Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/89487
Title: A Formula for Codensity Monads and Density Comonads
Authors: Adámek, Jiří
Sousa, Lurdes
Keywords: Codensity monad; Density comonad; Accessible functors
Issue Date: May-2018
Publisher: Springer
Project: UID/MAT/00324/2013 
Serial title, monograph or event: Applied Categorical Structures
Volume: 26
Abstract: For a functor F whose codomain is a cocomplete, cowellpowered category K with a generator S we prove that a codensity monad exists iff for every object s in S all natural transformations from K(X, F−) to K(s, F−) form a set. Moreover, the codensity monad has an explicit description using the above natural transformations. Concrete examples are presented, e.g., the codensity monad of the power-set functor P assigns to every set X the set of all nonexpanding endofunctions of PX. Dually, a set-valued functor F is proved to have a density comonad iff all natural transformations from X^F to 2^F form a set. Moreover, that comonad assigns to X the set of all those transformations. For preimages-preserving endofunctors F of Set we prove that F has a density comonad iff F is accessible.
URI: http://hdl.handle.net/10316/89487
DOI: 10.1007/s10485-018-9530-6
Rights: openAccess
Appears in Collections:I&D CMUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
Co_density_May2018.pdf226.29 kBAdobe PDFView/Open
Show full item record

Page view(s)

47
checked on Jul 9, 2020

Download(s)

3
checked on Jul 9, 2020

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.