Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11421
DC FieldValueLanguage
dc.contributor.authorHenriques, Eurica-
dc.contributor.authorUrbano, José Miguel-
dc.date.accessioned2009-09-15T09:37:28Z-
dc.date.available2009-09-15T09:37:28Z-
dc.date.issued2004-
dc.identifier.citationPré-Publicações DMUC. 04-07 (2004)en_US
dc.identifier.urihttp://hdl.handle.net/10316/11421-
dc.description.abstractWe prove that local weak solutions of a nonlinear parabolic equation with a doubly singular character are locally continuous. One singularity occurs in the time derivative and is due to the presence of a maximal monotone graph; the other comes up in the principal part of the PDE, where the p-Laplace operator is considered. The paper extends to the singular case 1 < p < 2, the results obtained previously by the second author for the degenerate case p > 2; it completes a regularity theory for a type of PDEs that model phase transitions for a material obeying a nonlinear law of di usion.en_US
dc.description.sponsorshipCMUC/FCT; Project POCTI/34471/MAT/2000en_US
dc.language.isoengen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.rightsopenAccessen_US
dc.subjectDoubly singular PDEen_US
dc.subjectRegularity theoryen_US
dc.subjectIntrinsic scalingen_US
dc.subjectPhase transitionen_US
dc.titleOn the doubly singular equation g(u)t= Dpuen_US
dc.typepreprinten_US
uc.controloAutoridadeSim-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
crisitem.author.deptFaculty of Sciences and Technology-
crisitem.author.parentdeptUniversity of Coimbra-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5715-2588-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais
Files in This Item:
File Description SizeFormat
On the doubly singular equation g(u)t= Dpu.pdf300.87 kBAdobe PDFView/Open
Show simple item record

Page view(s)

268
checked on Sep 29, 2022

Download(s)

183
checked on Sep 29, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.