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COVARIANCE OF THE LIMIT EMPIRICAL PROCESS
UNDER ASSOCIATION: CONSISTENCY AND RATES FOR

THE HISTOGRAM
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Abstract: The empirical process induced by a sequence of associated random vari-
ables has for limit in distribution a centered Gaussian process with covariance func-
tion defined by an infinite sum of terms of the form ϕk(s, t) = P (X1 ≤ s,Xk+1 ≤ t)−
F (s)F (t). We study the estimation of such series using the histogram estimator.
Under a convenient decrease rate on the covariance structure of the variables we
prove the strong consistency with rates, pointwise and uniformly, of the estimator
of the covariance of the limit empirical process. We also study the estimation of the
eigenvalues of the integral operator defined by this limit covariance function. The
knowledge of these eigenvalues is relevant for the characterization of tail probabil-
ities of some functionals of the empirical process. We approximate the eigenvalues
by those of the integral operator defined by the estimator of the limit covariances
and prove, under the same assumptions as for the estimation of this covariance, the
strong consistency of such estimators, with rates.
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1. Introduction
The empirical process based on a sequence Xn, n ≥ 1, of independent and

identically distributed random variables converges in distribution, as it is well
known, to a centered Gaussian process with covariance function Γ(s, t) =
F (s∧ t)−F (s)F (t), where F is the common distribution function of the vari-
ables Xn. For dependent sequences, under convenient control on the depen-
dence structure, the limit empirical process is also a centered Gaussian pro-
cess but with a more complex covariance function, which reflects the presence
of dependence between the original random variables. This covariance func-
tion envolves the unknown terms ϕk(s, t) = P (X1 ≤ s,Xk+1 ≤ t)−F (s)F (t)
and is given by

Γ(s, t) = F (s ∧ t) − F (s)F (t) +

∞∑
k=1

(
ϕk(s, t) + ϕk(t, s)

)
. (1.1)
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2 C. HENRIQUES AND P. E. OLIVEIRA

Having in mind the characterization of tail probabilities of some functionals
of the empirical process, such as the Cramér-von Mises test statistic, we need
to estimate the covariance function Γ(s, t) given by (1.1) and its eigenvalues.
In this article we will suppose that the random variables are associated,
as introduced by Esary, Proschan and Walkup [4]: the random variables
Xn, n ≥ 1, are said to be associated if

Cov
(
f (X1, ..., Xn) , g (X1, ..., Xn)

)
≥ 0 ,

for any n ∈ IN and any real-valued coordinatewise increasing functions f
and g for which the covariance above exists.

The estimation of the covariance (1.1) and its eigenvalues has been stud-
ied by Franche [5], using histograms, but restricted to the case of uniform
[0, 1] random variables. In this reference it was proved the mean square
convergence of the estimator of Γ(s, t), as well as the mean square conver-
gence of the estimates for the eigenvalues of the integral operator with kernel
Γ(s, t). Rates of convergence were also provided. For general random vari-
ables and using kernel type estimators, this estimation has also been studied
by Azevedo and Oliveira [1], proving strong consistency of the kernel estima-
tor of Γ(s, t) and again the mean square convergence for the estimation of the
eigenvalues. In the present article we will consider an histogram type estima-
tor of Γ(s, t), for which we will establish pointwise and also uniform strong
convergence, providing convergence rates. Also, we will prove the strong
consistency of the estimates for the eigenvalues of the integral operator with
kernel Γ(s, t), again providing rates for this convergence.

2. Definitions and assumptions
Let Xn, n ≥ 1, be a sequence of random variables. Throughout this paper

we will always assume that this sequence satisfies the following assumption:

(A1)
Xn, n ≥ 1, is an associated and strictly stationary sequence of
random variables, having a common distribution function F and
a density function bounded by B0; let B1 = 2 max(2/π2, 45B0).

If the variables satisfy (A1), we may apply Lemma 2.6 in Roussas [16] to
obtain

Cov
(
I(−∞,s](Xi), I(−∞,t](Xj)

)
≤ B1 Cov1/3 (Xi, Xj) , s, t ∈ IR, (2.1)
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an inequality that will be used throughout the article to control the covari-
ances between the terms summed in the estimator.

Given the strictly stationarity of the sequence Xn, n ≥ 1, we denote the
distribution function of the random vector (X1, Xk+1) by Fk. The estimation
of Fk(s, t) was considered in Henriques and Oliveira [6], using the histogram
type estimator given by

F̂k,n(s, t) =
1

n − k

n−k∑
i=1

(
I(−∞,s](Xi)I(−∞,t](Xi+k)

)
. (2.2)

For this estimator, the strong consistency, the uniform strong consistency
and the asymptotic normality follows if

lim
n→∞

1

n

n∑
j=1

Cov1/3 (X1, Xj) = 0 ,

(actually the asymptotic normality follows under a slightly milder condition).
However, in Henriques and Oliveira [6] no convergence rates were obtained.
Later, Henriques and Oliveira [7] proved an exponential inequality from which

a convergence rate for the estimator F̂k,n of Fk was derived. This later refer-
ence also considered the estimation of the infinite sum

∑∞
k=1 ϕk(s, t), proving

strong consistency, but now without rates.
In Section 4 of the present article we reformulate and extend some results

of Henriques and Oliveira [7] that will be used, in Section 5, to establish
the uniform strong consistency of the estimator for Γ(s, t), giving rates of
convergence. Finally, in Section 6, we prove the almost sure convergence of
the estimates for the eigenvalues of the integral operator with kernel Γ(s, t).

The estimator used for the terms ϕk(s, t) is given by

ϕ̂k,n(s, t) = F̂k,n(s, t) − F̂n(s)F̂n(t) , (2.3)

where F̂n is the empirical distribution function defined, as usual, as F̂n(s) =
1
n

∑n
i=1 I(−∞,s](Xi) . The covariance function Γ(s, t) is estimated by

Γ̂n(s, t) = F̂n(s ∧ t) − F̂n(s)F̂n(t) +

qn∑
k=1

(
ϕ̂k,n(s, t) + ϕ̂k,n(t, s)

)
, (2.4)

where qn −→ +∞ in a way to be precised later.



4 C. HENRIQUES AND P. E. OLIVEIRA

3. Notation and preliminary results
We now introduce some lemmas that will be used while proving the theo-

rems of the next section.

Lemma 3.1 (Devroye [2]). Let X be a centered random variable. If there
exist a, b ∈ IR such that P(a ≤ X ≤ b) = 1, then, for every λ > 0,

IE(eλX) ≤ exp

(
λ2(b − a)2

8

)
.

The next lemma provide the tool used to prove the exponential inequality
which is the basis of the consistency results and the characterizations of
minimal convergence rates proved in the article. It appears under the present
form in Dewan and Prakasa Rao [3] and is a version for generating functions
of Newman’s [14] inequality.

Lemma 3.2. Let X1, X2, ..., Xn be associated random variables that are bounded
by a constant M . Then, for any θ > 0,∣∣∣∣∣IE (eθ

∑n
i=1 Xi

)
−

n∏
i=1

IE
(
eθXi

)∣∣∣∣∣ ≤ θ2enθM
∑

1≤i<j≤n

Cov(Xi, Xj) .

We now start introducing the notation used throughout the article. First,
let tn be a sequence of positive integers such that tn −→ ∞. For each n ∈ IN
and each i = 1, . . . , tn, put xn,i = Q(i/tn), where Q is the quantile function
of F .

In order to simplify the expressions that will follow, we define, for n, k ∈ IN
and fixed s, t ∈ IR,

Wk,n = I(−∞,s](Xn)I(−∞,t](Xk+n) − Fk(s, t).

Given the last definition we may write,

F̂k,n(s, t) − Fk(s, t) =
1

n − k

n−k∑
i=1

Wk,i . (3.1)

Define also, for n, k ∈ IN ,

Dn,k = sup
s,t∈IR

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ ,

and
D∗

n,k = max
i,j=1,...,tn

∣∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)
∣∣∣ .
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The following lemma will be used to obtain an exponential inequality for
Dn,k. The proof of this lemma is contained in the proof of Theorem 2 of
Henriques and Oliveira [6].

Lemma 3.3. If the sequence Xn, n ≥ 1, satisfies (A1), then, for each n ∈ IN
and each k ∈ IN ,

Dn,k ≤ D∗
n,k +

2

tn
a.s. .

Now we introduce some additional notation to be used in the sequel. Let
an and pn be two sequences of positive integers such that an −→ +∞ and
an < pn ≤ n − an. For each n ∈ IN and each k = 1, . . . , an, let rk,n be the
largest integer less or equal to n−k

2pn
. We will consider a partition of the set

of indexes {1, . . . , n − k} into 2rk,n + 1 subsets, each of which containing pn

elements except the last one, that will have n−k−2rk,n < 2pn elements. We
will suppose that, for each k ∈ {0, 1, ..., an}, rk,n −→ ∞, so that, n−k

2rk,npn
−→

1. Note also that the set {1, . . . , n − 1} has more an − 1 elements than
{1, . . . , n − an}. As an < pn, this means that, for each k ∈ {0, 1, .., an}, we
will have for {1, . . . , n − 1} at most two more sets in the partition than for
{1, . . . , n − k}, that is, we have rk,n = r1,n or rk,n = r1,n − 1.

Now define the sets Oi = {2(i− 1)pn +1, ..., (2i− 1)pn}, Ei = {(2i− 1)pn +
1, ..., 2ipn}, for each i = 1, . . . , rk,n, and R = {2rk,npn + 1, ..., n − k}. These

sets of indexes will be used to decompose the sum F̂k,n(s, t) − Fk(s, t) into
blocks in a way similar to what was done in Ioannides and Roussas [9]. This
technique has been used by the authors to prove exponential inequalities
and, following from these, convergence rates for the histogram estimator for
distribution functions of associated variables and for the kernel estimator of
the density (Henriques and Oliveira [7, 8]).

For the purpose just mentioned define the random variables

Uk,i =
∑
j∈Oi

Wk,j , Vk,i =
∑
j∈Ei

Wk,j , i = 1, ...rk,n and Zk,n =
∑
j∈R

Wk,j ,

and set

Uk,n =
1

n − k

rk,n∑
i=1

Uk,i , V k,n =
1

n − k

rk,n∑
i=1

Vk,i and Zk,n =
1

n − k
Zk,n .

With these definitions we have,

F̂k,n(s, t) − Fk(s, t) = Uk,n + V k,n + Zk,n . (3.2)
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The exponential inequality proved in Theorem 1 of Henriques and Olivei-
ra [7] required the sequence Cov(X1, Xk+1) to be decreasing as k increases.
This was so because of the technique to control the covariances between the
blocks Uk,i, based on the method used in Ioannides and Roussas [9], where
the same assumption is used. In Henriques and Oliveira [8] the computation
of these covariances was carried in more detail and this assumption on the
covariances could be dropped, without any consequence on the decreasing
rate also assumed on the covariances (in fact, Ioannides and Roussas [9]
mentioned that the assumption was used to avoid technical difficulties but
did not give any indication about how their assumptions or their inequality
should be modified). The following lemma gives the precise formulation of
our result.

Lemma 3.4. Under assumption (A1), we have, for the variables Uk,i, i =
1, . . . , rk,n, defined earlier,

∑
1≤i<j≤rk,n

Cov(Uk,i, Uk,j) ≤ 4B1rk,npn

∞∑
l=pn−k

Cov1/3(X1, Xl) ,

where B1 was defined in (A1), and analogously for the variables Vk,i, i =
1, . . . , rk,n.

Proof : The assumption of stationarity enables us to write

∑
1≤i<j≤rk,n

Cov(Uk,i, Uk,j) =

=

rk,n−1∑
i=1

rk,n∑
j=i+1

Cov(Uk,i, Uk,j) =

rk,n−1∑
j=1

(rk,n − j) Cov(Uk,1, Uk,j+1) .
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Using again the stationarity of the variables, we get

Cov(Uk,1, Uk,j+1) =
∑
l∈O1

∑
m∈Oj+1

Cov(Wk,l,Wk,m) =

=

pn−1∑
l=0

(pn − l) Cov(Wk,1,Wk,2jpn+l+1) +

+

pn−1∑
l=1

(pn − l) Cov(Wk,l+1,Wk,2jpn+1) ≤

≤ pn

(2j+1)pn∑
l=(2j−1)pn+2

Cov(Wk,1,Wk,l) .

We then have

∑
1≤i<j≤rk,n

Cov(Uk,i, Uk,j) ≤

≤
rk,n−1∑
j=1

(rk,n − j)pn

(2j+1)pn∑
l=(2j−1)pn+2

Cov(Wk,1,Wk,l) (3.3)

≤ rk,npn

(2rk,n−1)pn∑
l=pn+2

Cov(Wk,1,Wk,l) .

Now, using a classical inequality by Lebowitz [11] and (2.1), it follows

Cov(Wk,1,Wk,l) ≤ B1

[
Cov1/3(X1, Xl) + Cov1/3(X1, Xk+l) +

+ Cov1/3(Xk+1, Xl) + Cov1/3(Xk+1, Xk+l)
]

.
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Inserting this into (3.3) we then obtain,∑
1≤i<j≤rk,n

Cov(Uk,i, Uk,j) ≤

≤ B1rk,npn

∞∑
l=pn+2

(
2 Cov1/3(X1, Xl) +

+ Cov1/3(X1, Xk+l) + Cov1/3(X1, Xl−k)
)
≤

≤ 4B1rk,npn

∞∑
l=pn−k

Cov1/3(X1, Xl) ,

since the covariances are non-negative due to association.

4. Exponential inequalities
We will now reformulate the exponential inequality contained in Hen-

riques and Oliveira [7], establishing one without the assumption of C(k) =
Cov(X1, Xk+1) being nonincreasing. Further, we will also obtain an uni-
form version of this exponential inequality as it has been done, in a different
framework, in Henriques and Oliveira [8].

Lemma 4.1. Let 0 < ε < 1. Suppose that (A1) is satisfied and that there
exists a constant C1 > 0 such that

1

n − an
exp

(
8r1,n

an

) ∞∑
i=pn−an

Cov1/3(X1, Xi) ≤ C1 . (4.1)

Then, for each k ∈ {0, . . . , an},

P

(
|Uk,n| ≥ ε

an

)
≤ 2(1 + C2) exp

(
−2rk,n

ε2

a2
n

)
,

where C2 = 8B1C1, and the same for the variables V k,n.

Proof : Given λ > 0, the Markov inequality yields

P

(
Uk,n ≥ ε

an

)
≤ e−λ ε

an IE
(
eλUk,n

)
.
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Note that, each one of the variables Uk,i is bounded by pn, so we may apply
Lemma 3.2 to obtain

P

(
Uk,n ≥ ε

an

)
≤

≤ e−
λ ε
an

(rk,n∏
i=1

IE
(
e

λ
n−kUk,i

)
+

+
λ2

(n − k)2 exp

(
rk,n λ pn

n − k

) ∑
1≤i<j≤rk,n

Cov(Uk,i, Uk,j)

)
.

Now apply successively Lemma 3.1 and Lemma 3.4 to get

P

(
Uk,n ≥ ε

an

)
≤

≤ e−
λ ε
an

(
exp

(
4rk,np

2
nλ

2

8(n − k)2

)
+

+
λ2

(n − k)2 exp

(
rk,n λ pn

n − k

)
4B1rk,n pn

∞∑
l=pn−k

Cov1/3(X1, Xl)

)
≤

≤ exp

(
−λ ε

an
+

λ2

8rk,n

)
+ 8B1 e−

λ ε
an

e2λ

n − k

∞∑
l=pn−k

Cov1/3(X1, Xl),

since 2rk,npn ≤ n − k and λ2 ≤ 4eλ.
Now, choose λ = 4rk,n

ε
an

, which minimizes the first term of the last ex-

pression, and use (4.1) in the second term, taking into account that rk,n ≤
r1,n, ε < 1 and k ≤ an. It will follow that

P

(
Uk,n ≥ ε

an

)
≤

≤ exp

(
−2rk,nε

2

a2
n

)
+ 8B1C1 exp

(
−4rk,nε

2

a2
n

)
≤

≤ (1 + 8B1C1) exp

(
−2rk,nε

2

a2
n

)
.

Using the same arguments we would obtain the same upper bound for
P
(−Uk,n ≥ ε/an

)
, thus completing the proof.
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The next lemma deals with the sum in the last block, Zk,n = 1
n−k

∑
j∈R Wk,j.

Lemma 4.2. Let 0 < ε < 1. Suppose that (A1) is satisfied and that
an/r1,n −→ 0. Then,

P

(∣∣Zk,n

∣∣ ≥ ε

3an

)
= 0,

for each sufficiently large n and each k ∈ {0, . . . , an}.
Proof : First note that, since |Wk,n| ≤ 1 and the cardinal of R is less than
2pn, we have

∣∣Zk,n

∣∣ ≤ 2pn

n−k . Therefore,

P

(∣∣Zk,n

∣∣ ≥ ε

3an

)
≤ P

(
pnan

n − k
≥ ε

6

)
.

Now pnan

n−k =
pnr1,n

n−k
an

r1,n
−→ 0 as, according to the construction of the sequences,

pnr1,n

n−k −→ 1/2, so the result follows.

The following two theorems establish the exponential inequalities men-
tioned at the beginning of this section. This next theorem states a pointwise
exponential inequality, extending the one proved in Theorem 1 in Henriques
and Oliveira [7].

Theorem 4.3. Let 0 < ε < 1. Suppose (A1) is satisfied and that (4.1) holds
for every sufficiently large n. Further assume that limn→+∞ an

r1,n
= 0. Then,

for every sufficiently large n and k ∈ {0, . . . , an},

P

(∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ >

ε

an

)
≤ 4(1 + C2) exp

(
−2

9

rk,n ε2

a2
n

)
,

where C2 is defined in Lemma 4.1

Proof : The result follows easily from Lemmas 4.1 and 4.2, using (3.1).

Finally, we prove an uniform exponential inequality corresponding to the
previous result.

Theorem 4.4. Let tn be a sequence of positive integres such that tn −→ +∞
and an

tn
−→ 0. Under the conditions of Theorem 4.3, we have, for every

sufficiently large n and k ∈ {0, . . . , an},

P

(
sup

s,t,∈IR

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ >

ε

an

)
≤ 4(1 + C2)t

2
n exp

(
− 1

18

rk,n ε2

a2
n

)
,

where C2 is defined in Lemma 4.1.



COVARIANCE OF THE LIMIT EMPIRICAL PROCESS: CONSISTENCY AND RATES 11

Proof : Given 0 < ε < 1, using Lemma 3.3, we obtain, for each n ∈ IN and
each k ∈ {0, . . . an},

P

(
Dn,k >

ε

an

)
≤ P

(
D∗

n,k +
2

tn
>

ε

an

)
≤ P

(
D∗

n,k >
ε

2an

)
+P

(
2

tn
>

ε

2an

)
.

It follows from an

tn
−→ 0 that the second term of the last expression

equals zero for n large enough. Then, for every sufficiently large n and
k ∈ {0, . . . , an}, it holds

P

(
Dn,k >

ε

an

)
≤

≤
∑

i,j=1,...,tn

P

(∣∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)
∣∣∣ > ε

2an

)
≤

≤ t2n max
i,j=1,...,tn

P

(∣∣∣F̂k,n(xn,i, xn,j) − Fk(xn,i, xn,j)
∣∣∣ > ε

2an

)
.

Finally, applying Theorem 4.3 we obtain, for every sufficiently large n and
k ∈ {0, . . . , an},

P

(
Dn,k >

ε

an

)
≤ 4 t2n (1 + C2) exp

(
− 1

18

rk,n ε2

a2
n

)
.

5. Consistency and convergence rates
We are now in position to derive convergence rates for the almost sure

convergence, in the pointwise as well as in the uniform sense, for the esti-
mators F̂k,n, ϕ̂k,n and Γ̂n. The first two theorems of this section, Theorem

5.1 and Theorem 5.2, state the convergence rates for the estimators F̂k,n and
ϕ̂k,n, respectively. The consistency of the estimators for the infinite sum∑∞

k=1 ϕk(s, t) and for Γ(s, t) is established in Theorems 5.3 and 5.4, respec-
tively. Finally, Theorems 5.6 and 5.7 give convergence rates for the last
mentioned estimators.

Theorem 5.1. Suppose (A1) is satisfied and that (4.1) holds for every suf-

ficiently large n. Further assume that a2
n ln n
r1,n

−→ 0. Then,

a) an

(
F̂k,n(s, t) − Fk(s, t)

)
−→ 0 a.s., for each k ∈ {0, . . . , an} and

s, t ∈ IR;
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b) an sups,t∈IR

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ −→ 0 a.s., for each k ∈ {0, . . . , an}.

Proof : Let 0 < ε < 1. First note that all the conditions of Theorem 4.3
are satisfied, so we may apply it to obtain, for every sufficiently large n and
k ∈ {0, . . . , an},

P
(
an

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ > ε

)
≤ 4(1 + C2) exp

(
−2

9
rk,nε2

a2
n

)
≤

≤ 4(1 + C2) exp
(
−2

9
(r1,n−1)ε2

a2
n

)
,

since rk,n ≥ r1,n − 1. As a2
n ln n
r1,n

−→ 0 it follows that this upper bound defines,

for every ε > 0, a convergent series. Thus a) follows by the Borel-Cantelli
Lemma.

Now, choose α > 1 and set tn = aα
n, so that an

tn
−→ 0. Then, by Theorem

4.4, we get, for every sufficiently large n and k ∈ {0, . . . , an},

P

(
an sup

s,t∈IR

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ > ε

)
≤ 4(1+C2)a

2α
n exp

(
− 1

18

(r1,n − 1)ε2

a2
n

)
,

and the assumption a2
n ln n
r1,n

−→ 0 concludes the proof as for the first part.

Note that under the conditions of Theorem 5.1, we obtain, setting k = 0
and s = t,

an(F̂n(s) − F (s)) −→ 0 a.s. (5.1)

and also,

an sup
s∈IR

∣∣∣F̂n(s) − F (s)
∣∣∣ −→ 0 a.s. . (5.2)

Moreover, since

an

(
F (s)F (t) − F̂n(s)F̂n(t)

)
=

= F (s) an

(
F (t) − F̂n(t)

)
+ F̂n(t) an

(
F (s) − F̂n(s)

)
,

Theorem 5.1 also implies that

an

(
F (s)F (t) − F̂n(s)F̂n(t)

)
−→ 0 a.s. (5.3)

and

an sup
s,t∈IR

∣∣∣F (s)F (t) − F̂n(s)F̂n(t)
∣∣∣ −→ 0 a.s. . (5.4)
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Theorem 5.2. Under the conditions of Theorem 5.1 it holds,

a) an (ϕ̂k,n(s, t) − ϕk(s, t)) −→ 0 a.s., for each k ∈ {0, . . . , an} and
s, t ∈ IR;

b) an sups,t∈IR |ϕ̂k,n(s, t) − ϕk(s, t)| −→ 0 a.s., for each k ∈ {0, . . . , an}.

Proof : To prove this theorem it suffices to write

an (ϕ̂k,n(s, t) − ϕk(s, t)) =

= an

(
F̂k,n(s, t) − Fk(s, t)

)
+ an

(
F (s)F (t) − F̂n(s)F̂n(t)

)
.

Then, apply Theorem 5.1 a) together with (5.3) to obtain a), and Theorem
5.1 b) together with (5.4) to find b).

Theorem 5.3. Under the conditions of Theorem 5.1 it holds,

a)
∑an

k=1 ϕ̂k,n(s, t) −→
∑∞

k=1 ϕk(s, t) a.s., for each s, t ∈ IR;

b) sups,t∈IR |∑an

k=1[ϕ̂k,n(s, t) − ϕk(s, t)]| −→ 0 a.s. .

Proof : We may decompose the difference as∣∣∣∣∣
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

∣∣∣∣∣ ≤
≤
∣∣∣∣∣

an∑
k=1

(ϕ̂k,n(s, t) − ϕk(s, t))

∣∣∣∣∣+
∣∣∣∣∣

∞∑
k=an+1

ϕk(s, t)

∣∣∣∣∣ ≤
≤
∣∣∣∣∣

an∑
k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣+ an

∣∣∣F (s)F (t) − F̂n(s)F̂n(t)
∣∣∣+

+

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ .
As mentioned before (see (2.1)) ϕk(s, t) = Cov

(
I(−∞,s](X1), I(−∞,t](Xk+1)

) ≤
B1 Cov1/3 (X1, Xk+1), and (4.1) implies that

∑
k Cov1/3 (X1, Xk+1) < ∞, so

the third term of the upper bound above converges to zero as an −→ +∞.
The almost sure convergence to zero of the second term is just (5.3). Finally,
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for the first term, using Theorem 4.3, we have, for any ε ∈ (0, 1),

P

(∣∣∣∣∣
an∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣ > ε

)
≤

≤
an∑

k=1

P

(∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ >

ε

an

)
≤

≤ 4(1 + C2)an exp

(
−2

9

(r1,n − 1)ε2

a2
n

)
.

Now the Borel-Cantelli Lemma justifies the almost sure convergence to zero
of the first term.

For the second part of the theorem, since

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

[ϕ̂k,n(s, t) − ϕk(s, t)]

∣∣∣∣∣ ≤
≤ sup

s,t∈IR

∣∣∣∣∣
an∑

k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣+ an sup
s,t∈IR

∣∣∣F (s)F (t) − F̂n(s)F̂n(t)
∣∣∣ ,

and, as the second term on the right-hand side above converges to zero ac-
cording to (5.4), b) will follow if we prove that

sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

[
F̂k,n(s, t) − Fk(s, t)

]∣∣∣∣∣ −→ 0 a.s. . (5.5)

For this purpose, choose α > 1 and tn = aα
n. We have

P

(
sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

[
F̂k,n(s, t) − Fk(s, t)

]∣∣∣∣∣ > ε

)
≤

≤
an∑

k=1

P

(
sup
s,t∈IR

∣∣∣F̂k,n(s, t) − Fk(s, t)
∣∣∣ > ε

an

)
≤

≤ 4(1 + C2)a
2α+1
n exp

(
− 1

18

(r1,n − 1)ε2

a2
n

)
,

using Theorem 4.4.
Again, arguing as in the corresponding part of the proof of the Theorem

5.1 b), (5.5) follows.
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We now prove the pointwise and uniform consistency of the estimator
Γ̂n(s, t).

Theorem 5.4. Under the conditions of Theorem 5.1, and putting qn = an in
the definition of the estimator Γ̂n, it holds,

a) Γ̂n(s, t) −→ Γ(s, t) a.s., for each s, t ∈ IR;

b) sups,t∈IR

∣∣∣Γ̂n(s, t) − Γ(s, t)
∣∣∣ −→ 0 a.s. .

Proof : To prove a) just write

Γ̂n(s, t) − Γ(s, t) =

=
[
F̂n(s ∧ t) − F (s ∧ t)

]
+
[
F (s)F (t) − F̂n(s)F̂n(t)

]
+ (5.6)

+

[
an∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

]
+

[
an∑

k=1

ϕ̂k,n(t, s) −
∞∑

k=1

ϕk(t, s)

]
,

and apply (5.1), (5.3) and Theorem 5.3 a).
To prove the second part of the theorem write,

sup
s,t∈IR

∣∣∣Γ̂n(s, t) − Γ(s, t)
∣∣∣ ≤

≤ sup
s,t∈IR

∣∣∣F̂n(s ∧ t) − F (s ∧ t)
∣∣∣+ sup

s,t∈IR

∣∣∣F (s)F (t) − F̂n(s)F̂n(t)
∣∣∣+

+ sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

[ϕ̂k,n(s, t) − ϕk(s, t)]

∣∣∣∣∣+ sup
s,t∈IR

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ + (5.7)

+ sup
s,t∈IR

∣∣∣∣∣
an∑

k=1

[ϕ̂k,n(t, s) − ϕk(t, s)]

∣∣∣∣∣+ sup
s,t∈IR

∣∣∣∣∣
∞∑

k=an+1

ϕk(t, s)

∣∣∣∣∣ .
The almost sure convergence to zero of the first and second terms of the
right-hand side above follows, respectively, from (5.2) and (5.4). For the
third and fifth terms, convergence to zero follows from Theorem 5.3 b). So,
to establish the convergence in b) it remains to prove that

sup
s,t∈IR

∣∣∣∣∣
∞∑

k=an+1

ϕk(s, t)

∣∣∣∣∣ −→ 0 a.s., (5.8)

but this follows from the argument used in the proof of Theorem 5.3 a) as
inequality (2.1) is uniform with respect to s and t.
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It is not difficult to verify that if the covariances Cov(X1, Xk+1) decrease at

a polynomial rate the conditions (4.1) and a2
n ln n
r1,n

−→ 0 can not be fulfilled si-

multaneously, which prevents the use of the results of this section in this case.
However, such limitation is not new. In fact, in previous articles establishing
exponential inequalities for associated random variables, namely Ioannides
and Roussas [9], Henriques and Oliveira [7, 8], the same problem arises when
exponential inequalities are used to obtain rates for the almost sure conver-
gence. For polynomial decrasing covariances Masry [12] proved recently some
strong consistency results with rates of convergence. The method of proof
is quite different as it is based on Rosenthal type inequalities bounding the
pth centered moment, with p > 2. Another result for polynomial decreasing
covariances, also for the estimation of the density, was proved in Henriques
and Oliveira [8] using the same method of approach as in this article, thus
not requiring the existence of any moment of order greater than 2.

The next corollary shows that, if we assume a geometrical decrease rate
of the covariances Cov(X1, Xk+1), it is possible to find sequences an and r1,n
(which determines pn), such that the conditions of the preceding theorems
are satisfied.

Corollary 5.5. Suppose (A1) is satisfied and Cov(X1, Xk+1) = a0 a−k, for
some a0 > 0 and a > 1. Choose an = nβ, with β < 1/3, then (4.1) is satisfied

and a2
n ln n
r1,n

−→ 0.

Proof : Choose r1,n = a2
n(ln n)γ, for some γ > 1. Then obviously, a2

n ln n
r1,n

−→ 0,

so it remains to prove that (4.1) is also satisfied.
Note that, as, n−1

2r1,npn
−→ 1, we may write pn = n−1

2xnr1,n
, for some sequence

0 < xn −→ 1. In order to prove that (4.1) is verified we rewrite the left side
of this inequality as

1

n − an
exp

(
8r1,n

an

) ∞∑
i=pn−an

Cov1/3(X1, Xi) =

=
1

n − an
exp [8an(ln n)γ] a

1/3
0

a−
pn−an

3

1 − a−1/3 .

(5.9)

To establish the asymptotic behaviour of (5.9) we compare the two exponents
in order to identify which one is dominant. That is, we find, up to the
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multiplication by a constant,

an(ln n)γ

pn − an
=

2anxnr1,n(ln n)γ

n − 1 − 2anxnr1,n
=

2a3
nxn(ln n)2γ

n − 1 − 2a3
nxn(ln n)γ

−→ 0 ,

taking into account that an = nβ, for some β < 1/3. This means that the
right side of (5.9) converges to zero so, a fortiori, (4.1) is verified, at least for
n large enough.

According to the last corollary, if the covariances Cov(X1, Xk+1) decrease at
a geometrical rate, we have, for the almost sure convergence of the estimators
F̂k,n and ϕ̂k,n, a convergence rate of order at least n−β, with β < 1/3.

Theorem 5.6. Let bn and qn be two sequences of positive integers tending to
infinity and such that an = bn qn. Suppose that

bn

∞∑
k=qn+1

Cov1/3(X1, Xk+1) −→ 0 . (5.10)

Further assume that (A1) is satisfied, (4.1) holds for every n ∈ IN large

enough and a2
n ln n
r1,n

−→ 0. Then,

a) bn

(∑qn

k=1 ϕ̂k,n(s, t) −
∑∞

k=1 ϕk(s, t)
)
−→ 0 a.s., for each s, t ∈ IR;

b) bn sups,t∈IR |∑qn

k=1 [ϕ̂k,n(s, t) − ϕk(s, t)]| −→ 0 a.s. .

Proof : Let ε ∈ (0, 1). Proceeding as in the proof of Theorem 5.3 a), we find,
using Theorem 4.3,

P

(∣∣∣∣∣bn

qn∑
k=1

(
F̂k,n(s, t) − Fk(s, t)

)∣∣∣∣∣ > ε

)
≤

≤
qn∑

k=1

P
(∣∣∣F̂k,n(s, t) − Fk(s, t)

∣∣∣ > ε/an

)
≤ 4(1 + C2)qn exp

(
−2

9

(r1,n − 1)ε2

a2
n

)
,

so that, using the Borel-Cantelli Lemma, it follows that,

bn

qn∑
k=1

[
F̂k,n(s, t) − Fk(s, t)

]
−→ 0 a.s. . (5.11)
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From (2.1) and (5.10), we get

0 ≤ bn

∞∑
k=qn+1

ϕk(s, t) ≤ bnB1

∞∑
k=qn+1

Cov1/3(X1, Xk+1) −→ 0 . (5.12)

Now, since

bn

(
qn∑

k=1

ϕ̂k,n(s, t) −
∞∑

k=1

ϕk(s, t)

)
= bn

qn∑
k=1

(
F̂k,n(s, t) − Fk(s, t)

)
+

+bnqn

[
F (s)F (t) − F̂n(s)F̂n(t)

]
− bn

∞∑
k=qn+1

ϕk(s, t),

the convergence in a) follows from (5.11), (5.3) and (5.12).
Note that to prove a), we followed essentially the same steps as in Theorem

5.3 a). Analogously, proceeding as in the proof of Theorem 5.3 b), but
considering the summation of the terms ϕ̂k,n(s, t) up to qn instead of an, and
using an = bn qn, we obtain the convergence stated in b).

Theorem 5.7. Under the conditions of Theorem 5.6, it holds,

a) bn

(
Γ̂n(s, t) − Γ(s, t)

)
−→ 0 a.s., for each s, t ∈ IR;

b) bn sups,t∈IR

∣∣∣Γ̂n(s, t) − Γ(s, t)
∣∣∣ −→ 0 a.s. .

Proof : The proof of a) follows easily if we decompose the difference as in
(5.6) and then apply (5.1), (5.3) and Theorem 5.6 a).

For the proof of b), we first note that, by (2.1) and (5.10), we have

0 ≤ bn sup
s,t∈IR

∣∣∣∣∣∣
∞∑

k=qn+1

ϕk(s, t)

∣∣∣∣∣∣ ≤ B1bn

∞∑
k=qn+1

Cov1/3(X1, Xk+1) −→ 0 . (5.13)

Now, using (5.7), b) follows directly from (5.2), (5.4), Theorem 5.6 b) and
(5.13).

As before, we show that, for geometrically decreasing covariances it is pos-
sible to construct sequences that fulfill our assumptions.

Corollary 5.8. Suppose (A1) is satisfied and Cov(X1, Xk+1) = a0 a−k, for
some a0 > 0 and a > 1. Choose an = nβ, with β < min

{1
3,

ln a
3

}
, qn = ln n

and bn = nβ

ln n, then all the assumptions of Theorems 5.6 and 5.7 are verified.
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Proof : Choose r1,n = a2
n(ln n)γ , for some γ > 1. We have already proved

in Corollary 5.5, that, with these choices for an and r1,n, both conditions,
a2

n ln n
r1,n

−→ 0 and (4.1), are satisfied. It remains to prove that (5.10) is also

verified. This is in fact true, since

bn

∞∑
k=qn+1

Cov1/3(X1, Xk+1) =

= a
1/3
0 bn

∞∑
k=qn+1

a−k/3 =
a

1/3
0

1 − a−1/3 bn a−
qn+1

3 =
a

1/3
0 a−1/3

1 − a−1/3

nβ

ln n
a−

ln n
3 −→ 0 ,

as we have assumed that β < ln a
3 .

We can then say that, if the covariances Cov(X1, Xn) decrease at a geo-
metrical rate, the estimators for the infinite sum

∑∞
k=1 ϕk(s, t) and for Γ(s, t)

converge almost surely at the rate of at least ln n
nβ .

6. Estimation of the eigenvalues of the integral operator
of kernel Γ(s, t)

Let K be a non null, symmetric function of L2([a, b]2) and denote by K the
integral operator with kernel K. Let ρ(K) denote the spectral radius of the
operator K. Further, denote by

λ+
1 (K) ≥ λ+

2 (K) ≥ . . . ≥ λ+
i (K) ≥ . . . ≥ 0,

the nonnegative eigenvalues of K; and

λ−
1 (K) ≤ λ−

2 (K) ≤ . . . ≤ λ−
i (K) ≤ . . . ≤ 0,

the nonpositive eigenvalues of K; put λ+
r (K) = 0 for every r ≥ r0, where r0 is

the largest integer such that λ+
r (K) �= 0, and analogously for the nonpositive

eigenvalues.
We now present two auxiliary lemmas to be used in the proof of Theorem

6.3 below.

Lemma 6.1. Let Kn, for each n ∈ IN , be a symmetric kernel of L2([a, b]2).
If

lim
n→+∞ sup

s,t∈[a,b]
|Kn(s, t)| = 0,

then limn→+∞ ρ(Kn) = 0.
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Proof : Indeed, the assumption made implies that limn→+∞ ‖Kn(s, t)‖L2([a,b]2) =
0. Now using classical results about operator norms we have

0 < ρ(Kn) = ‖Kn‖ ≤ ‖Kn(s, t)‖L2([a,b]2) −→ 0.

The next lemma is proved in Theorem 7 of Franche [5].

Lemma 6.2. Let K1 and K2 be two symmetric kernels of L2([a, b]2). Then,∣∣λ+
i (K1) − λ+

i (K2)
∣∣ ≤ ρ(K1 − K2)

and ∣∣λ−
i (K1) − λ−

i (K2)
∣∣ ≤ ρ(K1 − K2) .

If the kernel K is continuous and non-negative definite, as is the case for
covariance functions, it is well known that all the eigenvalues are nonnega-
tive and we will denote them by λi(K). To estimate the eigenvalues of the
operator defined by the true covariance Γ we will use the eigenvalues of the
operator defined by Γ̂n(s, t). The next theorem establishes the consistency
of these estimators and describes the convergence rates.

Theorem 6.3. Let bn and qn be two sequences of positive integers tending to
infinity and such that an = bn qn. Suppose that

bn

∞∑
k=qn+1

Cov1/3(X1, Xk+1) −→ 0.

Further assume that (A1) is satisfied, (4.1) holds for every sufficiently large

n and a2
n ln n
r1,n

−→ 0. Then,

bn

∣∣∣λi(Γ̂n) − λi(Γ)
∣∣∣ −→ 0 a.s. .

Proof : By Theorem 5.7 b)

sup
s,t∈IR

bn

∣∣∣Γ̂n(s, t) − Γ(s, t)
∣∣∣ −→ 0 a.s. . (6.1)

Define A =
{
ω : sups,t∈IR bn

∣∣∣Γ̂n(ω, s, t) − Γ(s, t)
∣∣∣ −→ 0

}
. Then, for each ω ∈

A, we have, using Lemma 6.1,

ρ
(
bn

[
Γ̂n(ω, ·, ·) − Γ(·, ·)

])
−→ 0 .
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Applying now Lemma 6.2 we get

0 < bn

∣∣∣λi(Γ̂n(ω, ·, ·)) − λi(Γ(·, ·))
∣∣∣ ≤

≤ bn ρ
(
Γ̂n(ω, ·, ·) − Γ(·, ·)

)
= ρ

(
bn

[
Γ̂n(ω, ·, ·) − Γ(·, ·)

])
−→ 0 .

Thus bn

∣∣∣λi(Γ̂n(ω, ·, ·)) − λi(Γ(·, ·))
∣∣∣ −→ 0. We then conclude that

P
({

ω : bn

∣∣∣λi(Γ̂n(ω, ·, ·)) − λi(Γ(·, ·))
∣∣∣ −→ 0

})
= 1 ,

completing the proof.

Note that, as what regards the construction of the sequences an, qn and
bn, the assumptions of Theorem 6.3 and Theorems 5.6 and 5.7 coincide. So,
by Corollary 5.8, if we choose an = nβ, with β < min

{1
3 ,

ln a
3

}
, qn = ln n

and bn = nβ

ln n , it follows that the estimators considered in this article for the

eigenvalues are consistent with convergence rate of order at least ln n
nβ .

References
[1] C. Azevedo and P. E. Oliveira (2000). Kernel-type estimation of bivariate distribution func-

tion for associated random variables. In: New Trends in Probability and Statistics, Vol. 5,
Proceedings of the 6th Tartu Conference, VSP, 17–25.

[2] L. Devroye (1991). Exponential inequalities in nonparametric estimation. In: Nonparametric
Functional Estimation and Related Topics, G. Roussas, ed., Kluwer Academic Publishers,
Dordrecht, 31–44.

[3] I. Dewan and B. L. S. Prakasa Rao (1999). A general method of density estimation for asso-
ciated random variables. J. Nonparametr. Statist. 10, 405–420.

[4] J. D. Esary, F. Proschan and D. W. Walkup (1967). Association of random variables, with
applications. Ann. Math. Statist. 38, 1466–1474.

[5] A. Franche (2000). Estimation des valeurs propes de la covariance du processus empirique sous
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