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Dedicated to Bob Lowen on his seventieth birthday

Abstract. For a functor F whose codomain is a cocomplete, cowellpowered category K with a

generator S we prove that a codensity monad exists iff for every oject s in S all natural transfor-

mations from K(X,F−) to K(s,F−) form a set. Moreover, the codensity monad has an explicit

description using the above natural transformations. Concrete examples are presented, e.g., the

codensity monad of the power-set functor P assigns to every set X the set of all nonexpanding

endofunctions of PX.

Dually, a set-valued functor F is proved to have a density comonad iff all natural transfor-

mations from XF to 2F form a set. Moreover, that comonad assigns to X the set of all those

transformations. For preimages-preserving endofunctors F of Set we prove that F has a density

comonad iff F is accessible.

1. Introduction

The important concept of density of a functor F : A→K means that every object of K is a
canonical colimit of objects of the form FA. For general functors, the density comonad is the
left Kan extension along itself:

C = LanFF.

This endofunctor of K carries the structure of a comonad. We speak about the pointwise
density comonad if C is computed by the usual colimit formula: given an object X of K, form
the diagram DX : F/X→K assigning to each FA

a−→ X the value FA, and put

CX = colimDX .

This assumes that the above, possibly large, colimit exists in K. The density comonad is a
measure of how far away F is from being dense: a functor is dense iff its pointwise codensity
monad is trivial (i.e., IdK). Pointwise density comonads were introduced by Appelgate and
Tierney [5] where they are called standard constructions. For every left adjoint F the comonad
given by the adjoint situation is the density comonad of F. For functors F : A→ Set we prove
that F has a density comonad iff for every set X there is only a set of natural transformations
from XF to 2F . Moreover, the density comonad C is always pointwise, and is given by the
formula

CX =Nat(XF ,2F).

We also prove that every accessible endofunctor between locally presentable categories
has a density comonad, and, in case of set functors, conversely: the existence of a density
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comonad for F implies its accessibility, assuming that F preserves preimages (which is a very
mild condition). For FX = Xn the density comonad is Xn

n
. For general polynomial functors

FX =
∐
i∈I
Xni it is given by CX =

∐
i∈I

∏
j∈I

Xn
nj
i , see Example 5.2.

The dual concept, introduced by Kock [8], is the codensity monad, i.e., the right Kan exten-
sion of F over itself:

T = RanFF.

Linton proved in [9] that if K = Set, then F has a codensity monad iff for every set X all
natural transformations from FX to F form a set. We generalize this to K arbitrary as follows.
Given a functor F : A → K, denote by F(X) : A → Set the composite K(X,−) · F for every
X ∈K. Assuming that K has a generator S which detects limits (see Definition 3.1), a functor
F with codomain K has a codensity monad iff for every X ∈ K all natural transformations
from F(X) to F(s), s ∈ S, form a set. And the codensity monad is then pointwise. All locally
presentable categories posses a limit-detecting generator, and every monadic category over
a category with a limit-detecting generator possesses one, too. In fact, in a cocomplete and
cowellpowered category every generator detects limits. We also obtain a formula for the
codensity monad T : we can view K as a concrete category over S-sorted sets. And for every
object X the underlying set of TX has the following sorts:

Nat(FX ,Fs) (s ∈ S).

Again, accessible functors always possess a pointwise codensity monad, that is, T is given
by the limit formula (assigning to X the limit of the diagram ((X

a−→ FA) 7→ FA). However, in
contrast to the density comonad, many non-accessible set functors possess a codensity monad
too – and, as we show below, codensity monads of set-valued functors are always pointwise.
Example: the power-set functor P has a codensity monad given by

TX = nonexpanding self-maps of PX.

The subfunctor P0 on all nonempty subsets is its own codensity monad. But the following
modification P of P is proven not to have a codensity monad: on objects X

PX = PX

and on morphism f : X→ Y

Pf (M) =

 Pf (M) if f /M is monic
∅ else.

For FX = Xn the codensity monad is obvious: this is a right adjoint, so T is the monad
induced by the adjoint situation, TX = n×Xn. For general polynomial functors FX =

∐
i∈I X

ni

the codensity monad is TX =
∏
(Xi )

∐
j∈I

∐
i∈I
ni ×Xi

nj where the first product ranges over all

disjoint decompositions X =
⋃
i∈I
Xi , see Example 5.7

2. Accessible functors

Throughout the paper all categories are assumed to be locally small.



A FORMULA FOR CODENSITY MONADS AND DENSITY COMONADS 3

Recall from [7] that a category K is called locally presentable if it is cocomplete and for
some infinite regular cardinal λ it has a small subcategory Kλ of λ-presentable objects K
(i.e. such that the hom-functor K(K,−) preserves λ-filtered colimits) whose closure under λ-
filtered colimits is all of K. And a functor is called accessible if it preserves, for some infinite
regular cardinal λ, λ-filtered colimits. Recall further that every locally presentable category
is complete and every object X has a presentation rank, i.e., the least regular cardinal λ such
that X is λ-presentable. Finally, locally presentable categories are locally small, and Kλ can
be chosen to represent all λ-presentable objects up to isomorphism.

Theorem 2.1. Every accessible functor between locally presentable categories has:
(a) a pointwise codensity monad

and
(b) a pointwise density comonad.

Proof. Given an accessible functor F : A→ K and an object X of K, we can clearly choose an
infinite cardinal λ such that K and A are locally λ-presentable, F preserves λ-filtered colimits,
and X is a λ-presentable object. The domain restriction of F to Aλ is denoted by Fλ.

(a) We are to prove that the diagram

BX : X/F→K, (X
a−→ FA) 7→ FA

has a limit in K. Denote by E : X/Fλ ↪→ X/F the full embedding. Since K is complete, the
small diagram BX ·E has a limit. Thus, it is sufficient to prove that E is final (the dual concept
of cofinal, see [11]): (i) every object X

a−→ FA is the codomain of some morphism departing
from an object of X/Fλ, and (ii) given a pair of such morphisms, they can be connected by a
zig-zag in X/Fλ.

Indeed, given a : X→ FA, express A as a λ-filtered colimit of λ-presentable objects with the
colimit cocone ci : Ci → A (i ∈ I). Then Fci : FCi → FA, i ∈ I, is also a colimit of a λ-filtered
diagram. Since X is λ-presentable, K(X,−) preserves this colimit, and this implies that (i) and
(ii) hold.

(b) Now we prove that the diagram

DX : F/X→K, (FA
a−→ X) 7→ FA

has a colimit in K. Denote the colimit of the small subdiagram Fλ/X → K by K with the
colimit cocone

a : FA→ K for all a : FA→ X inF/X, A ∈Aλ.

We extend this cocone to one for DX as follows: Fix an object a : FA→ X of F/X. Express A as
a colimit ci : Ci → A (i ∈ I) of the canonical diagram HA : Aλ/A→ A assigning to each arrow
the domain. Then Fci : FCi → FA (i ∈ I) is a colimit cocone, and all a ·Fci : FCi → K form a
compatible cocone of the diagram F ·HA. Hence, there exists a unique morphism

a : FA→ K with a ·Fci = a ·Fci (i ∈ I).

We claim that this yields a cocone of DX . That is, given a morphism f from (FA
a−→ X) to

(FB
b−→ X) in F/X, we prove a = b ·Ff .
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FCi

Fci
��

Fg
//_______ FC′j

Fc′j
��

FA
Ff

//

a !!C
CC

CC
CC

C FB

b}}{{
{{
{{
{{

X

Since (Fci) is a colimit cocone, it is sufficient to prove

a ·Fci = b ·F(f · ci) for a all i ∈ I.

Indeed, let c′j : C′j → B (j ∈ J) be the canonical colimit cone of HB : Aλ/B → A. Since Ci is
λ-presentable, the morphism f · ci factorizes through some c′j , j ∈ J , say

f · ci = c′j · g.

This makes g a morphism from FCi
a·Fci−−−−→ X to FC′j

b·Fc′j
−−−−→ X in Fλ/X, hence the following

triangle

FCi
Fg

//

a·Fci   A
AA

AA
AA

A
FCj

b·Fc′j~~||
||
||
|

K

commutes. That is, we have derived the required equality:

a ·Fci = b ·Fc′j ·Fg = b ·Ff ·Fci .

It is now easy to verify that the above cocone is a colimit ofDX . Given another cocone ã : FA→
K̃ for all a : FA → X in F/X, the subcocone with domain Fλ/X yields a unique morphism
r : K → K̃ with

r · a = ã for all a : FA→ X, A ∈Aλ.

It remains to observe that given a : FA→ X arbitrary, we also have r · a = ã:

FCi
a·Fci

!!B
BB

BB
BB

B
Fci

}}zz
zz
zz
zz

FA
a //

ã !!D
DD

DD
DD

DD
K

r~~||
||
||
||

K̃

Indeed, the cocone (Fci) is collectively epic and for each i we know that r ·a ·Fci = ã ·Fci . Now

ã ·Fci = ã·Fci since ci is a morphism from FCi
a·Fci−−−−→ X to FA

a−→ X. We conclude r ·a·Fci = ã·Fci
for all i, thus, ã = r · a. �

Proposition 2.2. Let K be a category with a generator. Every functor F : A→K with a codensity
monad has only a set of natural transformations α : F→ F.
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Proof. By the universal property of T = RanFF, natural self-transformations of F bijectively
correspond to natural transformations from IdK to T . If (Ki)i∈I is a generator, we will prove
that every natural transformation α : IdK → T is determined by its components αKi , i ∈ I ,
which proves our claim.

Let β : IdK→ T be a natural transformation with βKi = αKi for all i. Then for every object
X we have βX = αX . Indeed, otherwise there exists i ∈ I and a morphism h : Ki → X with
αX · h , βX · h.

Ki
αKi=βKi //

h
��

TKi

T h
��

X
αX //

βX
// TX

This contradicts to the naturality squares for α and β. �

Corollary 2.3. Let K be a category with a cogenerator. Every functor F : A→ K with a density
comonad has only a set of natural transformations α : F→ F.

Example 2.4. A set functor without a codensity monad or a density comonad. Recall the modified
power-set functor P in Introduction. By Proposition 2.2 it has no codensity monad since for
every cardinal λ we have a natural transformation

αλ : P→ P.

It assigns to a subset M of power |M | ≥ λ itself, otherwise ∅. The naturality squares are easy
to verify. Thus, Nat(P,P) is a proper class.

3. Codensity Monad Theorem

Let S be a generator of a category K. Then K can be viewed as a concrete category over
S-sorted sets: the forgetful functor

U : K→ SetS

has components
Us = K(s,−) : K→ Set (s ∈ S).

Recall that a functor U is said to detect limits if for every (possibly large) diagram D in K for
which limU ·D has a limit, a limit exists in K.

In case of the functor U above the existence of limU ·D says precisely that for every s ∈ S
the diaram D has only a set of cones with domain s. This leads us to the following

Definition 3.1. A generator S of K is called limit-detecting if

(a) every (possibly large) diagram D in K which has only a set of cones with domains in
S has a limit,

and

(b) copowers of every object of S exist.

Examples 3.2. Every generator is limit-detecing in the following categories:
(1) Every total category K, i.e., such that the Yoneda embedding into [Kop,Set] has a left

adjoint, as introduced by Street and Walters [12]. They also proved that a total category is
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cocomplete and hypercomplete, i.e., every diagram D such that for any object K ∈ K there
exists only a set of cones with domain K has a limit.

Suppose D has the property in 3.1(a) above. Then given K we express it as quotient of a
coproduct of objects in S:

e :
∐
i∈I
si � K.

Every cone with domain K yields one with domain
∐
i∈I si which, since e is epic, determines

the original one. Since there is only a set of cones with domain
∐
i∈I si , it follows that there is

only a set of cones with domain K . Thus limD exists.
(2) Every cocomplete and cowellpowered category. Indeed, K is total, see [6].
(3) Every locally presentable category. This follows from (2), see [7] or [3].
(4) Categories from general topology, e.g., Top, Top2 (Hausdorff spaces), Unif (uniform

spaces), approach spaces of Lowen [10], etc. These are concrete categories over Set which
are solid, thus total, see [13].

(5) Monadic categories over categories with a limit-detecting generator. Indeed, let S be a
limit-detecting generator of K. For every monad T = (T ,η,µ) the set of free algebras

S ′ = {(T s,µs) ; s ∈ S}

is a limit-detecting generator of KT. In fact, it is clearly a generator, (a) above follows since
(large) limits are created by the forgetful functor UT of KT, and (b) is clear since the left
adjoint of UT preserves copowers.

Notation 3.3. For every functor F : A → K and every object X of K we denote by F(X) the
set-valued functor

F(X) ≡A
F−→K

K(X,−)
−−−−−−→ Set

Thus in case K = Set this is just the power FX of F : A→ Set to X. The following theo-
rem generalizes Linton’s result, see [9], that a set-valued functor F has a pointwise codensity
monad iff there is only a set of natural transformations from FX to F (for every set X):

Theorem 3.4. (Codensity Monad Theorem) Let S be a limit-detecting generator of a categoryK.
For every functor F with codomain K the following conditions are equivalent:

(i) F has a codensity monad,
(ii) F has a pointwise codensity monad, and

(iii) for every pair of objects s ∈ S and X ∈K the collection

Nat(F(X),F(s))

of natural transformations from F(X) to F(s) is small.

Remark. We will see in the proof that the object CX assigned to X ∈ K by the codensity
monad C has the S-sorted underlying set given by

U (CX) �
(
Nat(F(X),F(s))

)
s∈S
.

Proof. (i)→ (iii). Since s ∈ S has all copowers, K(s,−) is left adjoint to φs :M 7→
∐
M s.
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LetC be a codensity monad of F. We prove that the set K(s,CX) is isomorphic toNat(F(X),F(s)).
Indeed, we have the following bijections:

K(s,CX)
K(X,−)→K(s,−) ·C
φs ·K(X,−)→ C

φs ·K(X,−) ·F→ F

K(X,−) ·F→K(s,−) ·F
F(X)→ F(s)

Yoneda lemma
φs aK(s,−)
universal property of C
φs aK(s,−)

(iii)→(ii). For every object X ∈ K it is our task to prove that the diagram DX : X/F → K

given by
DX(X

a−→ FA) = FA

has a limit. Given s ∈ S, a cone of DX with domain s has the following form

X
a−→ FA

s
a′−→ FA

and we obtain a natural transformation

α : F(X)→ F(s)

assigning to every a ∈ F(X)A = K(X,FA) the value αA(a) = a′ ∈ F(s)A. Indeed, the naturality
square

F(X)A

F(X)f
��

αA // F(s)A

F(s)f
��

F(X)B
αB
// F(s)B

commutes for every f : A→ B in A. This follows from the morphism

X
a

~~||
||
||
|| b

  B
BB

BB
BB

B

FA
Ff

// FB

in X/F: Our cone (−)′ is compatible, thus

Ff · a′ = b′ = (Ff · a)′ ,

which proves that the above square commutes when applied to a.
Conversely, every natural transformation α : FX → F(s) has the above form. We obtain a

cone of evaluations at a:

a′ = αA(a) for every a : A→ FX (i.e., a ∈ F(X)A)

Indeed the above triangle commutes since the naturality square does when applied to a.
It is easy to verify that we obtain a bijection between Nat(F(X),F(s)) and the collection of all

cones of DX with domain s. Consequently, the latter collection is small for every s ∈ S. Since
S is limit-detecting, DX has a limit in K.
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(ii)→(i). This is trivial.
Finally, the claim in the remark above

Us(CX) �Nat(F(X),F(s)) for s ∈ S

follows from the fact that Us = K(s,−) preserves limits. We have seen above that DX has a
limit, say, with the following cone

X
a−→ FA

CX
â−→ FA

for all a : X→ FA with A ∈A.

Then the cone of underlying functions U (CX)
Uâ−−→ U (FA) is, up to isomorphism of the do-

main, the cone of evaluations eva :Nat(F(X),F(s))→Us(FA), s ∈ S. �

Remark 3.5. (a) Suppose K is transportable, i.e., given an object K and an isomorphism
i : M → UK in SetS there exists an object K ′ ∈K such that UK ′ = M and i carries an isomor-

phism K ′
�−→ K in K. (Up to equivalence, all categories concrete over SetS have this property,

see [1], Lemma 5.35.) Then the codensity monad C can be chosen so that the underlying set
of CX has components

Us(CX) =Nat(F(X),F(s)) s ∈ S.

(b) Moreover, the evaluation maps with sorts

eva :Nat(F(X),F(s))→Us(FA) (for s ∈ S)

given by
eva(α) = αA(a) (for all a : X→ FA)

carry morphisms from CX to FA. Indeed, the limit cone ( â ) of CX was shown to fulfil this in
the above proof.

(c) To characterize the object CX of K, we use the concept of initial lifting, see [1]. Given a
(possibly large) collection of objects Ki ∈K, i ∈ I , and a cone vi : V → UKi (i ∈ I) in SetS , the
initial lifting is an object K of K with UK = V such that

(i) each vi carries a morphism from K to Ki (i ∈ I)
and

(ii) given an object K ′ of K, then a function f :UK ′→UK carries a morphism from K ′ to
K iff all composites vi · f carry morphisms from K ′ to Ki (i ∈ I).

Corollary 3.6. (Codensity Monad Formula) Let S be a limit-detecting generator making K a
transportable category over SetS . If a functor F : A→K has a codensity monad C, then C assigns
to every object X the initial lifting of the cone of evaluations

eva :
(
Nat(F(X),F(s))

)
s∈S
→UFA

for A ∈A and a : X→ FA. Here (eva)s(α) = αA(a) for every natural transformation α : F(X)→ F(s).

Indeed, the limit cone â : CX→ FA can (due to transportability) be chosen so that Uâ = eva
for all a : X→ FA in X/F. Given an object K ′ and a function f :UK ′→U (CX) such that each
composite eva · f carries a morphism ã : K ′ → FA in K, the fact that U is faithful implies that
( ã ) forms a cone of DX . Thus there exists f : K ′→ CX with ã = â · f for every a in X/F. This is
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the desired morphism carrying f : we have Uf = f because the limit cone (eva) is collectively
monic and for each a : X→ FA we have

eva ·Uf =U (â · f ) =Uã = eva · f .

Remark 3.7. The definition of C on morphisms f : X→ Y of K is canonical: Cf is carried by
the S-sorted function from Nat(F(X),F(s)) to Nat(F(Y ),F(s)) which takes a natural transforma-
tion α : K(X,−) ·F→K(s,−) ·F to the composite

K(Y ,−) ·F
K(f ,−)·F
−−−−−−−→K(X,−) ·F α−→K(s,−) ·F.

This follows easily from the fact that Cf is the unique morphism such that the above limit
morphisms â : CX→ FA make the following triangles

CX
Cf
//

â·f
��

CY

â||yy
yy
yy
yy

FA

for all a : Y → FA

commutative.

4. Density Comonads

Notation 4.1. For every functor F : A → K and every object X of K we denote by XF the
set-valued functor

XF ≡Aop
Fop−−−−→Kop K(−,X)

−−−−−−→ Set

Theorem 4.2. Density Comonad Theorem. Let S be a cogenerator of a complete and wellpowered
category. For every functor F with codomain K the following conditions are equivalent:

(i) F has a density comonad,
(ii) F has a pointwise density comonad, and

(iii) for every pair of objects s ∈ S and X ∈K the collection

Nat(XF , sF)

of natural transformations from XF to sF is small.

Indeed, since S detects colimits by the dual of Example 3.2(2), this is just a dualization of
Theorem 3.4.

Corollary 4.3. A set-valued functor F has a density comonad iff for every set X there is only a set
of natural transformations from XF to 2F . Moreover, the density comonad is then given by

CX =Nat(XF ,2F).

For set-valued functors preserving preimages (i.e., pullbacks of monomorphisms along ar-
bitrary morphisms) and with “set-like” domains, we intend to prove that

accessibility ⇔ existence of a density comonad.

For that we are going to use Theorem 4.6 below. The “set-like” flavour is given by the
following:
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Definition 4.4. A locally λ-presentable category is called sctritly locally λ-presentable if for
every morphism b : B→ A with a λ-presentable domain there exists a commutative square

B

b
��

b // A

A
f
// B′

b′

OO

with B′ also λ-presentable.

Examples 4.5. (See [2]) Let λ be an infinite regular cardinal.
(1) Set is strictly locally λ-presentable.
(2) Many-sorted sets, SetS , are strictly locally λ-presentable iff cardS < λ.
(3) K-Vec, the category of vector spaces over a field K , is strictly locally λ-presentable.
(4) The category of groups and homomorphisms is not strictly locally λ-presentable.
(5) For every group G the category G-Set of sets with an action of G is strictly locally λ-

presentable iff |G| < λ.
The same holds for the category SetG

op
of presheaves on a small groupoid G, i.e., a category

with invertible morphisms: it is strictly locally λ-presentable iff G has less than λmorphisms.

We are going to use the following characterization of accessibility proved in [2]:

Theorem 4.6. A functor F : A→ B with A and B strictly locally λ-presentable is λ-accessible iff
for every object A ∈A and every strong subobject m0 :M0→ FA withM0 λ-presentable in B there
exists a strong subobject m : M → A with M λ-presentable in A such that m0 factorizes through
Fm:

FM

Fm
��

M0

<<z
z

z
z

m0

// FA

Examples 4.7. (1) A set functor F is λ-accessible iff for every element of FA there exists a
subset m :M ↪→ A with card M < λ such that the element lies in Fm[FM].

(2) Analogously for endofunctors of K-Vec: just say dimM < λ here.
(3) For S finite, an endofunctor of SetS is finitary iff every element of FA lies in Fm[FM]

for some finite subset m :M ↪→ FA.
This does not generalize for S infinite. Consider the endofunctor F of SetN given as the

identity function on objects (and morphisms) having all but finitely many components empty.
And F is otherwise constant with value 1, the terminal object. This functor is not finitary: it
does not preserve, for 2 = 1 + 1, the canonical filtered colimit of all morphisms from finitely
presentable objects to 2. But it satisfies the condition that every element of FA lies in Fm[FM]
for some finite subset m :M ↪→ FA.

Theorem 4.8. Let A be a category where epimorphisms split and such that there is a cardinal µ
for which A is strictly locally λ-presentable and λ-presentable objects are closed under subobjects,
whenever λ ≥ µ.

Then a functor F : A→ Set preserving preimages has a density comonad iff it is accessible.
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Proof. Since epimorphisms split, A has regular factorizations – indeed, locally presentable
categories have (strong epi, mono)-factorizations, see [3]. In view of Theorem 2.1 we only
need to prove the non-existence of a density comonad in case F is not accessible. Let us
call an element x ∈ FA λ-accessible if there exists a λ-presentable subobject m : M� A with
x ∈ Fm[FM]. From the preceding theorem we know that, for all λ ≥ µ, F posesses an element
that is not λ-accessible. Without loss of generality, µ is an infinite regular cardinal.

(1) Define regular cardinals λi (i ∈Ord) by transfinite recursion as follows:
λ0 = µ;
Given λi choose an element xi ∈ FAi for some Ai ∈ A which is not λi-accessible and define

λi+1 as the least regular cardinal with Ai λi+1-presentable;
Given a limit ordinal j define λj as the successor cardinal of

∨
i<j λi .

We thus see that for every ordinal i the element xi is λi+1-accessible but not λi-accessible.

(2) To prove that F does not have a density comonad, we present pairwise distinct natural
transformations

αi : 2F → 2F (i ∈Ord).

For every object A ∈ A, a subset M ⊆ FA (i.e., an element of 2FA) and an element a ∈M, we
call the triple (A,M,a) λi-stable if there exists a subobject ua :Ua� A in A with a ∈ Fua[FUa]
such that for all subobjects v : V �Ua we have

if V is λi-presentable, then M ∩F(uav)[FV ] = ∅.

Our natural transformation αi has the following components αiA : 2FA→ 2FA:

αiA(M) = {a ∈M ; (A,M,a) is λi-stable}.

We must prove that for every morphism h : A→ B the naturality square

2FB

(Fh)−1(−)
��

αiB // 2FB

(Fh)−1(−)
��

2FA
αiA

// 2FA

commutes. That is, given

M ⊆ FB and M = (Fh)−1(M) ⊆ FA

then for all elements
a ∈M and b = Fh(a) ∈M

we need to verify that

(A,M,a) is λi-stable ⇔ (B,M,b) is λi-stable.
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(a) Let (A,M,a) be λi-stable. For the given subobject ua : Ua� A form a regular factoriza-
tion of hua:

Ua
e // //

ua
��

Ub
��
ub

��

w
jj h_V

A
h
// B

We have a′ ∈ FUa with a = Fua(a′), therefore b lies in the image of Fub:

b = Fh(a) = Fub(Fe(a
′)).

For every subobject v : V →Ub with V λi-presentable we need to prove thatM∩F(ubv)[FV ] =
∅. Choose a splitting w of e, i.e., e ·w = idUb . Then for the subobject

wv : V →Ua

we know that M = (Fh)−1(M) is disjoint from the image of F(uawv). Suppose there exists an
element of M∩F(ubv)[FV ], say, F(ubv)(t) for some t ∈ FV . Put t′ = F(uawv)(t), then we derive
a contradiction by showing that t′ ∈M. Indeed

Fh(t′) = F(huawv)(t)
= F(ubewv)(t)
= F(ubv)(t) ∈M.

Thus, t′ ∈ (Fh)−1(M) =M.

(b) Let (B,M,b) be λi-stable. Since Fh(a) = b ∈M we have

a ∈ (Fh)−1(M) =M.

Given the above subobject ub :Ub→ B, we define ua :Ua→ A as the preimage under h:

V
e // //

��

v

��

W
��

w

��
Ua

h //
��

ua
��

Ub
��
ub

��
A

h
// B

We have b′ ∈ FUb with b = Fub(b′) = Fh(a), and since F preserves preimages, there exists
a′ ∈ FUa with Fua(a′) = a.

Given a subobject v : V → Ua with V λi-presentable, we prove that F(uav)([FV ] is disjoint
fromM. For that take the regular factorization of hv as in the diagram above. Since e is a split
epimorphism, W is a λi-presentable object. Therefore, the image of F(ubw) is disjoint from
M.

Assuming that we have t ∈ FV with F(uav)(t) ∈ M, we derive a contradiction by show-
ing that for t′ = Fe(t) we have F(ubw)(t′) ∈ M. Indeed, since M = (Fh)−1(M), we see that
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F(huav)(t) ∈ Fh[M] ⊆M and we have

huav = ubhv = ubwe.

(3) We have established that each i ∈Ord yields a natural transformation αi : 2F → 2F . We
conclude the proof by verifying for all ordinals i , j that αi , αj . Suppose i < j. In (1) we have
presented an element xi ∈ FAi which is λi+1-accessible (because Ai is λi+1-accessible) but not
λi-accessible. Let Mi ⊆ FAi be the set of all elements that are not λi-accessible. Then

(Ai ,Mi ,xi)

is clearly λi-stable. But it is not λj-stable because Ai is λj-presentable (since λi+1 is a pre-
sentability rank of Ai and λi+1 ≤ λj ). Indeed, no subobject uxi :Uxi → A has the property that
xi ∈ Fuxi [FUxi ] but Mi ∩ F(uxiv)[FV ] = ∅ for all λj-presentable subobjects v : V → Uxi : since
Ai is λj-presentable, so is Uxi , because λj-presentable objects are closed under subobjects in
A. Put v = idUxi ; then xi ∈M ∩F(uxiv)[FV ].

Consequently, we have
xi ∈ αiAi (Mi) but xi < α

j
Ai

(Mi).

�

The following corollary works with set functors preserving preimages. This is a very weak
assumption since all “everyday” set functors preserve them:

(1) The identity and constant functors preserve preimages.
(2) Products, coproducts, and composites of functors preserving preimages preserve them.
(3) Thus polynomial functors preserve images.
(4) The power-set functor, the filter functor and the ultrafilter functor preserve preim-

ages.

Corollary 4.9. A set functor preserving preimages has a density comonad iff it is accessible.

5. Examples of set functors

Example 5.1. The density comonad of FX = Xn is

CX = Xn
n
.

More detailed: we prove that the colimit of the diagramDX : (−)n/X→ Set has the component
at a : An→ X defined as follows

â : An→ Xn
n
, t 7→ a · tn (for all t : n→ A)

It is easy to see that this is a cocone.
Let ã : An→ B (for all a : An→ X) be another cocone. Consider the following morphisms of

(−)n/X for every a : An→ X and every t : n→ A:

nn
tn //

a·tn   A
AA

AA
AA

A An

a~~}}
}}
}}
}}

X
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Thus the following triangle

nn
tn //

ã·tn   @
@@

@@
@@

@ An

ã~~}}
}}
}}
}}

B

commutes. Applied to idn this yields

ã(t) = �a · tn(idn).

Therefore we have a factorization f : Xn
n → B through the colimit cocone defined by

f (u) = ũ(idn).

Indeed ã = f · â since for every t we have ã(t) = �a · tn(idn) = f (a · tn) = f · â(t). It is easy to see
that f is unique.

Example 5.2. More generally, for a polynomial functor

FX =
∐
i∈I
Xni

the density comonad is

CX =
∐
i∈I

∏
j∈I

Xn
nj
i .

The colimit cocone for DX has for a :
∐
i∈I A

ni → X the component â =
∐
i∈I âi :

∐
i∈I A

ni → CX,
where

âi : Ani →
∏
j∈I X

n
nj
i sends t : ni → A to a ·

∐
j∈I t

nj :
∐
j∈I n

nj
i → X.

(The last map is an element of
∏
j∈I X

n
nj
i .) The proof is completely analogous to 5.1: for every

a :
∐
i∈I A

ni → X and t : ni → A use the following triangle

∐
j∈I n

nj
i

∐
tnj

//

a·
∐
tnj ""E

EE
EE

EE
EE

∐
j∈I A

nj

a
||xx
xx
xx
xx
x

X

Recall that P0 denotes the subfunctor of P with P0X = PX − {∅}.

Example 5.3. The power-set functor P and its subfunctor P0 do not have a density comonad,
since they are not accessible.

Proposition 5.4. The codensity monad of P0 is itself.

Proof. (1) We first prove the equality on objects X by verifying that natural transformations
α : PX0 → P0 bijectively correspond to nonempty subsets of X as follows: we assign to α the
subset

αX(ηX) ⊆ X

where η is the unit of P0. The inverse map takes a nonempty set M ⊆ X to the natural
transformation M̂ : PX0 → P0 assigning to each u : X→ P0A the value

M̂A(u) =
⋃
x∈M

u(x).
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(1a) The naturality squares for M̂ are easy to verify.
(1b) Given α, put M = αX(ηX). We prove that for all u : X→ P0A we have

αA(u) = M̂A(u).

We first verify this for all u such that A has a disjoint decomposition u(x), x ∈ X. We then
have the obvious projection f : A→ X with

P0f ·u = ηX .

Thus, the naturality square

(P0A)X

P0f ·(−)
��

αA // P0A

P0f
��

(P0X)X
αX

// P0X

yields
P0f (αA(u)) = αX(ηX) =M.

This clearly implies αA(u) =
⋃
x∈M

u(x).

Next let u : X → P0A be arbitrary and consider its “disjoint modification" u : X → P0A

where
A =

⋃
x∈X

u(x)× {x} and u(x) = u(x)× {x}.

We know already that αA(u) =
⋃
x∈M

u(x). The obvious projection g : A→ A fulfils

u = P0g ·u.

The naturality square thus gives

αA(u) = P0g(αA(u)) = P0g

⋃
x∈M

u(x)

 =
⋃
x∈M

g [u(x)].

This concludes the proof, since g [u(x)] = u(x).
(1c) The map M 7→ M̂ is inverse to α 7→ αX(ηX). Indeed, if we start with M ⊆ X and form

α = M̂, we get
M̂X(ηX) =

⋃
x∈M

ηX(x) =M.

Conversely, if we start with α and put M = αX(ηX), then α = M̂: see (1b).
(2) The definition of the pointwise codensity monad for P0 on morphisms f : X → Y is as

follows: a natural transformation α : PX0 → P0 is taken to the following composite

PY0
P
f
0 // PX0

α // P0

If α corresponds to M(= αX(ηX)), it is our task to verify that α · Pf0 corresponds to P0f (M).
Indeed:

P0f (M) = αY (ηY · f ), by naturality of α and η,

=
(
α ·Pf0

)
Y

(ηY ).



16 JIŘÍ ADÁMEK AND LURDES SOUSA

�

Recall from [14] that a set functor is indecomposable, i.e., not a coproduct of proper sub-
functors, iff it preserves the terminal objects.

Proposition 5.5. Let F be an indecomposable set functor with a codensity monad T .
(1) The functor F + 1 has the codensity monad

T̂ X =
∏
Y⊆X

(T Y + 1)

with projections πY . This monad assigns to a morphism f : X → X ′ the morphism T̂ f : T̂ X →∏
Z⊆X ′ T (Z + 1) with components

T̂ X
πY−−→ T Y + 1

T fZ+1
−−−−−→ TZ + 1 for all Z ⊆ X ′

where fZ : Y → Z is the restriction of f with Y = f −1[Z].
(2) Every copower

∐
M F has the codensity monad

X 7→ (M × TX)M
X

assigning to a morphism f the morphism (M × T f )M
f
.

Proof. (1) Since F is indecomposable, so is FX for every set X, hence,

Nat(FX ,F + 1) 'Nat(FX ,F) + 1 = TX + 1,

consequently, from the natural isomorphism [F + 1]X '
∐
Y⊆X F

Y we get

Nat([F + 1]X ,F + 1) 'Nat(
∐
Y⊆X F

Y ,F + 1)
'

∏
Y⊆X Nat(FY ,F + 1)

=
∏
Y⊆X(T Y + 1)

(2) We compute
Nat

(
(
∐
M F)X ,

∐
M F

)
'Nat(MX ×FX ,

∐
M F)

'
∏
MX Nat(FX ,

∐
M F).

Since FX is indecomposable, Nat(FX ,
∐
M F) '

∐
M Nat(FX ,F) ' M × TX. This yields (M ×

TX)M
X

, as claimed. �

Corollary 5.6. The codensity monad of P is given by

X 7→
∏
Y⊆X

PY .

Indeed, P = P0 + 1 and P0 is indecomposable.
Another description of the codensity monad of P: it assigns to every setX all nonexpanding

selfmaps ψ of PX (i.e., self-maps with ψY ⊆ Y for all Y ∈ PX).

Example 5.7. Polynomial functors.
(1) The functor FX = Xn has the codensity monad

T Y = (n×Y )n.

Indeed, F is a right adjoint yielding the monad T = (−)n · (n×−) = (n×−)n.
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(2) The polynomial functor

FX =
∐
i∈I
Xni (ni arbitrary cardinals)

has the following codensity monad

T Y =
∏
(Yi )

∐
j∈I

∐
i∈I
ni ×Yi

nj
where the product ranges over disjoint decompositions

Y =
⋃
i∈I
Yi

indexed by I . (Here Yi is allowed to be empty.) This follows from the Codensity Monad
Theorem where we compute (FX)Y as follows: a mapping from Y to

∐
i∈I X

ni is given by
specifying a decomposition (Yi) and an I-tuple of mappings from Yi to Xni . The latter is an
element of

∏
i∈I X

ni×Yi ' X
∐
i∈I (ni×Yi ), therefore

FY �
∐
(Yi )

Set(
∐
i∈I
ni ×Yi ,−).

We conclude, using Yoneda lemma, that

T Y = Nat(FY ,F)
'

∏
(Yi )F (

∐
i∈I ni ×Yi)

=
∏

(Yi )
∐
j∈I (

∐
i∈I ni ×Yi)

nj

as stated.

Open Problem 5.8. Which set functors possess a codensity monad?
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