Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/96124
Title: Portfolio Optimization in Financial Markets using Quantum Computing: An Experimental Study
Other Titles: Otimização de Portfólios em Mercados Financeiros utilizando Computação Quântica: Um Estudo Experimental
Authors: Gomes, Cláudio Filipe Prata
Orientador: Fernandes, Gabriel Falcão Paiva
Paquete, Luís Filipe dos Santos Coelho
Keywords: Otimização de Portfólios; Computação Quântica; Otimização Binária Quadrática Irrestrita; Otimização Combinatória; Portfolio Optimization; Quantum Computing; Quadratic Unconstrained Binary Optimization; Combinatorial Optimization
Issue Date: 15-Jul-2021
Serial title, monograph or event: Portfolio Optimization in Financial Markets using Quantum Computing: An Experimental Study
Place of publication or event: DEI-FCTUC
Abstract: A computação quântica está prestes a mudar o mundo tal como o conhecemos. Através da exploração das propriedades da teoria quântica para fins computacionais, é esperada uma redução substancial na quantidade de problemas que hoje são considerados intratáveis. Isto significa que os computadores quânticos têm a capacidade de devolver soluções para alguns problemas de interesse prático para os quais um computador clássico não consegue devolver, pelo menos em tempo útil. Isto é ainda mais revolucionário e notável pelo facto de que esses problemas abrangem domínios multidisciplinares como Química, Medicina e, mais relevante no contexto desta dissertação, Finanças.Neste trabalho, vamos focar-nos na utilização da computação quântica para abordar um problema relevante e atual no domínio financeiro. Mais especificamente, um problema de otimização combinatorial, o problema de otimização de portfólios, que consiste em selecionar o melhor portfólio financeiro (combinação de ativos) entre um conjunto de todos os portfólios possíveis, de acordo com uma certa função objetivo, comummente de forma a maximizar o retorno esperado ou minimizar o risco. Devido ao grande número de parâmetros, como o retorno esperado por ativo e as condições de mercado, este problema atinge uma complexidade exponencial e é um problema NP-hard, intratável no contexto da computação clássica.Nós desenvolvemos um estudo empírico acerca da influência dos parâmetros nas soluções devolvidas por um computador quântico para o problema de otimização de portfólios. Em particular, utilizamos um computador quântico da D-Wave e variamos os parâmetros relacionados não só com o computador quântico, mas também com o problema de otimização de portfólios. Acreditamos que as conclusões do estudo são contribuições úteis para qualquer investigador que deseje utilizar computadores quânticos adiabáticos no contexto do problema de otimização de portfólios e também noutros domínios de aplicação.As nossas descobertas sugerem que os parâmetros têm efeito nos resultados, quer sejam relacionados com o problema de otimização de portfólios ou com o computador quântico. Além disso, também descobrimos que alguns dos parâmetros têm um grande impacto, tal como o chain strength, que define a força com a qual os qubits que representam uma variável estão correlacionados, e que outros não têm nenhum efeito estatisticamente significativo, tais como o anneal schedule ou o embedding.
Quantum computing is bound to change the world as we know it. By exploring the properties of quantum theory for computational purposes, it is expected to substantially reduce the amount of problems that are nowadays considered computationally intractable. This means that quantum computers have the power of providing solutions for some of the problems of practical interest for which a classical computer cannot, at least in a timely manner. This is even more revolutionary and remarkable given the fact these problems range from multidisciplinary domains such as Chemistry, Medicine, and, most relevant in the context of this dissertation, Finance.In this work, we will focus on leveraging quantum computing to addressing a relevant and timely problem within the financial domain. We will target a combinatorial optimization problem, the portfolio optimization problem, which consists of selecting the best portfolio (combination of assets) among all possible portfolios, according to some objective function, whether to maximize return or minimize risk. Due to the high number of parameters, such as the expected return per asset and market conditions, this problem attains an exponential complexity and is an NP-hard problem, intractable in the context of classical computing.We designed and conducted an empirical study on the effect of parameters on solutions to the portfolio optimization problem given by a quantum computer. In particular, we use a quantum computer from D-Wave and vary the parameters related to not only the quantum computer, but also to the portfolio optimization problem itself. We believe that our findings are useful not only for those using adiabatic quantum computers in the context of portfolio optimization problem, and also in other application domains.Our findings suggest that the parameters do have an effect on the results, whether they are related to the portfolio optimization problem or to the quantum computer. Moreover, we found that some of the parameters have a great impact, such as the chain strength, which defines the strength associated to the couplings between qubits that represent a variable, and that other parameters have no statistically significant effect, such as the anneal schedule or embedding used.
Description: Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia
URI: http://hdl.handle.net/10316/96124
Rights: embargoedAccess
Appears in Collections:UC - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat Login
Cláudio Filipe Prata Gomes.pdf3.63 MBAdobe PDFEmbargo Access    Request a copy
Show full item record

Page view(s)

9
checked on Nov 25, 2021

Download(s)

1
checked on Nov 25, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons