Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/7768
Title: Optimal embeddings and compact embeddings of Bessel-potential-type spaces
Authors: Gogatishvili, Amiran 
Neves, Júlio 
Opic, Bohumír 
Issue Date: 2008
Abstract: First, we establish necessary and sufficient conditions for embeddings of Bessel potential spaces H^ σ X(R^n) with order of smoothness less than one, modelled upon rearrangement invariant Banach function spaces X(R^n), into generalized Hölder spaces. To this end, we derive a sharp estimate of modulus of smoothness of the convolution of a function f in X(R^n) with the Bessel potential kernel gσ , 0 < s < 1. Such an estimate states that if gσ belongs to the associate space of X, then ω(f* gσ,t) precsim \int\limits_0^{t^n}s^{\frac{\σ}{n}-1}f^*(s)\,ds \quad {\rm for\,all} \quad t\in(0,1) \quad {\rm and\,every}\quad f in X(R^n). Second, we characterize compact subsets of generalized Hölder spaces and then we derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces Hσ X(R^n) into generalized Hölder spaces. We apply our results to the case when X(R^n) is the Lorentz–Karamata space {L_{p,q;b}(R^n)}. In particular, we are able to characterize optimal embeddings of Bessel potential spaces {H^{σ}L_{p,q;b}(R^n)} into generalized Hölder spaces and also compact embeddings of spaces in question. Applications cover both superlimiting and limiting cases.
URI: http://hdl.handle.net/10316/7768
DOI: 10.1007/s00209-008-0395-5
Rights: openAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
obra.pdf481.48 kBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

9
checked on Feb 18, 2020

WEB OF SCIENCETM
Citations 10

8
checked on Aug 2, 2022

Page view(s) 50

377
checked on Aug 18, 2022

Download(s)

208
checked on Aug 18, 2022

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.