the anisotropic case.
Peer review: yes
URI: http://hdl.handle.net/10316/44399
DOI: 10.1007/s00208-014-1050-6
Publisher Version: https://doi.org/10.1007/s00208-014-1050-6
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat 
Urbano_paper4.pdf383.7 kBAdobe PDFView/Open    Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.