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Abstract

Quantum computing is bound to change the world as we know it. By exploring the
properties of quantum theory for computational purposes, it is expected to substantially
reduce the amount of problems that are nowadays considered computationally intractable.
This means that quantum computers have the power of providing solutions for some of the
problems of practical interest for which a classical computer cannot, at least in a timely
manner. This is even more revolutionary and remarkable given the fact these problems
range from multidisciplinary domains such as Chemistry, Medicine, and, most relevant in
the context of this dissertation, Finance.

In this work, we will focus on leveraging quantum computing to addressing a relevant and
timely problem within the financial domain. We will target a combinatorial optimization
problem, the portfolio optimization problem, which consists of selecting the best portfolio
(combination of assets) among all possible portfolios, according to some objective function,
whether to maximize return or minimize risk. Due to the high number of parameters, such
as the expected return per asset and market conditions, this problem attains an exponential
complexity and is an NP-hard problem, intractable in the context of classical computing.

We designed and conducted an empirical study on the effect of parameters on solutions
to the portfolio optimization problem given by a quantum computer. In particular, we
use a quantum computer from D-Wave Systems, Inc. and vary the parameters related to
not only the quantum computer, but also to the portfolio optimization problem itself. We
believe that our findings are useful not only for those using adiabatic quantum computers
in the context of portfolio optimization problem, and also in other application domains.

Our findings suggest that the parameters do have an effect on the results, whether they
are related to the portfolio optimization problem or to the quantum computer. Moreover,
we found that some of the parameters have a great impact, such as the chain strength,
which defines the strength associated to the couplings between qubits that represent a
variable, and that other parameters have no statistically significant effect, such as the
anneal schedule or embedding used.

Keywords

Portfolio Optimization, Quantum Computing, Quadratic Unconstrained Binary Optimiza-
tion, Combinatorial Optimization

iii



This page is intentionally left blank.



Resumo

A computação quântica está prestes a mudar o mundo tal como o conhecemos. Através da
exploração das propriedades da teoria quântica para fins computacionais, é esperada uma
redução substancial na quantidade de problemas que hoje são considerados intratáveis.
Isto significa que os computadores quânticos têm a capacidade de devolver soluções para
alguns problemas de interesse prático para os quais um computador clássico não consegue
devolver, pelo menos em tempo útil. Isto é ainda mais revolucionário e notável pelo facto
de que esses problemas abrangem domínios multidisciplinares como Química, Medicina e,
mais relevante no contexto desta dissertação, Finanças.

Neste trabalho, vamos focar-nos na utilização da computação quântica para abordar um
problema relevante e atual no domínio financeiro. Mais especificamente, um problema de
otimização combinatorial, o problema de otimização de portfólios, que consiste em sele-
cionar o melhor portfólio financeiro (combinação de ativos) entre um conjunto de todos os
portfólios possíveis, de acordo com uma certa função objetivo, comummente de forma a
maximizar o retorno esperado ou minimizar o risco. Devido ao grande número de parâmet-
ros, como o retorno esperado por ativo e as condições de mercado, este problema atinge
uma complexidade exponencial e é um problema NP-hard, intratável no contexto da com-
putação clássica.

Nós desenvolvemos um estudo empírico acerca da influência dos parâmetros nas soluções
devolvidas por um computador quântico para o problema de otimização de portfólios. Em
particular, utilizamos um computador quântico da D-Wave Systems, Inc. e variamos os
parâmetros relacionados não só com o computador quântico, mas também com o problema
de otimização de portfólios. Acreditamos que as conclusões do estudo são contribuições
úteis para qualquer investigador que deseje utilizar computadores quânticos adiabáticos no
contexto do problema de otimização de portfólios e também noutros domínios de aplicação.

As nossas descobertas sugerem que os parâmetros têm efeito nos resultados, quer sejam
relacionados com o problema de otimização de portfólios ou com o computador quântico.
Além disso, também descobrimos que alguns dos parâmetros têm um grande impacto, tal
como o chain strength, que define a força com a qual os qubits que representam uma variável
estão correlacionados, e que outros não têm nenhum efeito estatisticamente significativo,
tais como o anneal schedule ou o embedding.

Palavras-Chave

Otimização de Portfólios, Computação Quântica, Otimização Binária Quadrática Irrestrita,
Otimização Combinatória
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Chapter 1

Introduction

There are many problems of practical interest that are known to be computationally in-
tractable using classical computers [2]. This includes, and is not limited to, knapsack with
integer weights, graph coloring, traveling salesman, and generating true random num-
bers [3].

While solutions (or algorithms) for solving such problems may exist, classical computers
are not able to execute them for realistic inputs and produce the desired results in a
timely manner. In practice, classical computers are “only” able to produce results, given
sufficiently large inputs, for some of the programs whose execution time grows polynomially
with the size of the inputs.

While the physical implementation of quantum computers has been studied for decades
already, the advent of promising and publicly available quantum computers has brought
a renewed focus and expectation regarding Quantum Computing. In fact, quantum com-
puters have already been demonstrated in practice to be able to solve concrete problems
that classical computers never could in reasonable time — i.e., that quantum advantage
has been achieved in practice.

In 2019, Google was the first company to claim this impressive feat by using a processor
with 53 qubits to prove that a random-number generator was truly random [4]. More re-
cently, in December 2020, the Hefei team, from China, demonstrated quantum advantage
by solving a problem that is virtually unassailable by any classical computer [5]. This team
calculated the probability distribution of many bosons in 200 seconds, which is faster than
an execution on a classical computer by a factor of around 1014! Moreover, Accenture has
published a whitepaper that claims that RSA, which is foundational to modern cryptogra-
phy, is going to be broken by quantum computers by around 2025 [6]. All in all, quantum
computing is getting more and more promising each day.

In this work, we will focus on a problem from the financial domain, where optimization
problems abound, and where a quantum speedup is highly expected and desired. Specif-
ically, we will focus on a combinatorial optimization problem, the Portfolio Optimization
Problem (POP), which constitutes one of the main study objects of our work. This is such
a relevant problem that it granted Harry Markowitz a Nobel prize in Economic Sciences
for his work on it in 1990 [7]!

The POP consists of selecting the best financial portfolio (set of assets) out of the set
of all possible portfolios, according to some objective function, whether to maximize the
expected return or to minimize the risk associated with the investment. Due to the high
number of parameters, such as the expected return per asset and market conditions, this

1
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problem attains an exponential complexity and becomes NP-hard [8], intractable in the
context of classical computing.

The exhaustive analysis of the state of the art in quantum computing applied to POP, both
for gate-based quantum computers and for adiabatic quantum computers, allowed identi-
fying a potential contribution that was not covered before. We designed and conducted an
empirical study on the effect of parameters on solutions returned by an adiabatic quantum
computer to the POP. In particular, we will use a quantum computer from D-Wave Sys-
tems, Inc. (D-Wave) and vary the parameters related not only to the quantum computer,
but also to the POP. The parameters include the chain strength, the anneal schedule, the
annealing system, the embedding, and the number of reads, which relate to the quantum
computer, as well as the universe size, the budget size, the directions, and the dataset,
which relate to the POP.

We believe that our findings are useful not only for those using adiabatic quantum com-
puters in the context of portfolio optimization problem, but also for those using these
computers in other application domains. In the next sections, we describe the main hy-
pothesis supporting our work, as well as the contributions we made.

1.1 Hypothesis and Objectives

Our work seeks to shed light whether the following hypothesis is confirmed or dismissed:

“The configuration of the parameters from both the portfolio optimization problem and the
quantum computer influences the quality of the solutions returned by the quantum

computer to the portfolio optimization problem.”

If we confirm the hypothesis, we then wish to find which parameters in particular have the
largest influence, and how can we leverage such influences to improve the quality of the
solutions returned by the quantum computer.

1.2 Contributions and Results

In the course of our work, a series of contributions were made, together with findings. Our
main contributions are the following:

• We conducted an extensive review and analysis of the state of the art in quantum
computing, with a focus on its application on the POP.

• We implemented a quantum algorithm to solve POP instances on a D-Wave com-
puter.

• We designed and conducted an empirical study on the effect that parameters from
both the POP and the quantum computer have on the quality of the solutions re-
turned by the quantum computer to the POP.

• We developed and implemented a workflow that solves a series of POP instances in
a MILP solver and in a D-Wave computer. The MILP solver results are then used as
a baseline to which we compare D-Wave’s results, assessing the performance of the
adiabatic quantum computer in these instances.

2
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• We performed a systematic analysis of the results we obtained, drawing insights that
can be useful for both practitioners and researchers.

Regarding our findings, they suggest that certain parameters do have an effect on the
results, particularly when considering the POP-related parameters universe size, budget
size, and dataset, which have a great impact, since they directly affect the complexity
of the problem. On the other hand, there are some parameters related to the quantum
computer that also have a great impact on the quality of the solutions, such as the number
of solutions that are read in each execution of the problem instance, as well as the strength
between different qubits representing a variable. These parameters will all be explained in
depth in Section 2.4 and Section 3.2.2.

1.3 Outline

The remainder of this document is aligned with the following structure:

• Chapter 2 — Background contains an introductory review on concepts necessary
to understand the thesis work, including a review on the state of the art in quantum
computers.

• Chapter 3 — Portfolio Optimization describes the POP, as well as the concepts
associated with it.

• Chapter 4 — Approach and Methodology contains our approach and the
methodology we developed for our work.

• Chapter 5 — Workflow Implementation explains our implementation of the
methodology, including a pointer to the code repository of the work.

• Chapter 6 — Results and Discussion contains the results from our empirical
study and the main takeaways from those results.

• Chapter 7 — Conclusions and Future Work presents the conclusions from our
work and indicates open paths that can be explored for future work.
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Chapter 2

Background

This chapter will cover the elementary concepts and the state of the art of the scope and
domain of this thesis, outlined as follows:

• Section 2.1 presents a review on linear algebra that is necessary to understand the
concepts behind quantum mechanics.

• Section 2.2 introduces the postulates and main concepts of quantum mechanics.

• Section 2.3 describes a category of quantum computers that follow the circuit model
to solve problems.

• Section 2.4 describes a category of quantum computers that follow the adiabatic
theorem to solve problems.

• Section 2.5 introduces and illustrates combinatorial optimization with definitions
and examples of models that are used throughout the work.

2.1 Linear Algebra

Linear algebra is the language used to describe quantum computations. In this sense, we
start by doing an introductory review on linear algebra and by becoming acquainted with
the bra-ket notation. For the sake of simplicity, let us assume that z is a complex number

described by a vector e+fi and that A is a matrix

"
a b

c d

#
, where e and f are real numbers,

and a, b, c and d are complex numbers.

Complex Conjugate The complex conjugate of a complex number z is denoted by z⇤,
such that z⇤ = e� fi. The complex conjugate of a matrix A is denoted by A⇤, such that

A⇤ =

"
a⇤ b⇤

c⇤ d⇤

#
.

For example, if A =

"
3 i

8i 3 + 7i

#
, then A⇤ =

"
3 �i
�8i 3� 7i

#
.

5



Chapter 2

Transpose The transpose of a matrix A is denoted by AT , such that AT =

"
a c

b d

#
.

For example, if A =

"
3 i

8i 3 + 7i

#
, then AT =

"
3 8i

i 3 + 7i

#
.

Hermitian Conjugate The Hermitian conjugate of a matrix A is denoted by A†, such

that A† =

"
a⇤ c⇤

b⇤ d⇤

#
. Note that A† =

�
AT
�⇤ and that A† can also be called the adjoint of

A.

For example, if A =

"
3 i

8i 3 + 7i

#
, then A† =

"
3 �8i
�i 3� 7i

#
.

Vector Space Vector spaces are the building blocks of linear algebra. Each element of
a vector space is called vector. In the context of this thesis, Cn is the vector space of most
interest, comprising all n-tuples of complex numbers (z1, . . . , zn).

Ket Vector The ket is a column vector of complex numbers such that | i =

2

664

z1
...
zn

3

775.

Bra Vector For a ket vector | i =

2

664

z1
...
zn

3

775, its bra vector is a row vector of complex

conjugate numbers such that h | =
h
z⇤1 . . . z⇤n

i
.

Inner Product The inner product between vectors | i =

2

664

a1
...
an

3

775 and |�i =

2

664

b1
...
bn

3

775 is

denoted by h |�i, such that h |�i =
h
a⇤1 . . . a⇤n

i
2

664

b1
...
bn

3

775 = a⇤1b1 + . . .+ a⇤nbn. Note that

h |�i = h� | i⇤ and that the inner product between | i and A |�i or between A† | i and
|�i is denoted by h |A |�i.

For example, if | i =
"
3

8i

#
and |�i =

"
1

3

#
, then h |�i =

h
3 �8i

i "1
3

#
= 3� 24i.
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Tensor Product The tensor product between vectors | i and |�i is denoted by | i |�i

or | i ⌦ |�i, such that | i ⌦ |�i =

2

664

a1
...
an

3

775

2

664

b1
...
bn

3

775 =

2

666666666666664

a1b1
...

a1bn
...

anb1
...

anbn

3

777777777777775

. Note that this operation can

also be extended to matrices.

For example, if | i =
"
3

8i

#
and |�i =

"
1

3

#
, then | i⌦|�i =

"
3

8i

#
⌦
"
1

3

#
=

2

666664

3⇥ 1

3⇥ 3

8i⇥ 1

8i⇥ 3

3

777775
=

2

666664

3

9

8i

24i

3

777775
.

Norm The norm of a vector | i is denoted by k| ik, and is calculated as k| ik =p
h | i. The normalization of a vector | i is | i

k| ik , which transforms it into a unit vector
— a vector of size 1.

For example, if | i =

"
6

8i

#
, then its norm is k| ik =

p
h | i =

p
6⇥ 6� 8i⇥ 8i =

p
36 + 64 =

p
100 = 10. Thus, if we normalize | i, we obtain the unit vector | i

k| ik =

1
10

"
6

8i

#
=

"
0.6

0.8i

#
.

2.2 Quantum Mechanics

Classical computing is ubiquitous and can be found almost everywhere, in our personal
computers, smartphones, televisions, and many more devices. These computers obey to
a series of classical properties that can be described as Boolean algebra, i.e. as variables
comprised of truth values true and false.

Quantum computing follows an entirely different mathematical framework, called quantum
mechanics. During a long process of trial and error by the creators of the quantum physics
theory, four postulates were iterated over, and are presented next.

2.2.1 The Hilbert Space and the Quantum Bit

First postulate In [3], we know that “associated to any isolated physical system is a
complex vector space with inner product (that is, a Hilbert space) known as the state space
of the system. The system is completely described by its state vector, which is a unit vector
in the system’s state space.”

In the context of quantum computers, this postulate relates to the notion of a quantum
bit, a two-dimensional state space called qubit in the remaining of this thesis. The qubit is

7
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the simplest quantum mechanical system whose state space has an orthonormal basis that

can be formed by |0i =
"
1

0

#
and |1i =

"
0

1

#
. Hence, any arbitrary state vector | i can be

defined in a linear combination such that:

| i = ↵ |0i+ � |1i (2.1)

where the coefficients ↵ and � are complex numbers that are also denoted probability
amplitudes, for reasons that will be explained in depth in Section 2.2.3. From the first
postulate, | i must be a unit vector, since the inner product of | i with itself is 1, h | i =
1, and this is equivalent to the normalization condition for state vectors:

|↵|2 + |�|2 = 1 (2.2)

Note that the qubit may have an orthonormal set of basis vectors other than |0i and |1i.
Since this is a formalism that does not affect any property from quantum mechanics, it is
fixed in advance that the dissertation uses this set.

The states |0i and |1i are analogous to the classical bit ’s truth values False and True from
the Boolean algebra used by classical computing. The qubit differentiates itself from the
bit by making it possible to have superpositions of these two states, in which a qubit is
neither certainly in the state |0i nor certainly in the state |1i. Superpositions are defined
by the linear combination:

X

i

↵i | ii

subject to
X

↵i = 1

(2.3)

where ↵i is the probability amplitude of the state | ii. For example, one superposition
could be defined as:

1p
2
|0i � 1p

2
|1i = |0i � |1ip

2
(2.4)

where the probability amplitudes are ↵1 = 1p
2
, ↵2 = � 1p

2
, and the states are | 1i = |0i,

and | 2i = |1i.

The Hilbert space can be visualized via the Bloch sphere, a unit sphere with three axes: x,
y, and z. The points in the surface of this unit sphere represent every possible state that a
single qubit may have. Figure 2.1 shows three Bloch spheres with a red arrow representing
the familiar states |0i, |1i, and |0i�|1ip

2
, respectively.

It is important to note that, despite the fact that the Hilbert space tells us how to describe
the state of any system, quantum mechanics does not tell us the specific state of a particular
system. Finding the specific state of a particular system is a difficult problem that is still
in research by physicists and is out of the scope of this thesis.

8



Background

z

|0i

|1i

x

|0i+|1ip
2

|0i�|1ip
2

y

|0i�i|1ip
2

|0i+i|1ip
2

z

|0i

|1i

x

|0i+|1ip
2

|0i�|1ip
2

y

|0i�i|1ip
2

|0i+i|1ip
2

z

|0i

|1i

x

|0i+|1ip
2

|0i�|1ip
2

y

|0i�i|1ip
2

|0i+i|1ip
2

Figure 2.1: Bloch sphere visualization of the states |0i, |1i, and |0i�|1ip
2

, respectively, from
left to right

2.2.2 Evolution of a Quantum System

Second postulate As defined in [3], “the evolution of a closed quantum system is de-
scribed by a unitary transformation. That is, the state | i of the system at time t1 is
related to the state | 0i of the system at time t2 by a unitary operator U which depends
only on the times t1 and t2,”

| 0i = U | i (2.5)

The second postulate specifies that quantum systems are closed systems, i.e. that do not
interact with other systems in any way, and that the transformation of the system’s state
between any two given points in time (t1 and t2) can be described by a single unitary
operator.

Note that this unitary operator cannot depend on the state | i, which means that we
cannot conditionally apply it. In other words, we cannot apply an operator on specific
states, the transformation is always applied regardless of the system’s state.

For example, let us assume that a transformation U was applied to a system with the state
| i = |0i, which evolved to the state | 0i = |1i. This transformation can be described by
the following unitary operator, also known as the Pauli �x operator:

U = �x = X =

"
0 1

1 0

#
(2.6)

Calculating the state that is reached can be done as follows:

U | i = �x |0i =
"
0 1

1 0

#"
1

0

#
=

"
0

1

#
= |1i = | 0i (2.7)

Similarly to quantum states, quantum mechanics also does not tell us which unitary op-
erators describe particular real-world phenomena. Therefore, finding the specific unitary
operator that describes a real-world phenomenon is also a physics problem out of the scope
of this thesis.
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2.2.3 Measurement on Quantum Systems

Third postulate Once again, in [3], we know that “quantum measurements are described
by a collection {Mm} of measurement operators. These are operators acting on the state
space of the system being measured. The index m refers to the measurement outcomes
that may occur in the experiment. If the state of the quantum system is | i immediately
before the measurement then the probability that result m occurs is given by

p(m) =
D
 
���M †

mMm

��� 
E
, (2.8)

and the state of the system after the measurement is

Mm | irD
 
���M †

mMm

��� 
E . (2.9)

The measurement operators satisfy the completeness equation,”
X

m

M †
mMm = I. (2.10)

Let us assume that we are measuring a qubit in the computational basis — |0i and |1i.
The measurement operators are:

M0 = |0i h0| =
"
1

0

# h
1 0

i
=

"
1 0

0 0

#
(2.11)

M1 = |1i h1| =
"
0

1

# h
0 1

i
=

"
0 0

0 1

#
(2.12)

which can be verified to obey the completeness equation since M †
0M0 +M †

1M1 = I. It is

also useful to note that M †
0M0 = M0, hence for a state | i =

"
a

b

#
:

p(0) =
D
 
���M †

0M0

��� 
E
= h |M0 | i =

h
a⇤ b⇤

i "1 0

0 0

#"
a

b

#
=
h
a⇤ b⇤

i "a
0

#
= |a|2

(2.13)

which means that the probability of measuring |0i is the square of its probability amplitude,
|a|2, which is why this coefficient is denoted probability amplitude. This property can be
generalized to any of the basis states comprising the computational basis.

To calculate the state of the system after measuring it, we use Expression (2.9):

| 0i = M0 | irD
 
���M †

0M0

��� 
E =

"
a

0

#

q
|a|2

=
a

|a| |0i =) |0i (2.14)

10



Background

which can also be generalized to any of the basis states in the computational basis. That
is, after measuring a system in the computational basis, the system’s state collapses to
the measured basis state. Note that this is because multipliers such as a

|a| , that have a
modulus of 1, can be ignored in practice, so the post-measurement states are precisely the
measured basis states. The reasoning behind this is out of scope for this thesis.

There is an open debate whether the third postulate can be derived from the second pos-
tulate [3]. Since the measuring system and the quantum system being measured comprise
a larger isolated quantum system, it should be possible to describe the evolution of this
larger isolated system as a unitary operator, according to the second postulate. This de-
bate is out of the scope of this thesis and in practice it is possible to apply both the second
and third postulates without worrying about deriving one from the other.

2.2.4 Systems with Multiple Quantum Bits

Fourth postulate Finally, as described in [3], “the state space of a composite physical
system is the tensor product of the state spaces of the component physical systems. More-
over, if we have systems numbered 1 through n, and system number i is prepared in the
state ⇢i, then the joint state of the total system is ⇢1 ⌦ ⇢2 ⌦ . . .⌦ ⇢n.”

The fourth postulate is the easiest one to understand and apply. Let us assume that
we have a system with state | 1i = |1i and another system with state | 2i = |0i. The
composite system |�i that is comprised of those two systems has its state described as:

|�i = | 1i ⌦ | 2i = |1i ⌦ |0i =
"
0

1

#
⌦
"
1

0

#
=

2

666664

0

0

1

0

3

777775
(2.15)

which is also denoted by |10i (or |2i in decimal notation). In the same way, a composite
system |�i that is comprised of n qubits, all in the state | i can be described as:

|�i = | 1i ⌦ | 2i ⌦ · · ·⌦ | ni = | i⌦n (2.16)

Composite systems enable another property that has no classical analog, quantum entan-
glement. This property lets practitioners correlate two or more qubits in such a way that
it becomes impossible to describe each individual qubit of the composite system by itself,
and that by measuring one qubit they are affecting the state of the other qubits. For
example, for a composite system of two qubits, one of the simplest and maximal states of
entanglement is:

|�+i = |00i+ |11ip
2

(2.17)

In practice, if we measure a single qubit of a system in the state |�+i, the result is
indeterminate — i.e. random. However, upon measuring it, the result of measuring the
second qubit is guaranteed to yield the same value. For example, if measuring the first
qubit yields zero, measuring the second qubit will also yield zero (00), and if measuring the
first qubit yields one, measuring the second qubit will also yield one (11). Both situations
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have the same probability of happening. Hence, the two qubits are correlated in a way
that allows quantum computers to process information beyond what is possible in classical
computers [3].

2.3 Gate-based Quantum Computers

In this section, we describe gate-based quantum computers, such as the quantum comput-
ers from International Business Machines Corporation (Hereinafter denoted IBM), openly
accessible through the IBM Quantum Experience platform [9]. These computers follow the
quantum circuit model, in which a computation is a sequence of quantum gates. That is,
the evolution of a quantum system is described and programmed by a series of quantum
gates that represent unitary operators.

These quantum gates vary from computer to computer, but every full-fledged computer
has a set of quantum gates such that it is universal — i.e., a set of quantum gates that
can be combined to represent every possible unitary operator from quantum mechanics.
Table 2.1 lists the most common quantum gates with their operator name, abbreviation,
circuit form, and corresponding unitary matrices.

Operator name Abbreviation Circuit form Unitary matrix

Pauli-X �x, X X

"
0 1

1 0

#

Pauli-Y �y, Y Y

"
0 �i
i 0

#

Pauli-Z �z, Z Z

"
1 0

0 �1

#

Hadamard H H
1p
2

"
1 1

1 �1

#

Phase S S

"
1 0

0 i

#

Controlled X CX

2

666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

777775

Table 2.1: Table of the most common quantum gates with their operator name, abbrevia-
tion, circuit form, and corresponding unitary matrices

12



Background

For example, if we wanted to describe a quantum system with 2 qubits that are entangled
and measured, we would apply the following circuit:

|0i H

|0i

| 1i | 2i | 3i

Figure 2.2: Circuit that describes a 2-qubits system with entanglement and measurement

The circuit describes a system that evolves along the following states.

The original state is:

| 1i = |0i ⌦ |0i =
"
1

0

#
⌦
"
1

0

#

=

2

666664

1

0

0

0

3

777775
= |00i ,

(2.18)

and, after applying the Hadamard gate, we get:

| 2i = H |0i ⌦ |0i = 1p
2

"
1 1

1 �1

#"
1

0

#
⌦
"
1

0

#
=

1p
2

"
1

1

#
⌦
"
1

0

#

=
1p
2

2

666664

1

0

1

0

3

777775
=

|00i+ |10ip
2

(2.19)

Finally, by applying the controlled X gate, we reach the final state:

| 3i = CX | 2i =

2

666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

777775

1p
2

2

666664

1

0

1

0

3

777775
=

1p
2

2

666664

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

3

777775

2

666664

1

0

1

0

3

777775

=
1p
2

2

666664

1

0

0

1

3

777775
=

|00i+ |11ip
2

(2.20)

which is the maximal example of entanglement mentioned in Section 2.2.4 that, upon
measurement, will return 00 or 11, with equal probabilities.
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The IBM Quantum Experience platform lets practitioners run quantum circuits on real
quantum hardware with an open access model. That is, practitioners can submit any
number of circuits to IBM’s open access quantum computers, subject to a fair use policy
and waiting queues. The circuits can be developed both via a simple interface in IBM
Quantum Experience’s website and via Qiskit programs. Qiskit is an open-source Software
Development Kit (SDK) founded by IBM Research, the research and development division
for IBM [10]. This SDK lets users implement hybrid (classical and quantum) programs
with a high-level of detail and control. Appendix A shows an implementation of the circuit
from Figure 2.2 in Qiskit, as well as its execution results on a real quantum computer,
IBM Q Athens.

At the moment, IBM’s most advanced quantum computer is IBM Q Kolkata, with a
quantum volume level of 128, achieved by reliably executing a circuit with 7 qubits (27 =
128) [9]. However, the best openly accessible quantum computer is IBM Q Manila, with a
quantum volume level of 32, achieved by reliably executing a circuit with 5 qubits (25 =
32) [9]. Quantum volume VQ is a performance metric that measures the biggest possible
circuit a quantum computer can execute with regards to its width (number of qubits) N
and its depth d(N) (number of steps that can be executed with a low rate of error) [11]:

log2VQ = argmax
N

min(N, d(N)) (2.21)

That is, VQ is the largest square-shaped circuit (i.e., N = d(N)) that a quantum computer
can execute with a low rate of error. For example, if we have a quantum computer that
successfully implements circuits with N = d(N) = 10, but fails to implement circuits with
N = d(N) = 11, then its VQ is 2N = 210 = 1024. In short, the quantum volume tells
us that the state-of-the-art gate-based quantum computer from IBM can reliably execute
problems up to a maximum of seven variables (VQ = 27), whereas the best openly accessible
gate-based quantum computer from IBM can reliably execute problems up to a maximum
of five variables (VQ = 25).

2.4 Adiabatic Quantum Computers

In this section, we describe adiabatic quantum computers, a category of quantum comput-
ers that follow the adiabatic theorem, such as the computers from D-Wave Systems, Inc.,
hereinafter denoted D-Wave. To understand this theorem, it is important to revise the
second postulate, explained in depth in Section 2.2.2, to first understand another concept
in quantum mechanics: the Hamiltonian of a system. The Hamiltonian H is an operator
that describes the total energy of the system | i, which includes both kinetic energy and
potential energy [3]. This operator is part of the Schrödinger equation:

i~d | i
dt

= H | i (2.22)

The equation is another way to describe the time evolution of the state of a closed quantum
system, equivalent to Expression 2.5. This equation uses an experimentally determined
physical constant, Planck’s constant, denoted ~. In this sense, knowing the Hamiltonian
is equivalent to knowing the dynamics of the system as it evolves. The Hamiltonian can
be decomposed as follows:
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H =
X

E

E |Ei hE| , (2.23)

where E are the eigenvalues of the system and |Ei are the corresponding eigenstates. The
eigenvalues are the possible value outcomes from a measurement of the system, each as-
sociated to an eigenstate. The eigenstates are states of the system that cause a specific
outcome upon measurement, their associated eigenvalues. We present an analogous exam-
ple to understand this concept. Let us assume that we have a tennis ball with a mass of
1kg. In this case, the mass is an observable quantity that can be measured and is associ-
ated to an operator. This operator would state that the tennis ball has an eigenstate with
a mass of 1kg, and that the corresponding outcome would be a result of 1kg. While in the
case of the tennis ball the outcome is guaranteed to be 1kg, in the case of systems in a
superposition of states, the operator would state that there are different eigenstates, each
with its associated eigenvalue, that has its own probability of outcome. The Hamiltonian
is equivalent to that operator, but relative to the total energy of the system.

The eigenstates of an Hamiltonian are also called stationary states, since a system in an
eigenstate remains in that state if no external perturbation occurs. The stationary state
with the lowest energy is called ground state.

The adiabatic theorem states that a system with an initial Hamiltonian remains in its sta-
tionary state as long as the external conditions change slowly [12]. Therefore, the system
will end in the corresponding eigenstate of the final Hamiltonian, whose outcome is usually
designed to be a solution to a problem, in the context of adiabatic quantum computing.
It is important to note that there must be large enough gaps in the energy levels between
different eigenstates such that the changing conditions do not cause jumps between neigh-
bor states. In fact, the enlargement of these gaps is one of the main problems of interest
in the area of adiabatic quantum computing [13]. Figure 2.3 illustrates the evolution of a
system with two stationary states while slowly transforming its initial Hamiltonian into a
final Hamiltonian.

E(t)

t

E1 |E1i

E0 |E0i

Initial Hamiltonian

t0

Final Hamiltonian

t1

Jump between eigenstates may

occur here if change is too fast!

Figure 2.3: Illustration of the evolution of a system under the adiabatic theorem

Adiabatic quantum computers take advantage of this theorem by preparing a simple Hamil-
tonian and initializing it to the ground state (|E0i in the illustration). Afterwards, prac-
titioners find a Hamiltonian whose ground state describes the solution to the problem of
interest. Finally, the simple Hamiltonian is adiabatically evolved to the desired final Hamil-
tonian. If the evolution is slow enough and the gaps between energy levels are sufficiently
large, the system remains in the ground state during the entire evolution. Hence, at the
end of the evolution, the state of the system corresponds to the ground state of the final
Hamiltonian — the solution to the problem of interest!
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In the case of D-Wave, the Quantum Processing Unit (QPU) present in every quantum
computer takes advantage from adiabatic evolution by implementing quantum annealing
in order to solve a specific set of problems. This annealing process applies the idea illus-
trated in Figure 2.3, by seeking low-energy states while trying to keep external interference
at a minimum in order to minimize the probability of jumps between stationary states.
Nonetheless, even if jumps do occur, the final state may still provide a useful enough so-
lution. When measuring qubits, the QPU observes their spin direction to determine the
final value. The measurement on each qubit returns the value 0 if the qubit is in spin up
(s"), and returns the value 1 if the qubit is in spin down (s#). Let us suppose that we have
a qubit as shown in the energy diagram of Figure 2.4.

High energy

Low energy

Superposition state

|0i+|1ip
2

Double-well potential

|0i |1i

Bias applied

|0i

|1i

Figure 2.4: Energy diagrams of a qubit in the quantum annealing process

Initially, the qubit is in a superposition state, with a single minimum. Once the quantum
annealing process begins, the energy diagram transforms into a double-well potential, where
both states |0i and |1i have a valley with the same depth — if no more transformations
are applied, the probability of the qubit ending in the state |0i or |1i is equal. However,
the computer can control the depth of both valleys, by applying an external magnetic field
to the qubit — a bias. Once applied, the bias shifts the probability of the qubit ending
in one of the states |0i and |1i. Figure 2.4 illustrates a bias on the state |1i, which lowers
the energy level associated to this state, and thus also increases the probability of the
qubit ending in state |1i. In this sense, the programmable bias is equivalent to applying
an operator.

However, this programmable bias is not useful by itself. There is also a programmable
coupler in the system. The coupler links two qubits together such that they become entan-
gled and the correlation weight between coupled qubits can be adjusted by the computer.
Several couplers can work together to form a chain of qubits that are all linked together.
Entangled qubits can be thought of as a single object with 2N possible states, being N the
number of qubits. Hence, the energy of each state is the sum of the biases of the qubits and
the coupling between them. As an example, we have the energy diagram of a entangled
two-qubit system in Figure 2.5, where the state |00i is the most probable one to end up
with — 00 is the solution for the designed problem! In short, we need to specify values for
the biases and couplers of the computer, in order to define an energy landscape such that
its minimum value is the solution for the problem that we want to solve.

D-Wave computers’ qubits are implemented by following a specific topology of qubits
and couplers. That is, the topology of a computer describes the number and pattern
of the qubits and couplers in the system. For example, the Pegasus topology, currently
implemented in the state-of-the-art computers from D-Wave, is illustrated in Figure 2.6.
Each line represents a qubit and its orientation (vertical or horizontal). To understand
this topology, let us focus on the green qubit. There are three types of couplers: internal,
external, and odd. First, internal couplers connect each qubit to its overlapping qubits,
that have a different orientation — the green qubit is linked to the twelve dark gray qubits
via internal couplers. Next, external couplers connect each qubit to its front and back
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High energy
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|00i
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Figure 2.5: Energy diagram of a entangled two-qubit system in the quantum annealing
process

neighbor qubits with the same orientation — the green qubit is linked to the blue qubits
via external couplers. Last, odd couplers link each qubit to its side neighbor qubit with
the same orientation — the green qubit is linked to the red qubit via an odd coupler.

Figure 2.6: Illustration of part of the Pegasus topology, adapted from [1]

In short, each qubit is connected to other 15 qubits and the computers that implement
this topology have at most 5760 qubits, and, since the qubits in the margin of the chip
of the QPU are not as connected as those in the middle, the computers have at most
5640 qubits with 15 couplers [1]. However, there is a high probability of having defects
in the chip, and thus the total number of qubits may be lower. This means that, in the
case of state-of-the-art D-Wave computers, the theoretical maximum size of problems that
they can solve is 180 variables, since we can directly map a fully connected graph of 180
nodes [14].

D-Wave computers can be accessed via D-Wave’s Leap platform. At the time of writing,
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new users, upon registering, obtain a free minute of access time to their QPU as a trial
time, for one month. After spending their trial access time, or after having passed a month,
users can agree to open-source any software they develop using the Leap platform, and
obtain an additional minute of QPU access time per month.

In order to input problems to D-Wave QPU, we have to transform the problem to one of two
binary quadratic models: Ising model and Quadratic Unconstrained Binary Optimization
(QUBO). A Binary Quadratic Model (BQM) is a representation of problems that has
no constraints and uses quadratic and linear coefficients that represent the coupler links
and the programmable bias, respectively. These models will be explained in depth in
Section 2.5. To perform those transformations, and to execute, solve and tune problems,
D-Wave provides a framework called Ocean Tools. Appendix B shows an implementation
of a problem on a D-Wave computer, as well as its execution.

In the following paragraphs, we present the D-Wave system’s parameters that are studied
in our work. These parameters influence the evolution of the QPU when solving a problem.

Embedding The embedding parameter represents the mapping used to translate the
problem to solve to the topology of the QPU [15]. The QPU follows a topology that is not
a fully connected graph, with each qubit connected to only a part of the remaining qubits.
This characteristic makes it impossible to directly map the majority of the problems onto
the QPU. Therefore, we need to map each of the binary variables of the problem to a set
of qubits in the QPU. In this sense, a chain is a set of qubits associated to a single variable
of the problem. At the end of the execution of the problem, each chain in the QPU should,
in theory, have all its qubits in the same state. In practice, however, this does not always
happen, and some of the qubits may be in a different state. This situation is called chain
break and is, by default, solved with a majority voting algorithm. Figure 2.7 illustrates
the embedding of a BQM problem with three fully connected binary variables on a QPU
with four qubits, each connected to other two, forming a square topology.

a b
c

0 1
32
�� 0 1

32

a b

c

BQM QPU

Figure 2.7: Illustration of an embedding of a BQM problem on a QPU

In the illustration, the variable a is mapped to qubits 0 and 2, while the variables b and c
are mapped to qubits 1 and 3, respectively. After executing the problem, qubits 0 and 2
should end in the same state. The embedding is very important to minimize the number
of chain breaks when executing a problem.

Chain strength The chain strength parameter defines the strength of the couplings
between qubits. A higher strength reduces the number of chain breaks that might occur
in a chain. Note that setting too strong couplings between qubits is not beneficial, since it
scales down the bias of each qubit in comparison to the couplings between qubits, degrading
the definition of the problem [15, 16].
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Number of reads The number of reads parameter sets the number of solutions to read
when executing a problem. Due to the non-deterministic nature of D-Wave computers, a
single read is not sufficient for most problems, and several reads are performed, returning
a set of solutions for each execution [15].

Anneal schedule The anneal schedule parameter defines how the QPU evolves from
the initial Hamiltonian to the problem Hamiltonian [15]. The schedule is defined by a
series of time-current points. Each time-current point (t, s) is a pair of two numbers, one
that specifies a point in time t in microseconds, and other that specifies the normalized
persistent current s in the range [0, 1]. A normalized persistent current value of 0 is
analogous to the system being in the initial Hamiltonian, while a value of 1 is analogous to
the system being in the final Hamiltonian, and the values in-between are analogous to the
system being in a transitional Hamiltonian. Given the series of time-current points, the
QPU evolves the system along these points, following a piecewise-linear curve that connects
them. Figure 2.8 illustrates the curve that is followed by the system for a series of four
time-current points: (0µs, 0), (10µs, 0.5), (90µs, 0.5), and (100µs, 1). Using this series, the
QPU evolves the Hamiltonian with a pause of 80µs at the middle of the evolution.

s

1

0.5

0
t

Initial Hamiltonian

0µs 10µs 90µs

Final Hamiltonian

100µs

Figure 2.8: Illustration of a piecewise-linear curve followed by a QPU

Annealing system D-Wave provides two types of quantum computers, according to
their topology [15]. The Advantage systems are the most recent ones, following the Pegasus
topology. At the time of writing, the Advantage system accessible for open-source users,
Advantage_system1.1, has 5436 working qubits. The D-Wave 2000Q are the other type,
following an older topology, called Chimera. At the time of writing, the D-Wave 2000Q
system accessible for open-source users, DW_2000Q_6, has 2041 working qubits. Moreover,
in the older topology, Chimera, each qubit only has four internal couplers and two external
couplers associated, and thus each qubit is only connected to other six qubits.

In the short-term, adiabatic quantum computers such as D-Wave’s are more promising
than gate-based quantum computers such as IBM’s, since they accept significantly bigger
problems (180 variables versus 7 variables). For this reason, we will be using D-Wave
computers in our work, studying the impact that the different parameters identified have
on the quality of the solutions for a specific problem.
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2.5 Combinatorial Optimization

In this section, we present a specific case of optimization problems, combinatorial opti-
mization problems. Mathematical optimization is the field of research that studies and
develops techniques for finding the maximum or minimum of an objective function, given
a set of constraints — i.e. optimization problems [17]. For example, let us suppose that
we have a function that tells us the amount of power generated by a hydroelectric power
station, or the failure rate of a vehicle, or other dependent variables of significant interest.
In such cases, it is in our best interest to find the set of values that give us the best possible
value from the function. For example, in the case of the power station, one of the variables
is the rate of water passing by the generators, which is a continuous variable, inserting the
problem in the subset of continuous optimization.

The objective function may have constraints that limit the variables. For example, one pos-
sible constraint for the power station problem is that the amount of water in the reservoir
cannot exceed a specific volume. In practice, optimization problems have a high number
of variables and constraints such that it becomes infeasible to simulate every possible com-
bination of values, due to classical computing not being able to solve these problems in
polynomial time. The general definition of a continuous optimization problem is as follows:

min f(x)

subject to g(x) � 0

h(x) = 0

and x 2 R

(2.24)

Here, f(x) is the objective function and g(x) and h(x) are the inequality and equality
constraints, respectively. Note that the objective function can also be maximized, since it
is equivalent to minimizing �f(x).

Among the set of optimization problems, there is a subset tackled by discrete optimization,
where the variables are restricted to be discrete variables, i.e. that have a discrete set of
values, such as the binary values 0 and 1 or integer values [17]. For example, if we defined
x in expression 2.24 such that x 2 {0, 1}n, the optimization problem would fall under
the subset of discrete optimization problems. The thesis work focuses on a problem that
inserts in one of the branches of discrete optimization, combinatorial optimization.

In combinatorial problems, we are seeking for the best object from a finite set of objects,
such as integers, permutations, and graphs. That is, we are finding the optimal combination
or configuration of variables that minimizes the objective function. An example is the 0�1
knapsack problem — let us suppose that we have a knapsack where we intend to store the
max amount of value in objects while keeping the total weight under a fixed limit, such
that:

max
nX

i=1

vixi

subject to
nX

i=1

wixi W

x 2 {0, 1}n

(2.25)

Here, n is the number of objects, xi indicates whether object i goes into the knapsack, vi is
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the value of object i, wi is the weight of object i, and W is the maximum limit of the total
weight. This is a model that we use as part of the means to solve this problem and we
could have used others. In the following subsections, three ways to express combinatorial
problems are explained, since they are of special interest for the thesis work. Afterwards,
a list of the most common used classical and quantum algorithms is described.

2.5.1 Ising Model

The Ising model is one of the supported BQM that D-Wave computers accept, as mentioned
in Section 2.4. A classical Ising model is the following quadratic objective function of a set
of N spins si 2 {�1,+1} [2]:

Eising(s) = �
NX

i=1

NX

j=i+1

Ji,jsisj �
NX

i=1

hisi (2.26)

Here, hi is the magnetic field strength applied on the spin i (i.e. the bias of the variable
i), Ji,j is the coupling strength between spins i and j. To obtain the quantum version of
the same model, we substitute the spins by Pauli-Z operators [18], which act as variables
of the problem, and thus get the following Hamiltonian:

H = �
NX

i=1

NX

j=i+1

Ji,jJi,j�
i

z�
j

z �
NX

i=1

hi�
i

z (2.27)

For example, let us suppose that we want to produce one Ising model of the 0-1 knapsack
problem. This process is difficult since we need to translate the constraints into terms of
an unconstrained objective function. To ease this translation, we let H = HA+HB, where
the Hamiltonian HA ensures that the total weight limit is satisfied and the Hamiltonian
HB ensures that the total value is maximized:

HA = A

0

@1�
WX

j=1

yj

1

A
2

+A

0

@
WX

j=1

jyj �
nX

i=1

wixi

1

A
2

(2.28)

HB = �B
nX

i=1

vixi (2.29)

For HA, we introduce the binary variable yj for 1  j  W , which is 1 if the final weight
of the knapsack is j, and 0 otherwise. Note that A and B are two real positive constants
that are adjusted such that adding one item to the knapsack in excess of weight will always
be numerical worse than the potential value gained by the item. Hence, it is important to
define the condition 0 < Bmax(vi) < A, such that the model is correct.

2.5.2 Quadratic Unconstrained Binary Optimization Formulation

Another supported BQM that D-Wave computers accept is the QUBO formulation. This
formulation is actually directly translated to the Ising model in quantum computers, since
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both models are isomorphic [19]. In fact, to translate we just need to do the map s = 2q�1,
with q 2 {0, 1}N , which leads us to the following quadratic objective function:

Equbo(ai, bi,j ; qi) = �
NX

i=1

NX

j=i+1

bi,jqiqj �
NX

i=1

aiqi. (2.30)

In other words, the QUBO formulation replaces the Ising model terminology with linear ai
coefficients and quadratic bi,j coefficients. Linear coefficients correspond to the bias applied
to each qubit, while quadratic coefficients correspond to the coupling between qubits. It
is also very common to find this formulation in a matrix form, where the coefficients are
described by an upper-diagonal matrix Q of linear Qi,i and quadratic Qi,k real coefficients.

2.5.3 Graph Expression

Both the Ising model and the QUBO formulation can be represented by graphs, where
nodes represent the binary variables, node weights represent the biases, and edge weights
represent the coupling strengths. For example, if we have a QUBO formulation represented
by the following upper-diagonal matrix:

Q =

2

666664

1 7 3 1

2 7 0

8 4

9

3

777775
(2.31)

Then the following graph expresses the problem formulated by this matrix QUBO:

x1
1

x2
2

x3
8

x4
9

7

3

1 7

4

Figure 2.9: Graph expression of a QUBO formulated problem
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2.5.4 Summary of Problem Expressions

In the end, we can express the problem in several different, but equivalent, ways. Table 2.2
shows the equivalence between them.

Expression Variable States Linear coefficient Quadratic coefficient

QPU Qubit state {s", s#} Qubit bias Coupling strength

Ising si {�1, 1} hi Ji,j

Scalar QUBO qi {0, 1} ai bi

Matrix QUBO xi {0, 1} Qi,i Qi,j

Graph Node Node weight Edge weight

Table 2.2: Table of equivalence between QPU terminology, Ising models, QUBO formula-
tions, and graph expressions

All the expressions can be directly converted between each other. Nonetheless, there are
some advantages in choosing a particular expression, depending on the problem that is
being tackled. For example, the QUBO formulation is more suited for problems where
we need to choose a combination of elements among a set, since we can express this
combination as binary variables with the value 0 meaning “element not chosen” and with
the value 1 meaning “element chosen”.
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Chapter 3

Portfolio Optimization

In this chapter, we introduce the Portfolio Optimization Problem (POP), as well as the
concepts that are relevant to understand the motivation and goal of this optimization prob-
lem. We also present two additional formulations of the POP, one for Linear Programming
and other for QUBO. The chapter is outlined as follows:

• Section 3.1 introduces the terminology required to understand the POP, as well as
the motivation behind this optimization problem.

• Section 3.2 presents the POP, its parameters in the context of our work, as well as
a QUBO formulation.

• Section 3.3 introduces an overview on the state of the art in quantum computing
applied to POP.

3.1 Terminology and Motivation

In the context of financial markets, an asset is an item of value owned by an individual or
a company [20]. This item can be any tangible or intangible resource that could produce
an economic value. An investment is the purchase of a resource as a whole or parts thereof
to achieve long-term returns. To support their decisions, investors draw their attention
to several market factors, such as the asset’s intrinsic value, the company’s earnings, or
industry trends. A portfolio is the collection of investments of an individual or a company.
In light of the above, investors aim to select the best possible portfolio — by definition,
this consists of the POP [7].

3.2 The Portfolio Optimization Problem

Our work consists on tackling the combinatorial application of the POP, in which investors
seek to allocate capital to a subset of a universe of assets. Concretely, our work solves the
following combinatorial problem:

min
x2{0,1}n

qxT⌃x� µTx

subject to 1Tx = B
(3.1)
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where x is the portfolio, which is a vector of binary decision variables that indicate which
assets are selected (xi = 1) and which are not (xi = 0); n is the universe size, which
indicates the number of assets to select from (n 2 N); q is the risk appetite of the investor
(q 2 R�0); ⌃ is the matrix of the covariance between assets (⌃ 2 Rn⇥n); µ is the vector of
the expected returns for the assets (µ 2 Rn); and B is the budget size, which indicates the
number of assets to select (B 2 {1, . . . , n}). Note that this objective function is a weighted
sum of two individual objective functions, the expected return (µTx) and the volatility
(xT⌃x).

3.2.1 Multiobjective Optimization and Efficient Frontier

The risk appetite q of the investor, one of the parameters of POP, is related with the
multiobjective nature of this combinatorial problem. This means that, for nontrivial cases,
there is no single solution that maximizes the expected return and minimizes the volatility,
two terms that can be considered as two individual objective functions. In this sense, the
investor has to decide the trade-off between the expected return and the volatility. For
any trade-off, the investor should choose a solution whose associated point in the objective
space belongs to the efficient frontier, a set of points in which the value of one of the
objective functions cannot be improved without degrading the value of the other objective
function. These points are said to be non-dominated, since there is no other single point
that has a better value for both objective functions.

We will introduce an example to illustrate the POP and the efficient frontier. Let us
assume that we have a universe of 4 assets, and a budget size of 2. Thus, we have n = 4
and B = 2, and the expected return of the assets and the covariance matrix are:

µ =

2

666664

0.5

�0.75
1

1.5

3

777775
,

⌃ =

2

666664

0.333 �0.167 0.667 0

�0.167 0.917 �0.333 0.833

0.667 �0.333 1.333 0

0 0.833 0 1.667

3

777775
.

(3.2)

In this case, there are 6 feasible solutions or portfolios, which is the same number as the
number of pairs that exists in a set of 4 assets. Table 3.1 shows the expected return and
the volatility of each of these solutions. Figure 3.1 shows the scatter plot of the points
associated to each of the feasible solutions in the objective space.

The scatter plot enables us to visually identify the efficient frontier, which is the subset
containing the points associated to solutions P1, P3, P4, and P6, shown in green. These
solutions are denoted efficient solutions. The dominated points are shown in red and, in
the context of POP, we should never select the portfolios associated to these points, P2

and P5, since they both are dominated by portfolios P3 and P6. Note that the solution P1

has a negative expected return, which means that this portfolio, in practice, should not be
selected, despite its associated point being part of the efficient frontier.

When solving the POP, we consider the weighted sum formulation for different values of
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Table 3.1: Expected return and volatility of each of the feasible solutions of example POP

Portfolio ID xxx Expected return Volatility

P1 [1 1 0 0] �0.250 0.917

P2 [1 0 1 0] 1.500 3.000

P3 [1 0 0 1] 2.000 2.000

P4 [0 1 1 0] 0.250 1.583

P5 [0 1 0 1] 0.750 4.250

P6 [0 0 1 1] 2.500 3.000

Figure 3.1: Scatter plot of points associated to each of the feasible solutions of example
POP

q, such that we obtain a set of solutions that encompasses different risk appetites, which
keeps our work suited to any investor profile, whether they are risk-prone, risk-averse, or
in-between. That is, we try to obtain a frontier that ranges from solutions with the lowest
volatility to solutions with the highest volatility, providing different options for investors
to choose from.

3.2.2 Parameters

In the context of our work, we look at the POP while taking into account the different
trade-offs investors may choose. In this sense, we present a different set of parameters that
we will refer to hereinafter. The set will contain most of the parameters already presented
in Expression 3.1, and new ones that will directly or indirectly influence the remaining.

Universe size The universe size, denoted n, is the number of assets that constitute the
universe of the problem instance. Larger values of n translate to larger instances, since
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larger universes have a larger number of subsets to select.

Budget size The budget size, denoted B, is the number of assets to be selected among
the universe of the problem instance. In other words, it is the size of the portfolio to be
selected.

Directions The directions parameter is related to the risk appetite q of the formulation.
Since q represents the trade-off between the expected return and the volatility of the
investor, it can be viewed as a pointer of the direction in the objective space to which the
solver targets. Hereinafter, when saying direction, we refer to a value for the parameter
q in the POP formulation. Therefore, we provide a set of different directions to a given
solver, which solves the problem instance for each direction in this set. In return, we obtain
a set of solutions that encompasses different risk appetites, which keeps our work suited
to any investor profile, whether they are risk-prone, risk-averse, or in-between.

The specific directions to provide to the solver are problem dependent, since it depends
on the domain of both objective functions, the expected return and the volatility. To
understand how to choose a set of directions, let us assume that we want a set of directions
for the example shown in Table 3.1 and in Figure 3.1, such that each of the feasible solutions
maximizes the objective function of the problem for one of the directions in the set. Starting
with the direction 0, the solution that maximizes the objective function for this direction
is P6, since it has the highest expected return. For the next solution, P3, a good direction
would be 1, since, for this direction, P3 minimizes the objective function, with a value of 0,
while P6 has a value of 0.5 and P4 has a value of 1.333. Applying the same reasoning, we
obtain one more direction, 3, which is minimized by P1. P4 does not minimize the objective
function for any direction, despite being part of the efficient frontier, due to the fact that
this portfolio is not a supported solution. A supported solution is an efficient solution that
can be obtained by solving a weighted sum problem of the objective functions [21], which
is the case of portfolios P6, P3, and P1. In the end, for this example, the set of directions
that a solver needs to find the supported solutions is {0, 1, 3}. Note that, generally, it is
not guaranteed to find an optimal solution for direction q = 0, since there may exist two
or more solutions with the same expected return and different volatilities that would be
found in this direction.

Dataset type The dataset parameter specifies which assets take part of the universe,
as well as their expected return and volatility. In other words, this parameter defines the
POP parameters µ and ⌃. Hence, different datasets can have different levels of correlation
between assets, when considering their market performance.

3.2.3 Quadratic Unconstrained Binary Optimization formulation

We present the Quadratic Unconstrained Binary Optimization (QUBO) formulation of the
POP. This formulation is important to be able to input this problem on D-Wave machines,
which accept this matrix to solve the problem [22]. First, we need to move the cardinality
constraint 1Tx = B to the objective function:

min
x2{0,1}n

qxT⌃x� µTx+ P
�
1Tx�B

�2
, (3.3)
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where P is the penalization factor, whose value has to guarantee that, for any solution that
is not feasible (i.e., that does not comply with the cardinality constraint), its objective
function value is higher than the worst objective function value that a feasible solution
can have. To understand what are the linear and quadratic coefficients of this objective
function, we transform the function such that:

min
x2{0,1}n

0

@
nX

i=1

nX

j=1

xixj⌃i,jq

1

A�
 

nX

i=1

xiµi

!
+ P

  
nX

i=1

xi

!
�B

!2

, (3.4)

and then transform the penalization term such that [22]:

P

  
nX

i=1

xi

!
�B

!2

= P

 
nX

i=1

x2i

!
+ 2P

0

@
nX

i=1

nX

j>i

xixj

1

A� 2BP

 
nX

i=1

xi

!
+ PB2.

(3.5)

Since x is a vector of binary decision variables, we know that x2
i
= xi. Moreover, we

can remove any constant value from the objective function. With these changes, the
penalization term becomes:

P

 
nX

i=1

xi

!
+ 2P

0

@
nX

i=1

nX

j>i

xixj

1

A� 2BP

 
nX

i=1

xi

!
. (3.6)

The linear and quadratic coefficients are now identified, and we can define the QUBO
matrix as follows:

Q = q⌃�

2

666664

µ1 0 · · · 0

0
. . . . . . ...

... . . . . . . 0

0 · · · 0 µn

3

777775
+ PIn⇥n +

2

666664

0 P · · · P

P
. . . . . . ...

... . . . . . . P

P · · · P 0

3

777775

n⇥n

� 2BPIn⇥n, (3.7)

where the first matrix is related to the volatility term, the second matrix is related to the
expected return term, and the last three matrices are related to the penalization term.
Since this QUBO matrix is symmetric, we transform it such that it becomes an upper
triangular matrix that can be input on D-Wave machines to solve the POP:
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Q =

2

666664

q⌃1,1 2q⌃1,2 · · · 2q⌃1,n

. . . . . . ...
. . . 2q⌃n�1,n

q⌃n,n

3

777775
�

2

666664

µ1 0 · · · 0
. . . . . . ...

. . . 0

µn

3

777775
+

+PIn⇥n +

2

666664

0 2P · · · 2P
. . . . . . ...

. . . 2P

0

3

777775

n⇥n

� 2BPIn⇥n,

(3.8)

3.3 Quantum Computing applied to POP

In this section, a review on the state of the art in quantum computing applied to POP is
presented.

In [23], our formulation was solved with two quantum algorithms on a simulator of a
quantum computer from IBM. First, they solved the problem for a universe size of 6, a
budget size of 3, and a specific direction q, obtaining optimal and near-optimal solutions
with both algorithms. Afterwards, they repeated the same problem without the cardinality
constraint, and for different directions, solving it with one of the algorithms, obtaining a set
of solutions that closely follows the efficient frontier. Our work is based on real adiabatic
quantum computers from D-Wave, without resorting to a simulator, and attempts to solve
the problem with a fixed budget constraint for different directions. In this sense, we believe
that those findings can be complemented with the extra insight that our work can provide
about real quantum hardware that otherwise would not exist with a simulator. Moreover,
our work also attempts to provide a large set of options for investors that are limited to
their budget, irrespective of their risk appetite.

In [24], different methods are used to solve our formulation of the POP, ranging from
quantum algorithms in gate-based quantum computers to a classical-quantum strategy
denoted D-Wave Hybrid, as well as to tensor networks. In [24], the risk appetite is also
fixed to a single value, not accounting for different investor profiles, which is what our work
attempts to do. Our work also uses a non-hybrid approach on D-Wave computers, using
both Pegasus and Chimera topologies without any classical processing used whether to
improve the obtained solutions or to be able to solve larger problems. Part of the findings
in that work suggest that D-Wave’s algorithm not only is remarkably fast, but also is
capable of handling large problems, indicating that, in the short term, D-Wave computers
are well suited for the purposes of our work.

In [25], a different formulation of POP is solved, again using D-Wave’s hybrid algorithm.
The results of this algorithm were compared with classical solvers and heuristics, consid-
ering the objective function value of their best solution. Our approach distinguishes itself
from this work not only by considering a POP that takes into account different investor
profiles, but also by considering a different methodology to assess the performance of D-
Wave’s QPU (see in Section 4.2), and also by using D-Wave’s QPU without any processing
to improve its solutions.

The work described in [26] has a very similar objective as ours. It tries to understand the
effect that some of the QPU-based parameters that we identified in Section 2.4 have on
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the results returned by the D-Wave QPU to a different formulation of POP. Concretely,
the authors vary the embedding, the spin reversal (which is not studied in our work), and
the annealing schedules. In the formulation used by the authors, the expected return is
maximized with budget and risk constraints. The metric that they use to assess the quality
of the results is a probability of success, which represents the probability of the ground truth
value being returned by the QPU. Our work contrasts with this metric, since it compares
an approximation frontier derived from the results of the QPU with a representation of the
efficient frontier, for each problem instance (see Section 4.2). In this sense, our metric is
useful to assess the performance of the QPU across different directions, which we believe
to provide insight that is valuable for any investor profile. Moreover, our work also focuses
on the effect of POP-related parameters. Their findings suggest little difference between
general and clique embeddings (these embeddings are provided by D-Wave and are better
explained in Chapter 4), and also suggest no statistically significant difference between any
of the explored annealing times.

All in all, we believe that our work is a contribution that was not covered before, by
studying the effect that different parameters, both POP-related and QPU-related, have on
the quality of the solutions returned by a D-Wave’s QPU. Moreover, we also use a metric
that we believe provides a good assessment on the quality of the solutions, since it takes
into account the entire efficient frontier and, thus, provides good insight for the different
risk appetites an investor may assume.

31



This page is intentionally left blank.



Chapter 4

Approach and Methodology

In our work, we formulated the Portfolio Optimization Problem (POP) as a QUBO and
executed several instances of this problem on D-Wave’s quantum annealer. We have con-
sidered a significant set of varying parameters from both the quantum annealer and the
problem, that we hypothesize can have an impact on the quality of the solutions that one
can obtain. Our motivation is then to understand in a precise way how parameters that
relate not only to POP itself but also to the D-Wave system can affect and ideally improve
the quality of the obtained solutions.

In this Chapter, we describe in detail the empirical study that we have designed for us to
be able of achieving our goal, outlined as follows:

• Section 4.1 describes the general structure of the empirical study.

• Section 4.2 explains how we measure the quality of the solutions returned by the
quantum annealer.

• Section 4.3 indicates how results are analyzed with respect to statistical methods.

4.1 General Structure

In the course of our empirical study, we execute a number of POP instances with different
parameters and assess the impact caused by these parameters. We designate as a strategy
a POP execution with a specific set of parameters. Moreover, as a rule, each strategy is
executed 10 times, in order to collect a sufficient amount of solutions to perform a statis-
tical analysis when comparing different strategies. This statistical analysis is explained in
depth in Section 4.3. Generally, when assessing the influence of a specific parameter, we
are performing a comparison between strategies that are identical except on that specific
parameter. We designate as a scenario the set of very similar strategies that are compared
in order to assess the influence of a particular parameter. Hereinafter the scenarios are
identified in the form SN , where N is a number, and the strategies are identified in the form
SNz, where z is an alphabet letter and N is the number associated to the scenario to which
the strategy belongs. Based on the list of parameters related to both POP and to D-Wave’s
system, we designed a series of scenarios whose execution will help us to understand which
parameters have a significant impact on the quality of the obtained solutions.
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4.1.1 Universe Size

In this section, we study the scenario in which we vary the universe size parameter (see in
Section 3.2.2), designated as S1. Our goal is to understand how the universe size affects the
quality of the obtained solutions. For this, we consider four different strategies for universe
sizes 8, 16, 32, and 64, respectively. The reasoning behind those numbers is explained in
depth in Section 4.2.2.

Table 4.1: Values of parameters for each strategy in S1

Parameter S1aS1aS1a S1bS1bS1b S1cS1cS1c S1dS1dS1d

Universe size n 8 16 32 64

Chain strength default
Number of reads 1000⇥ |directions|
Directions minimal set
Budget size B b0.5⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

Table 4.1 lists the four strategies that are part of this scenario, as well as the values for
their parameters. We have considered the default chain strength established by the D-
Wave system, which is calculated via the uniform_torque_compensation function (see 2nd

row of Table 4.1). We have configured the quantum annealer to read 1000 solutions for
each direction specified (see Section 3.2.2). When executing a strategy, we are sending a
queue of different QUBO matrices to the D-Wave system, one for each direction specified.
Therefore, we need to specify a number of reads to the D-Wave system to carry out for each
QUBO matrix. We decided on 1000 reads, since it provides a good probability of finding
good solutions to the problem (see 3rd row of Table 4.1). We have set the directions to
the set with the minimum number of directions that leads the MILP solver to the same
representation of the efficient frontier. This set will be explained in depth in Section 4.1.4.
Hereinafter, for brevity, we define this set as minimal set in the context of directions (see
4th row of Table 4.1). Concretely, for n = 8, the set is {0, 11, 20, 54}; for n = 16, the
set is {0, 2, 6, 100, 500}; for n = 32, the set is {0, 0.4, 0.9, 2, 3, 9, 100}; and for n = 64, the
set is {0, 0.2, 0.4, 0.6, 1.1, 1.3, 1.5, 2, 5, 6, 7, 8, 10, 100, 500}. We have set the budget size to
half of the universe size, b0.5⇥ nc (see 5th row of Table 4.1). We have set the embedding
parameter to the general embedding provided by D-Wave’s minorminer package (see 6th

row of Table 4.1). According to this package, the general embedding aims to be useful for
any type of problem. We have set the anneal schedule parameter to the default schedule
according to the D-Wave system, which is hereinafter designated standard. This schedule
evolves the initial Hamiltonian to the problem Hamiltonian in 20µs, in a way such that
it follows a piecewise-linear curve with two time-current points, one at (0µs, 0) and the
other at (20µs, 1). We have set the dataset parameter to the industry diversified dataset
(see 8th row of Table 4.1). This dataset is generated by choosing assets in such a way
that the assets cover the maximum amount of different industry sectors. This method is
explained in depth in Section 4.1.8. The annealing system used by the strategies is the
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Pegasus system (see 9th row of Table 4.1).

4.1.2 Chain Strength

In this section, we study the scenario in which we vary the chain strength parameter (see
in Section 2.4), designated as S2. For this, we consider 13 different strategies not only for
the default value for this parameter but also for a range of values from 0.125MQ to 1.5MQ,
with incrementing steps of 0.125. MQ corresponds to the element with the maximum
absolute value in the QUBO matrix of the problem instance.

Table 4.2: Values of parameters for each strategy in S2

Parameter S2aS2aS2a S2bS2bS2b · · · S2mS2mS2m

Universe size n 16, 32, and 64

Chain strength default 0.125MQ to 1.500MQ

Number of reads 1000⇥ |directions|
Directions minimal set
Budget size B b0.5⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

Table 4.2 lists the 13 strategies that are part of this scenario, as well as the values for
their parameters. This scenario will be an exception compared to the other scenarios,
when considering not only the number of executions, but also the statistical analysis of
its results. Due to the large number of strategies, strategies S2b to S2m are each executed
three times, while S2a is executed 12 times. We are using results from previous scenarios as
part of the 12 executions of S2a, hence the number. The results will be compared with line
charts, instead of the boxplots and statistical tests that are used for all the other scenarios
explained in depth in Section 4.3.

Regarding the idea that different strategies share the same values for all but one of their
parameters, there is another parameter that is executed with more than one value: the
universe size parameter. In our work, every strategy is always executed for all the specified
universe sizes. For example, in this scenario, S2a is executed 12 times for each of the
following values of n: 16, 32, and 64, while strategies S2b to S2m are executed 3 times for
each of the same values of n.

The universe size 8 will not be included for this and the following scenarios, such that
we can avoid expending time from our budget. More concretely, the execution of a single
strategy from this scenario for universe size 8 takes around 423ms (see Section 2.4).

4.1.3 Number of Reads

In this section, we study the scenario in which we vary the number of reads (see in Sec-
tion 2.4), designated as S3. Our goal is to understand how the number of reads affects the
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quality of the obtained solutions. For this, we consider two different strategies, one that
reads 1000 solutions per direction, and other that reads a total of 15000 solutions.

Table 4.3: Values of parameters for each strategy in S3

Parameter S3aS3aS3a S3bS3bS3b

Universe size n 16, 32, and 64

Chain strength 1.000MQ

Number of reads 1000⇥ |directions| 15000

Directions minimal set
Budget size B b0.5⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

Table 4.3 lists the two strategies that are part of this scenario, as well as the values for their
parameters. The total of 15000 solutions that are read as part of S3b is equally distributed
among the directions specified for that execution. For example, if an execution has 10
directions, then each direction will have 1500 solutions read. To ensure that different
universe sizes read the same number of solutions, the remaining scenarios will read 15000
solutions in each execution of their strategies.

4.1.4 Directions

In this section, we study the scenario in which we vary the directions (see in Section 3.2.2),
designated as S4. For this, we consider four different strategies, one for the smallest set of
directions that leads the MILP solver to the same representation of the efficient frontier,
other for a set with a low number of directions (6), another for a set with an intermediate
number of directions (15), and one more for a set with a high number of directions (30).

Table 4.4 lists the four strategies that are part of this scenario, as well as the values for their
parameters. Regarding the minimal set of directions, this set is obtained with the help
of the MILP solver. This solver is used to obtain a representation of the efficient frontier
of a given dataset. As part of this obtainment, the solver solves the problem instance for
a large range of directions. For each direction, the solver returns the optimal portfolio.
In the end, we obtain a representation of the efficient frontier. For each solution in this
representation, we select the direction associated to it with the lowest numerical value.
The set of the selected directions is the minimal set. This process of solving a problem
instance to optimality is described in depth in Section 4.2.2.

Concretely, the set used in S4b, with a low number of directions, has the following values
for q: 0, 0.1, 1, 10, 100, and 1000. The set used in S4c, with an intermediate number of
directions, has the following values for q: 0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 7.5, 10, 50, 100,
and 1000. The set used in S4d, with a high number of directions, has the following values
for q: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50,
60, 70, 80, 90, 100, and 1000.
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Table 4.4: Values of parameters for each strategy in S4

Parameter S4aS4aS4a S4bS4bS4b S4cS4cS4c S4dS4dS4d

Universe size n 32 and 64

Chain strength 1.000MQ

Number of reads 15000

Directions minimal set 6 15 30

Budget size B b0.5⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

The universe size 16 will not be included for this and the next scenarios, such that we can
avoid expending time from our budget. More concretely, the execution of S4d for universe
size 16 takes around 1864ms.

4.1.5 Budget

In this section, we study the scenario in which we vary the budget size parameter (see in
Section 3.2.2), designated as S5. For this, we consider three different strategies for budget
sizes b0.2⇥ nc, b0.5⇥ nc, and b0.8⇥ nc, respectively.

Table 4.5: Values of parameters for each strategy in S5

Parameter S5aS5aS5a S5bS5bS5b S5cS5cS5c

Universe size n 32 and 64

Chain strength 1.000MQ

Number of reads 15000

Directions 15

Budget size B b0.2⇥ nc b0.5⇥ nc b0.8⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

Table 4.4 lists the three strategies that are part of this scenario, as well as the values for
their parameters. In this scenario, the directions are the same as in S4c.
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4.1.6 Embedding

In this section, we study the scenario in which we vary the embedding parameter (see in
Section 2.4), designated as S6. For this, we consider three different strategies for embed-
dings general, clique, and layout, respectively.

Table 4.6: Values of parameters for each strategy in S6

Parameter S6aS6aS6a S6bS6bS6b S6cS6cS6c

Universe size n 16, 32, and 64

Chain strength 1.000MQ

Number of reads 15000

Directions minimal set
Budget size B b0.5⇥ nc
Embedding general clique layout
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus

Table 4.6 lists the three strategies that are part of this scenario, as well as the values for their
parameters. Embeddings clique and layout are both provided in D-Wave’s minorminer
package. According to this package, the clique embedding is targeted to problems whose
graph is a clique, while the layout embedding is targeted to problems whose graph has
nodes of low degrees or its underlying data is spatial.

4.1.7 Anneal Schedule

In this section, we study the scenario in which we vary the anneal schedule parameter (see
in Section 2.4), designated as S7. For this, we consider four different strategies for anneal
schedules standard, long, pause, and quench, respectively.

Table 4.7 lists the four strategies that are part of this scenario, as well as the values for
their parameters. Anneal schedule long is similar to the default schedule, but instead of
taking a total of 20µs, it takes a total of 100µs. By including this schedule in the analysis,
we can understand the impact of a significantly longer anneal schedule on the quality of the
obtained solutions. Concretely, this schedule evolves the initial Hamiltonian to the problem
Hamiltonian in 100µs, in a way such that it follows a piecewise-linear curve with two time-
current points, one at (0µs, 0) and the other at (100µs, 1). Anneal schedule pause is a
schedule that pauses the evolution of the initial Hamiltonian to the problem Hamiltonian.
In our case, we are introducing a 100µs pause in the middle point of the default schedule.
By including this schedule in the analysis, we can understand the impact of a long pause
in the schedule on the quality of the obtained solutions. Concretely, this schedule follows
a piecewise-linear curve with four time-current points, the first at (0µs, 0), the second at
(10µs, 0.5), the next at (110µs, 0.5), and the last at (120µs, 1). Anneal schedule quench is
a schedule that abruptly terminates the evolution of the initial Hamiltonian to the problem
Hamiltonian. In our case, we are introducing a quench in the middle point of the default
schedule, which evolves the remaining schedule in 2µs. By including this schedule in the
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Table 4.7: Values of parameters for each strategy in S7

Parameter S7aS7aS7a S7bS7bS7b S7cS7cS7c S7dS7dS7d

Universe size n 16, 32, and 64

Chain strength 1.000MQ

Number of reads 15000

Directions minimal set
Budget size B b0.5⇥ nc
Embedding layout
Anneal schedule standard long quench pause
Dataset industry diversified
Annealing system Pegasus

analysis, we can understand the impact of a quench in the schedule on the quality of the
obtained solutions. Concretely, this schedule follows a piecewise-linear curve with three
time-current points, the first at (0µs, 0), the second at (10µs, 0.5), and the last at (12µs, 1).

4.1.8 Dataset

In this section, we study the scenario in which we vary the dataset parameter (see in
Section 3.2.2), designated as S8. Our goal is to understand how the dataset affects the
quality of the obtained solutions. For this, we consider four different strategies for datasets
diversified, correlated, industry diversified, and industry correlated, respectively.

Table 4.8: Values of parameters for each strategy in S8

Parameter S8aS8aS8a S8bS8bS8b S8cS8cS8c S8dS8dS8d

Universe size n 16, 32, and 64

Chain strength 1.000MQ

Number of reads 15000

Directions minimal set
Budget size B b0.5⇥ nc
Embedding layout
Anneal schedule standard

Dataset diversified correlated
industry

diversified
industry
correlated

Annealing system Pegasus

Table 4.8 lists the four strategies that are part of this scenario, as well as the values for their
parameters. When choosing assets from a market index to constitute a dataset, we know
which industry sector they are associated with, as well as their volatility and expected
return, among other information. This information can be leveraged to generate a dataset
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with a particular structure or pattern.

The industry diversified dataset is generated by choosing assets from as many industry
sectors as possible. For example, let us assume that we wanted to generate a dataset of 8
assets and that we have a market index of 64 assets, with 8 industry sectors and 8 assets
associated to each. We would choose 1 asset from each industry sector, such that we would
end with a dataset of 8 assets, each from a different industry sector.

The industry correlated dataset is generated by choosing assets from as few industry sectors
as possible. For example, let us assume that we wanted to generate a dataset of 8 assets and
that we have a market index of 64 assets, with 8 industry sectors and 8 assets associated
to each. We would choose 8 assets from a single industry sector, such that we would end
with a dataset of 8 assets, all from the same industry sector.

The diversified dataset is generated by choosing assets in such a way that they are as
little statistically correlated as possible, when considering their market performance. For
example, let us assume that we wanted to generate a dataset of 8 assets and that we have
a market index of 64 assets. We would choose the 8 assets from this index that have
the minimum sum of pairwise correlation among all the possible subsets of 8 assets, when
considering their market performance.

The correlated dataset is generated by choosing assets in such a way that they are as
much statistically correlated as possible, when considering their market performance. For
example, let us assume that we wanted to generate a dataset of 8 assets and that we have
a market index of 64 assets. We would choose the 8 assets from this index that have the
maximum sum of pairwise correlation among all the possible subsets of 8 assets, when
considering their market performance.

4.1.9 Annealing System

In this section, we study the scenario in which we vary the annealing system parameter
(see in Section 2.4), designated as S9. For this, we consider two different strategies for
annealing systems Pegasus and Chimera, respectively.

Table 4.9: Values of parameters for each strategy in S9

Parameter S9aS9aS9a S9bS9bS9b

Universe size n 16, 32, and 64

Chain strength 1.000MQ

Number of reads 15000

Directions minimal set
Budget size B b0.5⇥ nc
Embedding general
Anneal schedule standard
Dataset industry diversified
Annealing system Pegasus Chimera

Table 4.9 lists the two strategies that are part of this scenario, as well as the values for

40



Approach and Methodology

their parameters.

Now that we have presented the series of scenarios, we have to indicate how are the results
from each strategy in a scenario evaluated with regards to their quality. The following
section describes the quality indicator that we use and the method to calculate it.

4.2 Quality of Solutions

After executing any of the above strategies with a D-Wave system, we obtain a set of
solutions, which is compared with other sets from the other strategies of the same scenario.
In order to compare sets of solutions from different strategies, we measure the quality of
the set with respect to a quality indicator, which will be associated to each strategy. This
indicator is measured in three steps: first, an approximation frontier is identified from
the results returned by an execution of a strategy; next, a representation of the efficient
frontier is obtained with a MILP solver; last, both the approximation frontier and the
representation of the efficient frontier are used to calculate the quality indicator.

In this Section, we introduce the method that we use to calculate an indicator of the
quality of the results from a strategy. This method is described in three sections, outlined
as follows:

• Section 4.2.1 describes the step in which an approximation frontier is identified
from the set of solutions returned by an execution of a strategy.

• Section 4.2.2 explains the step in which we obtain a representation of the efficient
frontier, using a MILP solver.

• Section 4.2.3 indicates the step in which the approximation frontier and the repre-
sentation of the efficient frontier are used to measure the ✏-indicator, an indicator of
the quality of the results returned by an execution of a strategy.

4.2.1 Outlining the Approximation Frontier

When placing the feasible solutions (i.e., the solutions that comply with the cardinality
constraint) on a chart, we get a set of points in the objective space such as the example
shown in Figure 4.1. In this sense, a point is a representation of a solution in a two-
dimensional objective space, where the expected return and the volatility are the two
objectives.

After plotting this set of points, the approximation frontier is identified by selecting the
subset of non-dominated points that have a positive expected return. Figure 4.2 shows in
red the approximation frontier of the set of points from the example.
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Figure 4.1: Scatter plot of points from a set of solutions returned by an execution of S8a

Figure 4.2: Illustration of the approximation frontier of a set of points from a set of
solutions returned by an execution of S8a
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4.2.2 Solving the Problem Instance to Optimality

Having outlined the approximation frontier from the results of the D-Wave system for a
strategy, we will compare it against a representation of the efficient frontier. With a MILP
solver, we solve the problem instance to optimality for a large range of directions, such
that it obtains not only the solutions associated to the extrema of the efficient frontier,
but also a series of solutions associated to points between the extrema. The exact range
is problem dependent, since it depends on the magnitude and range of both the expected
return and the volatility of the assets (see in Section 3.2.2).

Given a range of directions, the MILP solver obtains the optimal solution associated to
each direction. After obtaining all the optimal solutions, we end with a set of optimal
solutions whose associated points are a subset of the efficient frontier. These associated
points constitute the representation of the efficient frontier upon which the efficient fron-
tiers obtained by executions of strategies are compared. Figure 4.3 shows in blue the
representation of the efficient frontier of the problem instance from the example.

Figure 4.3: Illustration of the representation of the efficient frontier for an instance executed
in S8a

The largest universe size in which we solved instances of the POP to optimality was 64,
since the MILP solver already takes over two hours for certain strategies, such as S8a. This
is the reason why we do not explore universe sizes larger than 64 in the designed strategies
and scenarios.

4.2.3 ✏-indicator

The quality of the approximation frontier obtained by the execution of a strategy is mea-
sured with the ✏-indicator [27]. In the context of our work, the ✏-indicator corresponds
to the smallest factor by which a set of points is multiplied in order to weakly dominate
the efficient frontier. The smallest the ✏-indicator of a set of points, the closer is it to the
efficient frontier, and thus the better is its quality.

We consider that a set of points A is weakly dominating another set B if every point in A
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is not dominated by any of the points in B. In other words, a set of points that is weakly
dominating another set is at least as good as the other set, and there may exist points in
it that dominate points in the other set.

Let us suppose that O is the representation of the efficient frontier, and S is the approx-
imation frontier obtained by the execution of a strategy, then this indicator is defined
as:

I✏(S,O) = max
o2O

min
s2S

✏(s, o), (4.1)

where

✏(s, o) = max

✓
oreturn

sreturn ,
M⌃ � ovolatility

M⌃ � svolatility

◆
, (4.2)

which implies that ✏(s, o) is the smallest factor such that o is weakly dominated by ✏(s, o)·s.
That is, such that ✏(s, o) ·s is guaranteed to be at least as good as o when considering both
their objectives. M⌃ is an upper bound on the volatility.

Since we are minimizing volatility (as opposed to return, which is maximized), we trans-
formed the volatility in the formulation of the ✏-indicator such that it is evaluating a
bi-objective maximization problem that is equivalent to the original formulation. In the
end, instead of minimizing volatility, we are actually maximizing the distance between the
solution’s volatility ovolatility and the upper bound on volatility M⌃. Put differently, we
want to keep the volatility as far as possible from an upper bound, and thus minimize it.

The upper bound on volatility, M⌃, is obtained with the MILP solver by solving the
problem instance with the single objective of maximizing volatility. Once the solution is
found, M⌃ is set to the volatility of this solution.

The ✏-indicator is used to assess the quality of the approximation frontiers obtained from
results of strategies executed in the course of our work. It should be emphasized that an
approximation frontier obtained by the execution of a strategy having I✏(S,O) = 1 implies
that it is a representation of the efficient frontier. Therefore, in the context of our work,
this indicator has a lower bound of 1, which means that the closer the ✏-indicator of an
approximation frontier is to 1, the better is its quality.

4.3 Statistical Analysis

When executing a strategy more than once, we observe that the results are not determinis-
tic, since they vary from execution to execution. Due to this variability, we have to resort
to statistical analysis in order to take conclusions.

After executing a strategy 10 times, we get 10 sets of solutions, each of which associated
to each execution. For each set, we measure its ✏-indicator. After those measurements, we
have a group of 10 ✏-indicator values, each of which associated to that strategy.

When comparing different strategies, we are comparing the groups of 10 ✏-indicator values
associated to each strategy. These groups are graphically depicted on a boxplot that follows
Tukey’s original definition of boxplots, and that has notches representing 95% confidence
intervals [28].
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Next, we perform a one-way analysis of variance in order to test the null hypothesis that
all the groups have equal means. First, we check if the assumptions to reliably execute
this test are met. For each group, we use the Shapiro-Wilk test to test the null hypothesis
that the group is normally distributed. Afterwards, we use the Levene’s test to test the
null hypothesis that all the group have equal variances.

If both null hypotheses are not rejected, then it indicates that we have met the assump-
tions. Consequently, we perform a one-way analysis of variance on the groups. If the
null hypothesis that the groups have equal means is rejected, we advance to a post-hoc
analysis, by performing a pairwise t-test with a Bonferroni correction for multiple compar-
isons. In case the assumptions are not met, we perform a non-parametric alternative, the
Kruskal-Wallis H test. If the null hypothesis that the groups are significantly different is
rejected, we perform a Conover–Iman test [29] with a Bonferroni correction for multiple
comparisons. We consider a significance value of 0.05. Moreover, the reader should take
into account that our work does not assess the impact of any potential interaction between
two parameters. In this sense, our work focuses on the main effect of each parameter.
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Chapter 5

Workflow Implementation

In this chapter, we describe the pipeline we implemented to generate the dataset of assets
that constitute the universe of the POP, to solve the problem with a MILP solver, to
solve the strategies and scenarios with a D-Wave computer, to calculate the ✏-indicator,
and to perform the statistical analysis on the results. Our pipeline, which is depicted in
Figure 5.1, was mainly implemented in Python.

Dataset
Generation

Solving with
MILP Solver

�-indicator
Calculation

Statistical
Analysis

Solving
Scenarios with

D-Wave

Figure 5.1: Diagram of the implemented pipeline of our study

To facilitate reuse and help with reproducibility, our entire code base is publicly hosted at:

https://github.com/TofuLynx/embedding

The steps in our pipeline follow the methodology we described in the previous chapter.
The implementation of each step is going to be described as follows:

• Section 5.1 describes how we retrieve the market information and how we generate
the datasets.

• Section 5.2 explains how we solve a dataset to optimality using a MILP solver to
obtain a representation of the efficient frontier.

• Section 5.3 describes the functions and Python packages used to solve instances
of POP with a D-Wave’s system, taking into account the different strategies and
scenarios that use the dataset.

• Section 5.4 explains our strategy for calculating the ✏-indicator for a set of solutions
of an execution of a strategy.

• Section 5.5 explains the Python packages used to perform the statistical analysis
on the results of the strategies previously identified.
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5.1 Dataset Generation

We had to generate different datasets for the different strategies and scenarios we designed.
The market information used to generate our datasets was retrieved with the use of two
Python packages: pandas [30] and yfinance [31]. With the function read_html of pandas,
we download from a Wikipedia page1 an updated table of Standard & Poor’s (S&P)’s 500,
a stock market index that comprises stocks issued by 500 of the largest companies listed
on stock exchanges in the United States [32]. This table includes the symbol associated to
each stock, as well as their respective company and industry sector, among other informa-
tion. The industry sectors are categorized according to a taxonomy, the Global Industry
Classification Standard (GICS), also developed by S&P [33].

To generate an industry diversified or an industry correlated dataset, we consider the GICS
sector associated to each of the assets from S&P’s 500. Concretely, for industry diversified,
we first select the maximum number of assets of different GICS sectors possible. If, after
the initial selection, we are still under the required number of assets to generate the dataset,
we repeat this step until the number of assets necessary to generate the dataset is satisfied.
For industry correlated, we first select the maximum number of assets of a single GICS
sector as possible. If, after selecting, we are still under the required number of assets to
generate the dataset, we repeat this step for another GICS sector until the number of assets
necessary to generate the dataset is satisfied.

To generate a diversified or a correlated dataset, we consider the market performance as-
sociated to each of the assets from S&P’s 500 of the last period of a month, with 1-day
intervals. This period could also be a year or a day but we opted for a month, since we
believe that a month provides sufficient information about the asset’s performance. To
download this information for all the assets from S&P’s 500, we use the function download
of yfinance, which returns the market performance associated to each asset in the form of
a pandas DataFrame. We use the functions dropna and isnull of pandas to remove from
this DataFrame every NaN value and every asset that has no market performance associ-
ated. Afterwards, we use the function pct_change of pandas to transform the DataFrame
such that it lists the percentage value change between two consecutive days. This transfor-
mation creates a line of NaN values that is also removed. From this transformed DataFrame,
we call the function corr to obtain a pairwise correlation matrix of the assets’ market per-
formance. We use this matrix to choose which assets are selected to generate the dataset,
as described in Algorithm 1.

What differentiates the algorithm from generating a diversified dataset or a correlated
dataset is the Score(M, a, b) function, where M is the pairwise correlation matrix, and
a and b are assets. Concretely, if we generate a diversified dataset, this function is
Score(M, a, b) = �|Ma,b|, favoring pairwise correlations whose value is closest to 0. In
the case of a correlated dataset, this function is Score(M, a, b) = Ma,b, favoring pairwise
correlations with higher values.

After selecting the assets to generate the desired dataset, we use the function download
of yfinance to retrieve the market performance of the assets, in the same way we do to
obtain the pairwise correlation matrix. Once the DataFrame is retrieved, we remove every
NaN value and every asset that has no market performance associated and transform
the DataFrame such that it lists the percentage value change between two consecutive
days. Again, we remove the resulting line of NaN values from this DataFrame. From this
transformed DataFrame, we call the functions mean and cov to obtain the parameters µ

1
https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
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and ⌃ associated to the assets’ market performance, respectively. The generated dataset
is stored in a JSON file, containing the universe size n, the symbols of the selected assets,
and the µ and ⌃ associated to the assets’ market performance.

Algorithm 1: Select assets to generate a diversified or correlated dataset
Data: Set of assets A
Number of assets to select n
Pairwise correlation matrix M
Result: Set of selected assets S
begin

copy the first n assets of A to S;
Sscore  �1
foreach asset a of the set A do

L {a};
while |L| < n do

t ;;
tscore  �1;
foreach asset b of the set A not in L do

bscore  0;
foreach asset l of the set L do

bscore  bscore + Score(M, b, l);
end
if bscore > tscore then

t b;
tscore  bscore;

end
end
append t to L;

end
Lscore  0;
foreach pair of assets x and y in L do

Lscore  Lscore + Score(M, x, y);
end
if Lscore > Sscore then

S  L;
Sscore  Lscore;

end
end

end

5.2 Solving with MILP Solver

We use the MILP solver from Solving Constraint Integer Programs (SCIP) [34, 35] to solve
a given dataset to optimality for each of the specified directions, such that we obtain a
representation of the efficient frontier associated to the dataset. The directions that are
solved to optimality are based on initial tests with the datasets, and cover both extrema
of the efficient frontier: i ⇥ 10j for i = 1, . . . , 9, j = �1, 0, 1; as well as 0, 100, 500, and
1000. Apart from the information contained in the dataset, the budget size also needs to
be specified.
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The SCIP solver uses a specific input file format, which is difficult to generate. For this
reason, we use a model written in MathProg which is then converted by another MILP
solver, from the GNU Linear Programming Kit (GLPK) [36], to the specific file format
required by the SCIP solver. Figure 5.2 shows a template of the LP model of the Portfolio
Optimization Problem (POP) written in MathProg (see LP formulation at Section 3.2).
This MathProg file template has all the necessary information about the parameters before
its conversion to the file format required by the SCIP solver.

2 #parameters

3 param n, integer , > 0; /* number of assets */

4 param B, >= 0;

5 param mu{i in 1..n};

6 param sigma{i in 1..n, j in 1..n};

7 param q;

8

9 #variables

10 var y{i in 1..n, j in 1..n}, binary;

11 var x{i in 1..n}, binary;

12

13 #capacity constraint

14 s.t. card0: sum{i in 1..n} x[i] = B ;

15 #constraints to link x and y

16 s.t. card1{i in 1..n,j in 1..n}: y[i,j] <= x[i] ;

17 s.t. card2{i in 1..n,j in 1..n}: y[i,j] <= x[j] ;

18 s.t. card3{i in 1..n,j in 1..n}: y[i,j] >= x[i]+x[j]-1 ;

19

20 #objective function

21 minimize obj: sum{i in 1..n, j in 1..n} y[i,j] * sigma[i,j] * q - sum{i in

1..n} mu[i]*x[i];

22

23 solve;

Figure 5.2: MathProg file template of the POP (IPL_linearized_template.ampl)

The SCIP solver is also used to obtain the solution of the dataset with the highest volatility.
In this case, we use a different model, which maximizes the volatility objective without
any influence from the expected return objective (the model does not include the expected
return term present in the line 21 of Figure 5.2). The volatility of the obtained solution
serves as the upper bound on the volatility of the given dataset (see Section 4.2.3).

5.3 Solving Scenarios with D-Wave

To solve a given dataset, D-Wave’s system needs an embedding and a Quadratic Uncon-
strained Binary Optimization (QUBO) matrix to execute a strategy. We use the set of
Python packages provided by D-Wave’s Ocean Tools to meet those needs. In particular, we
use minorminer to generate embeddings, and dwave-system to execute the QUBO matrix
as a problem instance. Note that the QUBO matrix is unique to each strategy (any change
in the parameters causes a different QUBO matrix to be developed for that strategy) and
therefore a new matrix is always developed for each execution.

After retrieving the parameters from the given strategy, we use three minorminer func-
tions to generate embeddings: find_embedding, busclique.find_clique_embedding, and
layout.find_embedding, for embeddings general, clique, and layout, respectively (see in
Section 2.4). These functions return a mapping between the variables and the physical
qubits, which is necessary for the D-Wave’s system to solve any problem instance. After-
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wards, we generate in an incremental fashion a QUBO matrix for each of the directions
specified in the given strategy, as described in Figure 5.3.

46 for q in q_values:

47 # Step 2: Formulate QUBO

48 Q = defaultdict(float)

49

50 P = -q * min_sigma + max_mu

51

52 # There are three terms in the objective function: Volatility , Return ,

and Budget

53

54 # Volatility term

55 for i in range(N):

56 Q[(i, i)] = float(q * sigma[tickers[i]][ tickers[i]])

57 for j in range(i+1, N):

58 Q[(i, j)] = float(2 * q * sigma[tickers[i]][ tickers[j]])

59

60 # Return term

61 for i in range(N):

62 Q[(i, i)] += float(-mu[tickers[i]])

63

64 # Budget term is decomposed into four terms , per the formula ((sum^{n

-1}_{i=0} x_i) - B)^2

65 for i in range(N):

66 Q[(i, i)] += float(P)

67

68 for i in range(N):

69 for j in range(i + 1, N):

70 Q[(i, j)] += float (2*P)

71

72 for i in range(N):

73 Q[(i, i)] += float(-2 * B * P)

Figure 5.3: Python code to create a QUBO matrix for each direction specified for q
(pop_solver_annealer.py)

For each of the generated QUBO matrices for a given strategy, we call the function
sample_qubo from dwave-system’s FixedEmbeddingComposite, a composite that maps
problems to a system, with a specified embedding. In the context of our work, this func-
tion maps the QUBO matrix of a strategy to the D-Wave’s system, with the embedding
associated to that strategy. The function can also be invoked with many more arguments,
such as the chain strength, the number of samples, and the annealing schedule, all param-
eters that depend on the given strategy. A set of solutions is returned for each call of this
function, comprising a larger set of solutions that is associated to an execution of the given
strategy.

5.4 ✏-indicator Calculation

The set of solutions associated to an execution of a given strategy presents both feasible
and unfeasible solutions. In order to identify the approximation frontier associated to this
set, we first exclude the unfeasible solutions, i.e. solutions that do not comply with the
cardinality constraint (budget size). Next, we also exclude solutions with a non-positive
expected return. Last, we identify the approximation frontier by selecting the subset of
solutions that are not dominated.
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We use both the representation of the efficient frontier obtained by the SCIP solver and the
approximation frontier of the strategy’s set of solutions to calculate the ✏-indicator value
associated to the set of solutions, as described in Section 4.2.3.

5.5 Statistical Analysis

We use a series of tools from different Python packages as part of our statistical analy-
sis. Concretely, we use the matplotlib package [37] to create boxplots and line charts;
the scipy package [38] to perform the Shapiro-Wilk test, the Levene’s test, the one-way
analysis of variance and the Kruskal-Wallis H test ; and the scikit-posthocs package to
perform the pairwise t-test and the Conover-Iman test, both with a Bonferroni correction
for multiple comparisons.
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Results and Discussion

The goal of our work is to identify the influence that different parameters, either D-Wave’s
system parameters or parameters that are specific to the Portfolio Optimization Problem
(POP), have on the quality of the solutions computed by a quantum annealer.

In the previous chapters, we described the parameters we are considering and the experi-
mental methodology we have designed and implemented to support our work.

In this Chapter, we present and analyze the results we obtained from executing the sce-
narios and strategies we have designed. In each of the following sections, we describe and
analyze the results obtained for one of the scenarios. In the last section, Section 6.10, we
compile a list of the main takeaways of our work.

6.1 Universe Size

In this section, we present and analyze the results of Scenario S1, which focuses on the
influence of the universe size parameter (see in Section 4.1.1). Figure 6.1 shows the boxplot
of the ✏-indicator values associated to the results of the strategies that are part of this
scenario.

The Shapiro-Wilk test did not preserve the null hypothesis for strategies S1b and S1d.
The Levene’s test rejected the null hypothesis for all strategies. Hence, the assumptions
to reliably perform a one-way analysis of variance are not met. The Kruskal-Wallis H
test on the results returned a p-value of < 0.001, which rejects the null hypothesis that
the strategies’ results originate from the same distribution. Table 6.1 shows the p-values
returned by the Conover-Iman test with a Bonferroni correction for multiple comparisons
on the results of this scenario.

Table 6.1: Output of the Conover-Iman test on S1’s results

888 161616 323232 646464

888 — < 0.001 < 0.001 < 0.001

161616 — — < 0.001 < 0.001

323232 — — — 0.411

646464 — — — —
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Figure 6.1: Boxplot of S1’s results

According to the statistical tests, there exists a significant difference between all strategies
in terms of ✏-indicator, except between S1c and S1d. S1a, with n = 8, got a median ✏-
indicator of 1.000, which is the lower bound of the indicator. This suggests that D-Wave’s
system consistently obtains a part of the optimal efficient frontier for this universe size.
S1b, with n = 16, got a median ✏-indicator of 1.063, very close to the lower bound of the
✏-indicator. S1c, with n = 32, got a median ✏-indicator of 1.872 in its executions, which is
a large difference to strategies S1a and S1b. This suggests that the quality of the solutions
obtained by D-Wave’s system gets significantly worse at some point between universe sizes
16 and 32. S1d, with n = 64, got a median ✏-indicator of 2.031 in its executions, the worst
median obtained in this scenario. This value suggests that universe size 64 is the hardest
to solve in this scenario. These results suggest that the quality of the solutions obtained
by D-Wave’s system deteriorates with the growth of the universe size.

6.2 Chain Strength

In this section, we present and analyze the results of Scenario S2, which focuses on the
influence of the chain strength parameter (see in Section 4.1.2). Figures 6.2, 6.3, and 6.4
show the line charts of the ✏-indicator values associated to the results of the strategies that
are part of this scenario. The line charts show in red the mean ✏-indicator of 12 executions
with the default chain strength, and in black the mean ✏-indicator for the three executions
at each value of chain strength as a factor of MQ. In pale colors are shown the values of
the individual executions.

For n = 16, the quality of the solutions did not see neither a meaningful improvement nor
a meaningful deterioration when comparing S2a to any of the other strategies, except for
a significant deterioration at S2b, which has a chain strength of 0.125MQ. For n = 32,
the quality of the solutions saw a meaningful improvement when comparing S2a to any
of the other strategies, except for S2b, which got a mean ✏-indicator just slightly lower
than the mean ✏-indicator of S2a. In general, the improvement was from an ✏-indicator
of just over 1.8 to around 1.3. For n = 64, the quality of the solutions saw a meaningful
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Figure 6.2: Line chart of S2’s results for n = 16

Figure 6.3: Line chart of S2’s results for n = 32

improvement when comparing S2a to any of the other strategies, except for S2b, which got
a mean ✏-indicator similar to the mean ✏-indicator of S2a. In general, the improvement
was from an ✏-indicator of just over 2.0 to around 1.5.

These results suggest, by looking at the disparity between the red line and the black line,
that the benefit of setting a chain strength value is larger for n = 32 and n = 64, also
suggesting that larger problem instances benefit significantly more from a good value of
chain strength. Moreover, the line charts also suggest that the range of chain strength
between 0.250MQ and 1.500MQ consistently obtains the solutions with best quality.
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Figure 6.4: Line chart of S2’s results for n = 64

6.3 Number of Reads

In this section, we present and analyze the results of Scenario S3, which focuses on the
influence of the number of reads parameter (see in Section 4.1.3). Figures 6.5, 6.6, and 6.7
show the boxplots of the ✏-indicator values associated to the results of the strategies that
are part of this scenario, for universe sizes 16, 32, and 64, respectively.

Figure 6.5: Boxplot of S3’s results for n = 16

The Shapiro-Wilk test preserved the null hypothesis for both strategies for all universe size,
except S3a for n = 16. The Levene’s test preserved the null hypothesis for all strategies
for all universe sizes. Hence, the assumptions to reliably perform a one-way analysis of
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Figure 6.6: Boxplot of S3’s results for n = 32

Figure 6.7: Boxplot of S3’s results for n = 64

variance are met for universe sizes n = 32 and n = 64. The Kruskal-Wallis H test on the
results returned a p-value of 0.0105, which rejects the null hypothesis that the strategies’
results originate from the same distribution. The one-way analysis of variance on the
results returned a p-value of 0.002 for n = 32, and 0.917 for n = 64, which rejects the null
hypothesis that the strategies’ results have equal means for universe size 32, and preserves
the null hypothesis for universe size 64.

For n = 16, S3a, which reads 1000 solutions for each of the 5 specified directions, totaling
5000 reads, got a median ✏-indicator of 1.080. For the same universe size, S3b, which reads a
total of 15000 reads, distributed among the 5 specified directions, got a median ✏-indicator
of 1.063. These results suggest that S3b is a significantly better strategy than S3a, when
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considering the quality of the solutions returned by D-Wave’s system for n = 16. For
n = 32, S3a, which reads 1000 solutions for each of the 7 specified directions, totaling 7000
reads, got a median ✏-indicator of 1.291. For the same universe size, S3b, which reads a
total of 15000 reads, distributed among the 7 specified directions, got a median ✏-indicator
of 1.191. These results suggest that S3b is a significantly better strategy than S3a, when
considering the quality of the solutions returned by D-Wave’s system for n = 32. For
n = 64, S3a, which reads 1000 solutions for each of the 15 specified directions, totaling
15000 reads, got a median ✏-indicator of 1.530. For the same universe size, S3b, which reads
a total of 15000 reads, distributed among the 7 specified directions, got a median ✏-indicator
of 1.532. These results suggest that S3b is neither significantly better nor significantly worse
than S3a, when considering the quality of the solutions returned by D-Wave’s system for
n = 64.

These results suggest that the quality of the solutions obtained by D-Wave’s system im-
proves with the increase of the number of reads. In fact, for n = 16 and n = 32, the
universe sizes where S3b reads more solutions than S3a show a significant improvement in
the quality of the solutions when changing from S3a to S3b.

6.4 Directions

In this section, we present and analyze the results of Scenario S4, which focuses on the
influence of the directions parameter (see in Section 4.1.4). Figures 6.8 and 6.9 show the
boxplots of the ✏-indicator values associated to the results of the strategies that are part
of this scenario, for universe sizes 32 and 64, respectively.

Figure 6.8: Boxplot of S4’s results for n = 32

The Shapiro-Wilk test preserved the null hypothesis for each strategy for all universe sizes.
The Levene’s test preserved the null hypothesis for all strategies for all universe sizes.
Hence, the assumptions to reliably perform a one-way analysis of variance are met for all
universe sizes. The one-way analysis of variance on the results returned a p-value of 0.032
for n = 32 and 0.355 for n = 64, which rejects the the null hypothesis that the strategies’
results have equal means for universe size 32 and preserves the same hypothesis for universe
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Figure 6.9: Boxplot of S4’s results for n = 64

size 64. The pairwise t-test with a Bonferroni correction for multiple comparisons did not
find any significant difference between any pair of strategies for universe size 32. These
results suggest that the number of directions has no significant impact on the quality of
the solutions obtained by D-Wave’s system, for n = 32 and n = 64.

6.5 Budget

In this section, we present and analyze the results of Scenario S5, which focuses on the
influence of the budget size parameter (see in Section 4.1.5). Figures 6.10 and 6.11 show
the boxplots of the ✏-indicator values associated to the results of the strategies that are
part of this scenario, for universe sizes 32 and 64, respectively.

The Shapiro-Wilk test preserved the null hypothesis for each strategy for all universe sizes.
The Levene’s test rejected the null hypothesis for all strategies for universe size n = 64.
Hence, the assumptions to reliably perform a one-way analysis of variance are only met for
universe size n = 32. The one-way analysis of variance on the results returned a p-value
of < 0.001 for n = 32, which rejects the the null hypothesis that the strategies’ results
have equal means. The Kruskal-Wallis H test on the results returned a p-value of < 0.001
for n = 64, which rejects the null hypothesis that the strategies’ results originate from
the same distribution for all universe sizes. Table 6.2 shows the p-values returned by the
pairwise t-test with a Bonferroni correction for multiple comparisons on the results of this
scenario, for n = 32.

For n = 32, S5a, which has a budget size of b0.2⇥ nc, 6 for this universe size, got a median
✏-indicator of 1.246. For the same universe size, S5b, which has a budget size of b0.5⇥ nc,
16 for this universe size, got a median ✏-indicator of 1.245. For the same universe size, S5c,
which has a budget size of b0.8⇥ nc, 25 for this universe size, got a median ✏-indicator of
1.488. These results suggest that S5a and S5b are significantly better strategies than S5c,
when considering the quality of the solutions returned by D-Wave’s system for n = 32.

For n = 64, S5a, which has a budget size of b0.2⇥ nc, 12 for this universe size, got a
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Figure 6.10: Boxplot of S5’s results for n = 32

Figure 6.11: Boxplot of S5’s results for n = 64

median ✏-indicator of 2.569. For the same universe size, S5b, which has a budget size of
b0.5⇥ nc, 32 for this universe size, got a median ✏-indicator of 1.471. For the same universe
size, S5c, which has a budget size of b0.8⇥ nc, 51 for this universe size, did not get any
✏-indicator, since no feasible solutions were returned. These results suggest that S5b is a
significantly better strategy than both S5a and S5c, when considering the quality of the
solutions returned by D-Wave’s system for n = 64.

These results suggest that the quality of the solutions obtained by D-Wave’s system is
best when the budget size is half of the universe size, and deteriorates with the increase
of the difference between the budget size and half of the universe size. In fact, for n =
64, strategies S5a and S5c show a significant deterioration in the quality of the solutions
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Table 6.2: Output of the pairwise t-test on S5’s results for n = 32

0.20.20.2 0.50.50.5 0.80.80.8

0.20.20.2 — 1.000 0.008

0.50.50.5 — — < 0.001

0.80.80.8 — — —

compared to S5b. The results also suggest that S5c is the worst strategy in this scenario,
particularly due to the lack of feasible solutions in this strategy for n = 64.

6.6 Embedding

In this section, we present and analyze the results of Scenario S6, which focuses on the
influence of the embedding parameter (see in Section 4.1.6). Figures 6.12, 6.13, and 6.14
show the boxplots of the ✏-indicator values associated to the results of the strategies that
are part of this scenario, for universe sizes 16, 32, and 64, respectively.

Figure 6.12: Boxplot of S6’s results for n = 16

The Shapiro-Wilk test only preserved the null hypothesis for all strategies for universe size
32. The Levene’s test preserved the null hypothesis for all strategies for all universe sizes.
Hence, the assumptions to reliably perform a one-way analysis of variance are only met for
universe size 32. The Kruskal-Wallis H test on the results returned a p-value of 0.009 for
n = 16, and 0.212 for n = 64, which rejects the null hypothesis that the strategies’ results
originate from the same distribution for for n = 16, and preserves the same hypothesis for
n = 64. The one-way analysis of variance on the results returned a p-value of < 0.001 for
n = 32, which rejects the null hypothesis that the strategies’ results have equal means for
universe size 32. Table 6.3 shows the p-values returned by the Conover-Iman test with a
Bonferroni correction for multiple comparisons on the results of this scenario, for n = 16.
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Figure 6.13: Boxplot of S6’s results for n = 32

Figure 6.14: Boxplot of S6’s results for n = 64

Table 6.4 shows the p-values returned by the pairwise t-test with a Bonferroni correction
for multiple comparisons on the results of this scenario, for n = 32.

For n = 16, S6a, which uses general embedding, got a median ✏-indicator of 1.063. For the
same universe size, S6b, which uses clique embedding, got a median ✏-indicator of 1.063.
For the same universe size, S6c, which uses layout embedding, got a median ✏-indicator of
1.092. These results suggest that strategies S6a and S6b are significantly better than S6c,
when considering the quality of the solutions returned by D-Wave’s system for n = 16.
For n = 32, S6a, which uses general embedding, got a median ✏-indicator of 1.267. For the
same universe size, S6b, which uses clique embedding, got a median ✏-indicator of 1.359.
For the same universe size, S6c, which uses layout embedding, got a median ✏-indicator
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Table 6.3: Output of the Conover-Iman test on S6’s results for n = 16

general clique layout

general — 0.457 0.004

clique — — 0.131

layout — — —

Table 6.4: Output of the pairwise t-test on S6’s results for n = 32

general clique layout

general — 0.004 1.000

clique — — 0.002

layout — — —

of 1.268. These results suggest that S6b is worse than any of the other strategies, when
considering the quality of the solutions returned by D-Wave’s system for n = 32. For
n = 64, S6a, which uses general embedding, got a median ✏-indicator of 1.503. For the
same universe size, S6b, which uses clique embedding, got a median ✏-indicator of 1.530.
For the same universe size, S6c, which uses layout embedding, got a median ✏-indicator
of 1.497. These results suggest that no specific strategy is better than any of the other
strategies, when considering the quality of the solutions returned by D-Wave’s system for
n = 64.

These results suggest that the embedding parameter has no significant impact on the
quality of the solutions obtained by D-Wave’s system for n = 64. For n = 16 and n = 32,
there exists a significant impact, with the results suggesting that general embedding is the
best suited for these universe sizes, closely followed by layout embedding.
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6.7 Anneal Schedule

In this section, we present and analyze the results of Scenario S7, which focuses on the in-
fluence of the anneal schedule parameter (see in Section 4.1.7). Figures 6.15, 6.16, and 6.17
show the boxplots of the ✏-indicator values associated to the results of the strategies that
are part of this scenario, for universe sizes 16, 32, and 64, respectively.

Figure 6.15: Boxplot of S7’s results for n = 16

Figure 6.16: Boxplot of S7’s results for n = 32

The Shapiro-Wilk test preserved the null hypothesis for each strategy for n = 32, and
rejected the same hypothesis for n = 16 and n = 64. The Levene’s test preserved the
null hypothesis for all strategies for all universe sizes. Hence, the assumptions to reliably
perform a one-way analysis of variance are only met for universe size 32. The Kruskal-
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Figure 6.17: Boxplot of S7’s results for n = 64

Wallis H test on the results returned a p-value of 0.568 for n = 16 and 0.377 for n = 64,
which preserves the null hypothesis that the strategies’ results originate from the same
distribution for these universe sizes. The one-way analysis of variance on the results
returned a p-value of 0.608 for n = 32, which preserves the null hypothesis that the
strategies’ results have equal means for this universe size. These results suggest that
varying the anneal schedule parameter has no significant impact on the quality of the
solutions obtained by D-Wave’s system, for all universe sizes.

6.8 Dataset

In this section, we present and analyze the results of Scenario S8, which focuses on the
influence of the dataset parameter (see in Section 4.1.8). Figures 6.18, 6.19 and 6.20 show
the boxplots of the ✏-indicator values associated to the results of the strategies that are
part of this scenario, for universe sizes 16, 32, and 64, respectively.

The Shapiro-Wilk test did not preserve the null hypothesis for all strategies for all universe
sizes. The Levene’s test rejected the null hypothesis for all strategies for all universe
sizes. Hence, the assumptions to reliably perform a one-way analysis of variance are not
met for all universe sizes. The Kruskal-Wallis H test on the results returned a p-value of
0.034 for n = 16, < 0.001 for n = 32, and < 0.001 for n = 64, which rejects the null
hypothesis that the strategies’ results originate from the same distribution for all universe
sizes. Tables 6.5, 6.6, and 6.7 show the p-values returned by the Conover-Iman test with a
Bonferroni correction for multiple comparisons on the results of this scenario, for universe
sizes 16, 32, and 64, respectively.

For n = 16, no significant difference exists between any pair of strategies. For n = 32, a
significant difference exists between all strategies except between S8a and S8c, and between
S8c and S8d. These results suggest that D-Wave’s system returns solutions with better
quality for the datasets used in S8a and S8b, diversified and correlated, than for the datasets
used in S8c and S8d, industry diversified and industry correlated, for n = 32. Moreover,
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Figure 6.18: Boxplot of S8’s results for n = 16

Figure 6.19: Boxplot of S8’s results for n = 32

these results also suggest that D-Wave’s system returns solutions with better quality for
the dataset used in S8b, correlated, than for the dataset used in S8a, diversified, for n = 32.
For n = 64, a significant difference exists between all strategies. These results suggest that,
for universes larger than n = 32, D-Wave’s system returns solutions with better quality
for S8b, followed by S8c, followed by S8a and finally S8d. If we order the datasets by the
quality of their associated solutions, they are correlated, industry diversified, diversified,
and industry correlated.

These results suggest that, when looking at the strategies generated via a statistical
method, diversified and correlated, versus the strategies generated via a industry-based
method, industry diversified and industry correlated, their behaviors are not equal. Gener-
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Figure 6.20: Boxplot of S8’s results for n = 64

Table 6.5: Output of the Conover-Iman test on S8’s results for n = 16

diversified correlated industry
diversified

industry
correlated

diversified — 0.552 1.000 0.541

correlated — — 0.077 1.000

industry
diversified

— — — 0.075

industry
correlated

— — — —

Table 6.6: Output of the Conover-Iman test on S8’s results for n = 32

diversified correlated industry
diversified

industry
correlated

diversified — < 0.001 0.064 0.001

correlated — — < 0.001 < 0.001

industry
diversified

— — — 0.940

industry
correlated

— — — —

ally, diversified has a consistently higher median ✏-indicator compared to correlated, while
industry diversified has a similar or lower median ✏-indicator compared to industry cor-
related. Overall, S8b, which uses correlated dataset, is consistently the strategy with the
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Table 6.7: Output of the Conover-Iman test on S8’s results for n = 64

diversified correlated industry
diversified

industry
correlated

diversified — < 0.001 0.002 0.001

correlated — — < 0.001 < 0.001

industry
diversified

— — — < 0.001

industry
correlated

— — — —

lowest median ✏-indicator.

6.9 Annealing System

In this section, we present and analyze the results of Scenario S9, which focuses on the in-
fluence of the annealing system parameter (see in Section 4.1.9). Figures 6.21, 6.22 and 6.23
show the boxplots of the ✏-indicator values associated to the results of the strategies that
are part of this scenario, for universe sizes 16, 32, and 64, respectively.

Figure 6.21: Boxplot of S9’s results for n = 16

The Shapiro-Wilk test preserved the null hypothesis for each strategy for all universe sizes,
except for S9a for n = 64. The Levene’s test preserved the null hypothesis for all strategies
for all universe sizes. Hence, the assumptions to reliably perform a one-way analysis of
variance are met for universe sizes 16 and 32. The one-way analysis of variance on the
results returned a p-value of 0.515 for n = 16, and 0.154 for n = 32, which preserves the null
hypothesis that the strategies’ results have equal means for universe sizes 32 and 64. The
Kruskal-Wallis H test on the results returned a p-value of 0.290 for n = 64, which preserves
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Figure 6.22: Boxplot of S9’s results for n = 32

Figure 6.23: Boxplot of S9’s results for n = 64

the null hypothesis that the strategies’ results originate from the same distribution for this
universe size. These results suggest that the annealing system parameter does not have
any significant impact on the quality of the solutions obtained by D-Wave’s system, for all
universe sizes.

6.10 Main Takeaways

With all the scenarios executed and analyzed, we achieved the main objective of our
empirical study. We have a clear idea of which parameters have a significant impact

69



Chapter 6

on the quality of the solutions. This section is going to wrap up all the analysis on several
paragraphs, one for each parameter, ordered by their impact.

Varying the universe size has a very strong effect The universe size is the pa-
rameter with the most significant impact we have noticed so far, with n = 8 consistently
achieving optimal solutions for some directions and the following universe sizes being in-
creasingly worse in quality. This pattern suggests that an increase in the universe size is
accompanied with a problem that is harder to solve. In practical terms, a practitioner
should strive for the shortest universe that can solve their problem.

Varying the chain strength has a very strong effect In any case, and especially for
larger universe sizes, a practitioner needs to take into consideration the chain strength. This
parameter, if wrongly set, can significantly lower the quality of the solutions, a reduction
that is sometimes of several orders of magnitude. According to our results, we believe that
there is a value after which the chain strength is good, with no significant changes expected
in the quality of the solutions. Objectively, we found this value to be 0.125MQ, but there
is a possibility that this also varies with the dataset used. We should note that if we go
further than 1.000MQ, we are scaling down the problem, which may not be ideal [16].

Varying the dataset has a very strong effect Regarding the dataset parameter, we
have determined that the choice of the dataset has a great impact on the quality of the
solutions. More specifically, our results suggest that statistically correlated datasets are
associated to better quality solutions when compared to statistically diversified datasets.
This information can be useful for practitioners to achieve an expected performance given
they know how correlated is their universe.

Varying the budget size has a very strong effect Another parameter that practi-
tioners should consider is the budget size. Our results suggest that practitioners should
expect a reduction in quality from budget sizes that narrow the space of feasible solutions.
That is, the larger the difference between the budget size and half the universe size, the
harder is the problem to solve. Particularly, D-Wave’s system was not able to return any
feasible solution for n = 64 and B = b0.8⇥ nc, reflecting the complexity of solving under
this cardinality constraint.

Varying the number of reads has a significant effect When considering the total
number of solutions to read when solving a problem, we believe that practitioners should
take as many solutions as possible, without disregarding budget constraints. Our results
suggest that increasing the number of reads improves the quality of the solutions, albeit
with diminishing returns expected.

Varying the embedding has close to no effect One more parameter that did show
an effect, albeit weak, particularly for n = 16 and n = 32, according to our results, is the
embedding. We believe that practitioners are well served by D-Wave’s default algorithm
to generate an embedding for a given annealing system. In fact, for n = 16 and n = 32,
our results suggest that general embedding is the best suited. For the largest universe size,
our results did not suggest any meaningful improvement or deterioration for the situations
where other embedding algorithms are used. Nevertheless, practitioners can quickly assess
whether one of the other embedding algorithms can improve their solutions.
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Varying the number of directions has no effect Another important assessment that
practitioners should also do before advancing on a full-fledged execution suite is which and
how many directions to take. Although our results do not suggest a significant impact
when changing the number of directions, we did not assess the impact of changing the
value of the directions. Therefore, this parameter still has the unexamined potential to
provoke a significant bias on the solver towards one direction, deteriorating the quality of
solutions in opposite directions, and thus the overall performance of the solver.

Varying the anneal schedule has no effect There is a parameter that also did not
show any significant impact, the anneal schedule. Again, we believe that practitioners are
also well served by D-Wave’s default anneal schedule. Our results did not suggest any
meaningful improvement or deterioration for the situations where other anneal schedules
are used. In fact, according to our results, we believe that it is more cost-effective to first
increase the number of reads instead of first increasing the annealing time.

Varying the annealing system has no effect Last, our findings suggest that there
is no particular advantage in choosing one system over other when considering the quality
of the solutions. However, before advancing on a full-fledged execution suite to solve their
problem, practitioners should quickly assess which annealing system is best suited for the
problem, since a Pegasus system supports larger problems compared to a Chimera system.
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Chapter 7

Conclusions and Future Work

In the context of Finance, Quantum Computing has applications on many domains. There
are contributions demonstrating the use of quantum computers, whether gate-based or
adiabatic, to solve the combinatorial optimization problem in which our work focuses.

In our work, we seek to shed light on the hypothesis that parameters related not only to the
weighted-sum formulation of the POP, but also to the adiabatic quantum computer, have
an effect on the results returned by a D-Wave QPU in problem instances across the different
risk appetites that investors may assume. Therefore, in Chapters 4 and 5, we designed
and implemented a workflow that establishes scenarios and strategies to individually study
each of the identified parameters. In this workflow, we executed each strategy, as a rule, 10
times, obtaining a group of 10 sets of solutions for each strategy. For each set of solutions,
we calculated the ✏-indicator value associated with it, ending up with a group of 10 ✏-
indicator values associated to each strategy. A statistical analysis was performed on those
results, studying the main effect of each parameter.

Considering the POP-related parameters, our findings from the results indicate that the
universe size, the budget size, and the dataset, which directly change the complexity of the
problem, have a significant effect on the results. The results also suggest that the remaining
POP-related parameter, directions, does not have a significant effect, when considering the
number of directions.

Considering the QPU-related parameters, the chain strength was a parameter that stood
out when considering its impact on the quality of the solutions. In this regard, our findings
indicate that this parameter, if wrongly set, causes a major performance hit, that cannot
be compensated with any other parameter. The findings also suggest that the number of
reads and the embedding are parameters with a significant effect on the results: the higher
the number of reads, the better the quality of the solutions returned by the QPU; and
the general embedding can present the best performance, especially for smaller problem
instances (n = 16 and n = 32). The remaining parameters, annealing system and anneal
schedule, did not present any significant effect, results that support the findings from [26].

One potential direction of future work that can complement our work is related with the
existence of any potential interaction between two or more parameters. In this sense, there
may exist some interaction between parameters that has a significant effect on the quality
of the solutions, which is a hypothesis that is open for future research.

Another direction of future research is related with the impact of the directions parameter.
In our work, we studied the impact that the number of directions has on the results.
However, we did not study the impact that different values for directions can have. In this
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sense, there is an opportunity to find if the results have a better quality for any direction
in particular, such as risk-prone directions or risk-averse directions.

An additional effect that was not studied in our work was that of the reverse annealing, a
procedure that can be performed in D-Wave computers, and that is related to the anneal
schedule parameter. This procedure was studied in [26], which found some improvements
over the annealing used in our work, suggesting that there may exist room for further
improvement with reverse annealing in our work.
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Appendix A: Implementation and Execution of Quantum En-
tanglement using Qiskit

In this appendix, we will implement and execute the quantum circuit described in Figure 2.2
using the Qiskit framework [10]. Before following the next steps, we need to create an
account in the IBM Quantum Experience platform [9] and open a Jupyter Notebook there.
The Jupyter Notebook is a special Python environment in the cloud that has most of the
necessary tools installed, such as Qiskit.

Step 1 We need to import the necessary tools and load the IBM Q account in order to
gain access to real quantum devices. Usually, this step is automatically done when opening
a new Jupyter Notebook. Figure 1 shows the code to import such tools and load the IBM
Q account.

1 # Import necessary tools:

2 from qiskit import QuantumCircuit , execute , Aer , IBMQ

3 from qiskit.compiler import transpile , assemble

4 from qiskit.tools.jupyter import *

5 from qiskit.visualization import *

6 from iqx import *

7

8 # Load IBM Q account:

9 provider = IBMQ.load_account ()

Figure 1: Python code to import the necessary tools and load the IBM Q account

Step 2 Now, we can setup a quantum circuit to be executed. First, we create a quantum
circuit with two quantum registers and two classical registers. This means that we have
two qubits whose measurement can be registered in two classical bits. Next, we add a
Hadamard gate into the first qubit. Afterwards, we add a controlled X gate which is
controlled by the first qubit and targets the second qubit. Finally, we measure both qubits
and save the result into the classical registers. Figure 2 shows the code to setup this circuit.

1 # Setup a circuit:

2 circuit = QuantumCircuit (2, 2)

3 circuit.h(0)

4 circuit.cx(0, 1)

5 circuit.measure(0, 0)

6 circuit.measure(1, 1)

Figure 2: Python code to setup a quantum circuit

Step 3 This step is optional. We can draw the circuit using the code in Figure 3. Figure 4
shows the result of this function in our example code.

1 # Print the circuit:

2 circuit.draw()

Figure 3: Python code to draw the quantum circuit
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Figure 4: Drawing of the quantum circuit implemented in Qiskit

Step 4 To execute the quantum circuit we first need to retrieve a quantum device from
the provider created in Step 1. IBM provides open access to several devices, as listed in
their platform. Each device has a unique string identifier which must be used to retrieve
it. In this example, we will use the IBM Q Athens computer, identified as ibmq_athens.
Afterwards, we must specify the number of shots, i.e., the number of times the device will
execute the quantum circuit. We can then pass the quantum circuit and the number of
shots to the device, which will then enqueue this job and execute it on its turn. Once the
job is executed, its result are collected and can be processed as we wish. In this example,
we plot the results on a histogram. Figure 5 shows the code for this step and Figure 6
shows the histogram for the results of this example.

1 # Execute the circuit and collect results:

2 real_device = provider.get_backend(’ibmq_athens ’)

3 shots = 4096

4 results = execute(circuit , backend=real_device , shots=shots).result ()

5 answer = results.get_counts ()

6 plot_histogram(answer)

Figure 5: Python code to run the circuit on a real quantum device and plot the results

Figure 6: Results of the quantum circuit implemented in Qiskit

And that is it. With this example, we have successfully demonstrated quantum entangle-
ment in a real quantum device!
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An attentive reader may notice that in Figure 6, the results are very close to what is
expected, but find odd that unexpected results also appear (only 00 and 11 should be
measured). At the moment, quantum computers have a high error rate, which translates
into some outliers when executing jobs. Hence, advanced and complex algorithms must
take into account error mitigation strategies in order to get the maximum effectiveness
from the hardware.

Those five steps were sufficient for this small circuit. Bigger circuits would have more steps
and complicated functions, which requires access to Qiskit’s documentation. Nonetheless,
this example should give a grasp of the general procedure to implement and execute a
quantum circuit.
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Appendix B: Implementation and Execution of a Quadratic
Unconstrained Binary Optimization in a D-Wave Computer

In this appendix, we will implement and execute a problem formulated in QUBO in a
D-Wave computer. the Qiskit framework [10]. Before following the next steps, we need
to create an account in the D-Wave Leap platform and open an IDE workspace. The
workspace is a virtual machine in the cloud that has most of the necessary tools installed,
such as D-Wave Ocean Tools. In this workspace, we create a Python file where our code
will be stored.

Step 1 We need to import the necessary tools in order to create a QUBO and gain access
to the D-Wave QPU. Figure 7 shows the tool necessary for this example.

1 from collections import defaultdict

2 from dwave.system import DWaveSampler , AutoEmbeddingComposite

Figure 7: Python code to import the necessary tools to create a QUBO and gain access to
the D-Wave QPU

Step 2 The next step is to prepare the QUBO matrix of the problem. In this example,
we are preparing the matrix shown in Section 2.5.3. Figure 8 shows the code to prepare
this matrix.

1 # Prepare QUBO

2 Q = defaultdict(float)

3

4 Q[(1,1)] = 1

5 Q[(1,2)] = 7

6 Q[(1,3)] = 3

7 Q[(1,4)] = 1

8

9 Q[(2,2)] = 2

10 Q[(2,3)] = 7

11 Q[(2,4)] = 0

12

13 Q[(3,3)] = 8

14 Q[(3,4)] = 4

15

16 Q[(4,4)] = 9

Figure 8: Python code to prepare a QUBO matrix

Step 3 The last step is to execute the QUBO on the D-Wave QPU. Figure 9 shows the
code to initialize a QPU and use it to execute the QUBO.
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1 # Prepare QPU solver

2 composite = AutoEmbeddingComposite(DWaveSampler ())

3

4 # Execute QUBO on solver

5 sampleset = composite.sample_qubo(Q, num_reads =1000)

6

7 # Print results

8 print(sampleset)

Figure 9: Python code to execute a QUBO matrix on the D-Wave QPU

The AutoEmbeddingComposite is responsible for embedding, if needed, the problem to the
QPU. Afterwards, we use function sample_qubo to execute the QUBO matrix and read
1000 solutions. The last line of the code shows the results of the execution. One possible
output of the print is

1 2 3 4 energy num_oc. chain_.
0 0 0 0 0 0.0 797 0.0
1 1 0 0 0 1.0 176 0.0
2 0 1 0 0 2.0 27 0.0
[’BINARY’, 3 rows, 1000 samples, 4 variables]

where each row shows a solution that was found by the QPU, as well as its associated
energy, number of occurrences and chain breaks. In this example, assuming that we want
to minimize the energy, as the QPU does, the best solution found corresponds to setting
all the four decision variables to zero (xi = 0), and was read 797 times.

These three steps were sufficient for this small problem. Bigger circuits would have
more steps and complicated functions, which requires access to D-Wave’s documentation.
Nonetheless, this example should give a grasp of the general procedure to implement and
execute a problem on D-Wave machines.

88


	Introduction
	Hypothesis and Objectives
	Contributions and Results
	Outline

	Background
	Linear Algebra
	Quantum Mechanics
	The Hilbert Space and the Quantum Bit
	Evolution of a Quantum System
	Measurement on Quantum Systems
	Systems with Multiple Quantum Bits

	Gate-based Quantum Computers
	Adiabatic Quantum Computers
	Combinatorial Optimization
	Ising Model
	Quadratic Unconstrained Binary Optimization Formulation
	Graph Expression
	Summary of Problem Expressions


	Portfolio Optimization
	Terminology and Motivation
	The Portfolio Optimization Problem
	Multiobjective Optimization and Efficient Frontier
	Parameters
	qubo formulation

	Quantum Computing applied to pop

	Approach and Methodology
	General Structure
	Universe Size
	Chain Strength
	Number of Reads
	Directions
	Budget
	Embedding
	Anneal Schedule
	Dataset
	Annealing System

	Quality of Solutions
	Outlining the Approximation Frontier
	Solving the Problem Instance to Optimality
	epsilon-indicator

	Statistical Analysis

	Workflow Implementation
	Dataset Generation
	Solving with milp Solver
	Solving Scenarios with dwave
	epsilon-indicator Calculation
	Statistical Analysis

	Results and Discussion
	Universe Size
	Chain Strength
	Number of Reads
	Directions
	Budget
	Embedding
	Anneal Schedule
	Dataset
	Annealing System
	Main Takeaways

	Conclusions and Future Work

