Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/95116
Título: Bi-Phasic Ag-In-Ga-Embedded Elastomer Inks for Digitally Printed, Ultra-Stretchable, Multi-layer Electronics
Autor: Lopes, Pedro Alhais 
Fernandes, Daniel Félix
Silva, André F. 
Marques, Daniel Green
Almeida, Aníbal T. de 
Majidi, Carmel
Tavakoli, Mahmoud 
Palavras-chave: Printed stretchable electronics; Soft and flexible electronics; Eutectic gallium−indium alloy; Conductive stretchable ink; Styrene-isoprene block copolymers (SIS); Styrene block copolymer; Bi-phasic conductive ink; EGaIn-Ag
Data: 31-Mar-2021
Editora: American Chemical Society
Título da revista, periódico, livro ou evento: ACS Applied Materials and Interfaces
Volume: 13
Número: 12
Resumo: A bi-phasic ternary Ag-In-Ga ink that demonstrates high electrical conductivity, extreme stretchability, and low electromechanical gauge factor (GF) is introduced. Unlike popular liquid metal alloys such as eutectic gallium-indium (EGaIn), this ink is easily printable and nonsmearing and bonds strongly to a variety of substrates. Using this ink and a simple extrusion printer, the ability to perform direct writing of ultrathin, multi-layer circuits that are highly stretchable (max. strain >600%), have excellent conductivity (7.02 × 105 S m-1), and exhibit only a modest GF (0.9) related to the ratio of percent increase in trace resistance with mechanical strain is demonstrated. The ink is synthesized by mixing optimized quantities of EGaIn, Ag microflakes, and styrene-isoprene block copolymers, which functions as a hyperelastic binder. When compared to the same composite without EGaIn, the Ag-In-Ga ink shows over 1 order of magnitude larger conductivity, up to ∼27× lower GF, and ∼5× greater maximum stretchability. No significant change over the resistance of the ink was observed after 1000 strain cycles. Microscopic analysis shows that mixing EGaIn and Ag microflakes promotes the formation of AgIn2 microparticles, resulting in a cohesive bi-phasic ink. The ink can be sintered at room temperature, making it compatible with many heat-sensitive substrates. Additionally, utilizing a simple commercial extrusion based printer, the ability to perform stencil-free, digital printing of multi-layer stretchable circuits over various substrates, including medical wound-dressing adhesives, is demonstrated for the first time.
URI: https://hdl.handle.net/10316/95116
ISSN: 1944-8244
1944-8252
DOI: 10.1021/acsami.0c22206
Direitos: embargoedAccess
Aparece nas coleções:I&D ISR - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons