Please use this identifier to cite or link to this item:
Title: Covariance of the limit empirical process under association: consistency and rates for the histogram
Authors: Henriques, Carla 
Oliveira, Paulo Eduardo 
Keywords: Histogram estimation; Association; Empirical process; Convergence rates
Issue Date: 2003
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 03-23 (2003)
Abstract: The empirical process induced by a sequence of associated random variables has for limit in distribution a centered Gaussian process with covariance function defined by an infinite sum of terms of the form .k(s, t) = P(X1 . s,Xk+1 . t). F(s)F(t). We study the estimation of such series using the histogram estimator. Under a convenient decrease rate on the covariance structure of the variables we prove the strong consistency with rates, pointwise and uniformly, of the estimator of the covariance of the limit empirical process. We also study the estimation of the eigenvalues of the integral operator defined by this limit covariance function. The knowledge of these eigenvalues is relevant for the characterization of tail probabilities of some functionals of the empirical process. We approximate the eigenvalues by those of the integral operator defined by the estimator of the limit covariances and prove, under the same assumptions as for the estimation of this covariance, the strong consistency of such estimators, with rates.
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais

Files in This Item:
File Description SizeFormat
Covariance of the limit empirical process under association.pdf187.84 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

checked on Aug 11, 2022


checked on Aug 11, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.