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Abstract First, we establish necessary and sufficient conditions for embeddings of Bessel
potential spaces Hσ X (Rn) with order of smoothness less than one, modelled upon rearran-
gement invariant Banach function spaces X (Rn), into generalized Hölder spaces. To this
end, we derive a sharp estimate of modulus of smoothness of the convolution of a function
f ∈ X (Rn) with the Bessel potential kernel gσ , 0 < σ < 1. Such an estimate states that if
gσ belongs to the associate space of X , then

ω( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X (Rn).

Second, we characterize compact subsets of generalized Hölder spaces and then we derive
necessary and sufficient conditions for compact embeddings of Bessel potential spaces
Hσ X (Rn) into generalized Hölder spaces. We apply our results to the case when X (Rn)

is the Lorentz–Karamata space L p,q;b(Rn). In particular, we are able to characterize optimal
embeddings of Bessel potential spaces Hσ L p,q;b(Rn) into generalized Hölder spaces and
also compact embeddings of spaces in question. Applications cover both superlimiting and
limiting cases.
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A. Gogatishvili et al.

1 Introduction

Classical Bessel potential spaces Hσ,p(Rn) = Hσ L p(Rn), introduced in [2] and [8], have
played a significant role in mathematical analysis and in applications for many years
(cf. [36,39], etc.). These spaces are modelled upon the scale of Lebesgue spaces L p(Rn)

and they coincide with the Sobolev spaces W k,p(Rn) = W k L p(Rn) when σ = k ∈ N

and p ∈ (1,+∞). However, it has gradually become clear that to handle some situations
(especially limiting ones) a more refined tuning is desirable. For this purpose, one needs to
replace the Lebesgue scale of spaces by a scale of spaces which can be more finely tuned.
For example, to obtain estimates of degenerate elliptic differential operators with coefficients
having singular behaviour, Edmunds and Triebel (cf. [18,19]) replaced the L p spaces by the
spaces L p(log L)q of Zygmund type. The same replacement enables one to obtain interes-
ting results concerning smoothness properties of orientation-preserving maps (see [29] for
references and an account of work in this direction).

In a series of recent papers [12–14,35] a systematic research of embeddings of Bessel
potential spaces with order of smoothness σ ≥ 1 modelled upon generalized Lorentz–
Zygmund (GLZ) spaces was carried out. The authors of those papers established embeddings
of such spaces either into GLZ-spaces or into Hölder-type spaces C0,λ(·)(�) and showed that
their results are sharp (within the given scale of target spaces) and fail to be compact. They
also clarified the role of the logarithmic terms involved in the quasi-norms of the spaces
mentioned. This role proved to be important especially in limiting cases. In particular, they
obtained refinements of the Sobolev embedding theorems, Trudinger’s limiting embedding
as well as embeddings of Sobolev spaces into λ(·)-Hölder continuous functions including the
result of Brézis and Wainger about almost Lipschitz continuity of elements of the (fractional)
Sobolev space H1+n/p,p(Rn) (cf. [7]).

Although GLZ-spaces form an important scale of spaces containing, for example, Zyg-
mund classes L p(log L)α , Orlicz spaces of multiple exponential type, Lorentz spaces L p,q ,
Lebesgue spaces L p , etc., GLZ-spaces are a particular case of more general spaces, namely
the Lorentz–Karamata (LK) spaces.

The embeddings mentioned above were extended in [32,33] to the case when Bessel-
potential spaces are modelled upon LK-spaces. Since Neves considered more general tar-
gets (besides LK-spaces and Hölder-type spaces also generalized Hölder spaces), in several
cases he obtained improvements of embeddings from [12–14]. The sharpness and the non-
compactness of these embeddings were proved in [21,22]. (An account of the principal
embedding results involving Bessel potential spaces modelled upon LK-spaces is also given
in [11]).

Note that one of main steps in the proof of continuous embeddings of Bessel potential
spaces with order of smoothness σ ≥ 1 into Hölder-type spaces consists in the application of
Stein’s inequality (cf. [5, Exercise 12(b), p. 430] or [10]). This inequality states that a function
u, such that the norm of its distributional gradient |∇u| belongs locally to the Lorentz space
Ln,1(Rn), can be redefined on a set of measure zero so that the modulus of smoothness ω(u, ·)
of u satisfies the inequality

ω(u, t) �
tn∫

0

s
1
n −1|∇u|∗(s) ds for all t ∈ (0, 1) (1)

(here |∇u|∗ denotes the non-increasing rearrangement of |∇u|).
In [15] and [16] the authors analysed the situation when the order of smoothness is less

than one. In such a case one cannot use the method in which inequality (1) and a lifting
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argument (based on [13, Lemma 4.1] or [22, Lemma 4.5], which extend the Calderón result
[8, Theorem 7]) are applied to reduce the superlimiting case to the sublimiting one, and a new
approach was used. The authors of those papers established embeddings of such spaces into
Hölder-type spaces C0,λ(·)(�) and showed that their results concerning nonlimiting cases
are sharp (within the given scale of target spaces) and fail to be compact.

Here, we establish necessary and sufficient conditions for embeddings of Bessel potential
spaces Hσ X (Rn) with order of smoothness less than one, modelled upon rearrangement inva-
riant Banach function spaces X (Rn), into generalized Hölder spaces �

λ(·)∞,r (�), 0 < r ≤ +∞.

(We refer to Sect. 2 for precise definitions. Note also that the space �
λ(·)∞,∞(�) coincides with

the space C0,λ(·)(�) mentioned above.) For this purpose, we derive a convenient replacement
of (1). Namely, if σ ∈ (0, 1), X = X (Rn) is a rearrangement invariant Banach function space
and the Bessel potential kernel gσ belongs to the associate space of X , then we prove that
(cf. Theorem 1 below)

ω( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (2)

where f ∗ denotes the non-increasing rearrangement of f . Moreover, estimate (2) is sharp in
the sense that

ω( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (3)

where

f (x) = f ∗(βn |x |n)χ{y∈Rn : y1>0}∩B(0,1)(x), x = (x1, . . . , xn) ∈ R
n,

and βn is the volume of the unit ball in R
n . Inequalities (2) and (3) enable us to show that the

continuous embedding of the Bessel potential space Hσ X (Rn) into the generalized Hölder
space �

µ(·)∞,r (R
n) is equivalent to the condition that

gσ belongs to the associate space of X (4)

and to the boundedness of the Hardy-type operator

H : X −→ Lr ((0, 1); t−1/r (µ(t))−1), (5)

where the operator H is defined by

(H f )(t) :=
tn∫

0

s
σ
n −1 f ∗(s) ds, (6)

X denotes the representation space of X and Lr ((0, 1); t−1/r (µ(t))−1) is the weighted
Lebesgue space over the interval (0, 1) (cf. Corollary 2 below and the fact that ‖ f ‖X =
‖ f ∗‖X ).

Furthermore, we characterize compact subsets of generalized Hölder spaces �
µ(·)∞,r (�),

0 < r < +∞, with a bounded domain � in R
n (cf. Theorem 5 below) and then we

derive necessary and sufficient conditions for compact embeddings of Bessel potential spaces
Hσ X (Rn) into generalized Hölder spaces �

µ(·)∞,r (�), 0 < r < +∞. To this end, we make
use of local versions of inequalities (2) and (3) [cf. (48) and (49) below] to show that the
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compactness of the embedding in question is equivalent to (4) and to the compactness of the
Hardy-type operator (5) (cf. Corollary 3 below). (Note that if r = +∞, then our conditions
are sufficient; under some additional assumptions, they are also necessary—cf. Remarks 6
and 7 below.)

Finally, we apply our results to the case when X (Rn) is the Lorentz–Karamata space
L p,q;b(Rn). The corresponding continuous embeddings are characterized in Theorems 3 and
4 below. The former concerns the superlimiting case when p > n/σ while the latter is
devoted to the limiting case when p = n/σ . In particular, we are able to characterize optimal
embeddings of Bessel potential spaces Hσ L p,q;b(Rn) into generalized Hölder spaces and
the continuity envelopes of Bessel potential spaces Hσ L p,q;b(Rn) both in superlimiting and
limiting cases (cf. Remarks 4 and 5 below). The compact embeddings of Bessel potential
spaces modelled upon Lorentz–Karamata spaces L p,q;b(Rn) into generalized Hölder spaces
are characterized in Theorem 7 in the superlimiting case and in Theorem 8 in the limiting
case. We refer to Remark 8 for the case r = +∞. Our results extend and improve those of
[15,16,23].

The paper is organized as follows. Section 2 contains notation, definitions and preliminary
assertions. Section 3 involves auxiliary results. In Sect. 4 we present sharp estimates of
the modulus of smoothness of convolutions of functions from the rearrangement invariant
space X = X (Rn) with the Bessel kernel. Such estimates play a key role in what follows.
A characterization of continuous embeddings is given in Sect. 5 while in Sect. 6 we apply this
result to Bessel-potential spaces modelled upon Lorentz–Karamata spaces. Compact subsets
of generalized Hölder spaces are characterized in Sect. 7 while necessary and sufficient
conditions for compact embeddings of Bessel potential spaces modelled upon Lorentz–
Karamata spaces into generalized Hölder-type spaces are established in Sect. 8.

2 Notation and preliminaries

As usual, R
n denotes the Euclidean n-dimensional space. Throughout the paper µn is the

n-dimensional Lebesgue measure in R
n and � is a µn-measurable subset of R

n . We denote
by χ� the characteristic function of � and put |�|n = µn(�). The family of all extended
scalar-valued (real or complex) µn-measurable functions on � is denoted by M(�) while
M+(�) stands for the subset of M(�) consisting of all functions which are non-negative
a.e. on �. When � is an interval (a, b) ⊆ R, we denote these sets by M(a, b) and M+(a, b),

respectively. By M+(a, b; ↓)we mean the subsets of M+(a, b) containing all non-increasing
functions on the interval (a, b). The symbol W(a, b) stands for the class of weight functions
on (a, b) ⊆ R consisting of all measurable functions which are positive and finite a.e.
on (a, b). The non-increasing rearrangement of f ∈ M(�) is the function f ∗ defined
by f ∗(t) := inf {λ ≥ 0 : |{x ∈ � : | f (x)|>λ}|n ≤ t} for all t ≥ 0. By f ∗∗ we denote the
maximal function of f ∗ given by f ∗∗(t) := t−1

∫ t
0 f ∗(τ ) dτ , t > 0.

Given a rearrangement-invariant Banach function space (r. i. BFS) X , the associate space
is denoted by X ′. For general facts about rearrangement-invariant Banach function spaces
we refer to [5].

Let X and Y be two (quasi-)Banach spaces. We say that X coincides with Y (and write
X = Y ) if X and Y are equal in the algebraic and topological sense (their (quasi-)norms
are equivalent). The symbol X ↪→ Y or X ↪→↪→ Y means that X ⊂ Y and the natural
embedding of X in Y is continuous or compact, respectively.

By c, C , c1, C1, c2, C2, etc. we denote positive constants independent of appropriate
quantities. For two non-negative expressions (i.e. functions or functionals) A, B, the symbol
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A � B (or A � B) means that A ≤ c B (or c A ≥ B). If A � B and A � B, we write
A ≈ B and say that A and B are equivalent. Throughout the paper we use the abbreviation
LHS(∗) (RHS(∗)) for the left- (right-) hand side of the relation (∗). We adopt the convention
that a/+∞ = 0 and a/0 = +∞ for all a > 0. If p ∈ (0,+∞], the conjugate number p′
is given by 1/p + 1/p′ = 1. Note that p′ is negative, if p ∈ (0, 1). In the whole the paper
‖.‖p;(c,d), p ∈ (0,+∞], stands for the usual L p-(quasi-)norm on the interval (c, d) ⊆ R.

For ρ ∈ (0,+∞) and x ∈ R
n , B(x, ρ) = Bn(x, ρ) stands for the open ball in R

n of
radius ρ and centre x . By βn we denote the volume of the unit ball in R

n .
Following [24], we say that a positive and Lebesgue-measurable function b is slowly

varying on (0,+∞), and write b ∈ SV (0,+∞), if, for each ε > 0, tεb(t) is equivalent
to a non-decreasing function on (0,+∞) and t−εb(t) is equivalent to a non-increasing
function on (0,+∞). The family of all slowly varying functions includes not only powers
of iterated logarithms and the broken logarithmic functions of [20], but also such functions
as t → exp

(|log t |a)
, a ∈ (0, 1). (The last mentioned function has the interesting property

that it tends to infinity more quickly than any positive power of the logarithmic function.)
We shall need the following properties of slowly varying functions. We refer to

[24, Proposition 2.2] for properties (i)–(iii); property (iv) is a simple consequence of the
definition.

Lemma 1 Let b, b1 and b2 belong to SV (0,+∞). Then

(i) b1b2 ∈ SV (0,+∞) and br ∈ SV (0,+∞) for each r ∈ R;
(ii) given positive numbers ε and κ, there are positive constants cε and Cε such that

cε min{κ−ε, κε}b(t) ≤ b(κt) ≤ Cε max{κ−ε, κε}b(t) for all t > 0;
(iii) if α > 0 and q ∈ (0,∞], then for all t > 0,∥∥τα−1/q b(τ )

∥∥
q,(0,t) ≈ tαb(t) and

∥∥τ−α−1/q b(τ )
∥∥

q,(t,∞)
≈ t−αb(t);

(iv) if α > 0, then

tαb(t) → 0 as t → 0+.

We can see from Lemma 1 (iii) that any b ∈ SV (0,+∞) is equivalent to some b̃ ∈
SV (0,+∞) which is continuous on (0,+∞). Consequently, without loss of generality, we
shall assume that all slowly varying functions in question are continuous on (0,+∞).

More properties and examples of slowly varying functions can be found in [6,17,24,27,32]
and [40, Chapter V, p. 186].

We shall need the following weighted Hardy inequalities, for which we refer to [34,
Theorems 5.9, 5.10 and 9.3]. The case r ∈ (0, 1) and q = +∞ can be proved as the case
1 ≤ r < +∞ and q = +∞ in [28, Theorem 1.3.1/2].

Lemma 2 Let q ∈ [1,+∞], r ∈ (0,+∞], a ∈ (0,+∞] and v,w ∈ W(0, a).

(i) If 1 ≤ q ≤ r ≤ +∞, then∥∥∥∥∥∥w(t)

t∫

0

h(s) ds

∥∥∥∥∥∥
r;(0,a)

≤ C ‖v(t) h(t)‖q;(0,a) for all h ∈ M+(0, a) (7)

if and only if

A := sup
x∈(0,a)

‖w(t)‖r;(x,a)

∥∥(v(t))−1
∥∥

q ′;(0,x)
< +∞. (8)
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Moreover, the best possible constant C in (7) satisfies the estimate C ≈ A and the
constants involved in this equivalence are independent of a.

(ii) If 0 < r < q ≤ +∞ and q > 1, then (7) holds if and only if

B :=
⎛
⎝

a∫

0

[
‖w(t)‖r;(x,a)

∥∥(v(t))−1
∥∥q ′/r ′

q ′;(0,x)

]u
v−q ′

(x) dx

⎞
⎠

1/u

< +∞, (9)

where 1
u = 1

r − 1
q . Moreover, the best possible constant C in (7) satisfies C ≈ B and

the constants involved in this equivalence are independent of a.

We shall also need the following weighted Hardy inequality, where weights involve slowly
varying functions. Such an inequality is a consequence of [34, Theorem 6.2.].

Lemma 3 Let 1 ≤ q ≤ r ≤ +∞, a ∈ (0,+∞], ν ∈ R\{0} and let b ∈ SV (0,+∞). Then∥∥∥∥∥∥tν−1/r b(t)

a∫

t

g(s) ds

∥∥∥∥∥∥
r;(0,a)

≤ C
∥∥∥tν+1/q ′

b(t)g(t)
∥∥∥

q;(0,a)
for all g ∈ M+(0, a) (10)

if and only if ν > 0. The positive constant C in (10) can be chosen independent of a.

Let p, q ∈ (0,+∞], b ∈ SV (0,+∞) and let � be a measurable subset of R
n . The

Lorentz–Karamata (LK) space L p,q;b(�) is defined to be the set of all functions f ∈ M(�)

such that

‖ f ‖p,q;b;� := ‖t1/p−1/q b(t) f ∗(t)‖q;(0,+∞) < +∞. (11)

If � = R
n , we simply write ‖ · ‖p,q;b instead of ‖ · ‖p,q;b;Rn .

When 0 < p < +∞, the Lorentz–Karamata space L p,q;b(�) contains the characteristic
function of every measurable subset of � with finite measure and hence, by linearity, every
µn-simple function. When p = +∞, the Lorentz–Karamata space L p,q;b(�) is different
from the trivial space if and only if

‖ t1/p−1/qb(t) ‖q;(0,1) < +∞.

Particular choices of b give well-known spaces. If m ∈ N, α = (α1, . . . , αm) ∈ R
m and

b(t) = �α(t) :=
m∏

i=1

lαi
i (t) for all t > 0

(where l1(t) = 1 + |log t | , li (t) = l1(li−1(t)) if i > 1), then the LK-space L p,q;b(�) is
the generalized Lorentz–Zygmund space L p,q,α introduced in [13] and endowed with the
(quasi-)norm ‖ f ‖p,q;α;�, which in turn becomes the Lorentz–Zygmund space L p,q(log L)α1

of Bennett and Rudnick [4] when m = 1. If α = (0, . . . , 0), we obtain the Lorentz space
L p,q(�) endowed with the (quasi-)norm ‖.‖p,q;�, which is just the Lebesgue space L p(�)

equipped with the (quasi-) norm ‖.‖p;� when p = q; if p = q and m = 1, we obtain the
Zygmund space L p(log L)α1(�) endowed with the (quasi-)norm ‖.‖p;α1;�.

The Riesz kernel Iσ , 0 < σ < n, is defined by

Iσ (x) = |x |σ−n, x ∈ R
n .

It is easy to show that

(Iσ )∗(t) =
(

t

βn

) σ−n
n

, t > 0.

123



Optimal embeddings and compact embeddings of Bessel-potential-type spaces

The Bessel kernel gσ , σ > 0, is defined as that function on R
n whose Fourier transform

is ĝσ (ξ) = (2π)−n/2(1 + |ξ |2)−σ/2, ξ ∈ R
n, where the Fourier transform f̂ of a function

f is given by f̂ (ξ) = (2π)−n/2
∫

Rn e−iξ ·x f (x) dx .

Let us summarize the basic properties of the Bessel kernel gσ :

gσ is a positive, integrable function which is analytic except at the origin; (12)

gσ is radially decreasing; (13)

gσ (x) ≤ c1|x |σ−ne−c2|x | for 0 < σ < n and all x ∈ R
n\{0}; (14)

gσ (x) ≈ |x |σ−n as |x | → 0 if 0 < σ < n; (15)∣∣∣∣ ∂

∂x j
gσ (x)

∣∣∣∣ ≤ c|x |σ−n−1 for 0 < σ ≤ n + 1, j ∈ {1, . . . , n} and all x ∈ R
n\{0}; (16)

g∗
σ (t) � t (σ−n)/ne−ct1/n

for 0 < σ < n and all t > 0. (17)

Property (13) follows from equation (26) in [36, Chap. V]. For the proof of (12), (14)–(16)
see [3], for (17) see [12].

Let σ > 0 and let X = X (Rn) = X (Rn, µn) be a r. i. Banach function space endowed
with the norm ‖ · ‖X . The Bessel potential space Hσ X (Rn) is defined by

Hσ X (Rn) := {
u : u = f ∗ gσ , f ∈ X (Rn)

}
(18)

and is equipped with the norm

‖u‖Hσ X := ‖ f ‖X . (19)

Note that, given f ∈ X , the convolution u = f ∗ gσ is well defined and finite µn-
a.e. on R

n since the measure space (Rn, µn) is resonant and so (cf. [5, Theorem II.6.6])
X ↪→ L1(Rn) + L∞(Rn).

If p ∈ (1,+∞], q ∈ [1,+∞] and b ∈ SV (0,+∞), then the space L p,q;b(Rn) coincides
with a r. i. Banach function space X (Rn) (the (quasi-)norm (11) is equivalent to the norm
‖t1/p−1/q b(t) f ∗∗(t)‖q;(0,+∞), which follows from the estimate f ∗ ≤ f ∗∗ and Lemma 2(i)
with r = q , w(t) = t1/p−1/q−1b(t), v(t) = t1/p−1/qb(t) and a = +∞). Consequently, if
σ > 0, p ∈ (1,+∞], q ∈ [1,+∞] and b ∈ SV (0,+∞), Hσ L p,q;b(Rn) := Hσ X (Rn)

is the usual Bessel potential space modelled upon the Lorentz–Karamata space L p,q;b(Rn),
which is equipped with the (quasi-)norm

‖u‖σ ;p,q;b := ‖ f ‖p,q;b. (20)

When m ∈ N, α = (α1, . . . , αm) ∈ R
m and b = �α , we obtain the logarithmic Bessel

potential space Hσ L p,q;α(Rn), endowed with the (quasi-)norm ‖u‖σ ;p,q;b and considered
in [13]. Note that if α = (0, . . . , 0), Hσ L p,p;α(Rn) is simply the (fractional) Sobolev space
Hσ,p(Rn) of order σ .

When k ∈ N, p, q ∈ (1,+∞) and b ∈ SV (0,+∞), then

Hk L p,q;b(Rn) = {u : Dαu ∈ L p,q;b(Rn) if |α| ≤ k},
and

‖u‖k;p,q;b ≈
∑
|α|≤k

‖Dαu‖p,q;b for all u ∈ Hk L p,q;b(Rn)

according to [22, Lemma 4.5] and [33, Theorem 5.3].
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Let � be a domain in R
n . The space of all scalar-valued (real or complex), bounded and

continuous functions on � is denoted by CB(�) and it is equipped with the L∞(�)-norm.
For each h ∈ R

n , let �h = {x ∈ � : x + h ∈ �} and let �h be the difference operator given
on scalar functions f on � by (�h f )(x) = f (x + h) − f (x) for all x ∈ �h . The modulus
of smoothness of a function f in CB(�) is defined by

ω( f, t) := sup
|h|≤t

‖�h f |L∞(�h)‖ for all t ≥ 0.

If

ω̃( f, t) := ω( f, t)/t for all t > 0,

then ω̃( f, .) is equivalent to a non-increasing function on (0,+∞). The function f ∈ CB(�)

is uniformly continuous on � if and only if ω( f, t) → ω( f, 0) = 0 as t → 0+. We refer to
[5, pp. 331–333] and to [9, pp. 40–50] for more details.

Let � be a domain in R
n . By C(�) we mean the subspace of CB(�) of all bounded and

uniformly continuous functions on �. A subset S of C(�) is equicontinuous if and only if

sup
f ∈S

ω( f, t) → 0 as t → 0+.

Let r ∈ (0,+∞] and let Lr be the class of all continuous functions λ : (0, 1] → (0,+∞)

which are increasing on some interval (0, δ), with δ = δλ ∈ (0, 1], and satisfy

lim
t→0+

λ(t) = 0

and ∥∥∥∥t−1/r t

λ(t)

∥∥∥∥
r;(0,δ)

< +∞. (21)

When r = +∞, we simply write L instead of Lr .
If λ ∈ Lr , one can easy see that λ is equivalent to a continuous increasing function on the

interval (0,1]. Consequently, without loss of generality, we shall assume that all elements of
Lr are continuous increasing functions on the interval (0,1].

Let r ∈ (0,+∞], λ ∈ Lr and let � be a domain in R
n . The generalized Hölder space

�
λ(·)∞,r (�) consists of all those functions f ∈ CB(�) for which the quasi-norm

‖ f |�λ(·)∞,r (�)‖ := ‖ f |L∞(�)‖ +
∥∥∥∥t−1/r ω( f, t)

λ(t)

∥∥∥∥
r;(0,1)

is finite. Standard arguments show that the space �
λ(·)∞,r (�) is complete (cf. [30, Theo-

rem 3.1.4]). If (21) does not hold, then the space �
λ(·)∞,r (�) contains only constant functions.

The space �
λ(.)∞,∞(�) coincides (cf. [31, Proposition 3.5]) with the space C0,λ(.)(�) defined

by

‖ f |C0,λ(·)(�)‖ := sup
x∈�

| f (x)| + sup
x,y∈�

0<|x−y|≤1

| f (x) − f (y)|
λ(|x − y|) < +∞.

If λ(t) = t , t ∈ (0, 1], and � = R
n , then �

λ(·)∞,∞(�) coincides with the space Lip(Rn) of

the Lipschitz functions. If λ(t) ≡ tα, α ∈ (0, 1], then the space �
λ(·)∞,r (�) coincides with the

space C0,α,r (�) introduced in [1].
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The next lemma shows that we could define the generalized Hölder space �
λ(·)∞,r (�) as

a subspace of C(�) rather than a subspace of CB(�).

Lemma 4 Let r ∈ (0,+∞], λ ∈ Lr and let � be a domain in R
n. Then

�λ(·)∞,r (�) ↪→ C(�).

Proof Let f ∈ �
λ(·)∞,r (�). Then there is M ∈ (0,+∞) such that∥∥∥∥t−1/r ω( f, t)

λ(t)

∥∥∥∥
r;(0,1)

< M.

Since also, for all t ∈ (0, 1),∥∥∥∥τ−1/r ω( f, τ )

λ(τ)

∥∥∥∥
r;(0,t)

=
∥∥∥∥τ 1−1/r ω̃( f, τ )

λ(τ)

∥∥∥∥
r;(0,t)

�
ω̃( f, t)

λ(t)

∥∥τ 1−1/r
∥∥

r;(0,t) ≈ ω( f, t)

λ(t)
,

we obtain,

ω( f, t) � λ(t) for all t ∈ (0, 1).

Moreover, the fact that λ(t) → 0 as t → 0+ yields ω( f, t) → 0 as t → 0+. Consequently,
f is uniformly continuous on �. ��

Let � be a measurable subset of R
n . We denote by B(�) the set of all scalar-valued

functions (real or complex) which are bounded on � and we equip this set with the norm

‖ f ‖B(�) := sup{| f (x)| : x ∈ �}.
In the paper we investigate embeddings of the form

Hσ X (Rn) ↪→ Y (�), (22)

where σ > 0, X = X (Rn) is a r. i. Banach function space, � is a domain in R
n and Y (�) is

a convenient Banach space of functions defined on �. Note that embedding (22) means that
the mapping u �→ u|� from Hσ X (Rn) into Y (�) is continuous. Note also that in the whole
paper we use the symbol u both for the function u and its restriction to �.

3 Auxiliary results

First, we need the following assertion.

Lemma 5 Let X = X (Rn) be a r. i. BFS. Suppose that f ∈ X and put f (x) := f ∗(βn
|x |n
2n ),

x ∈ R
n. Then f ∈ X.

Proof Let X = X((0,+∞), µ1) be the representation space of X (cf. [5, Chap. 2, Theo-
rem 4.10]; by [5, p. 147], X is given uniquely). Let f ∈ X . Then, by Proposition 5.11 of
[5, Chap. 3], the function h(t) := f ∗( t

2n ), t ∈ (0,+∞), satisfies h ∈ X . One can also easily
verify that ( f )∗ = h. Consequently, ‖ f ‖X = ‖h‖X < +∞ and the result follows. ��
Remark 1 There is another proof of Lemma 5. Indeed, using the hyperplanes xi = 0,

i = 1, . . . , n, we decompose the space R
n into 2n sets Qk, k = 1, . . . , 2n , with disjoint

interiors such that

R
n =

2n⋃
k=1

Qk .
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Let fk(x) = f ∗(βn
|x |n
2n )χQk (x), x ∈ R

n . Then, ( fk)
∗(t) = f ∗(t) for all t > 0. Since f ∈ X ,

we have fk ∈ X for each k = 1, . . . , 2n . Hence f = ∑2n

k=1 fk ∈ X .

The next lemma is related to [13, Lemma 4.5].

Lemma 6 Let X = X (Rn) be a r. i. BFS and let � be a domain in R
n. Suppose that σ > 0

and let gσ be the Bessel kernel. Then

Hσ X (Rn) ↪→ B(�) (23)

if and only if

‖gσ ‖X ′ < +∞. (24)

Proof Suppose that ‖gσ ‖X ′ < +∞. Let u = f ∗ gσ , where f ∈ X . By Hölder’s inequality
(cf. [5, Chap. 2, Corollary 4.5]),

|u(x)| ≤
∫

Rn

| f (y)| gσ (x − y) dy ≤ ‖ f ‖X ‖gσ ‖X ′ for all x ∈ �. (25)

Therefore,

‖u‖B(�) ≤ ‖gσ ‖X ′ ‖ f ‖X ,

which, together with (19), gives (23).
Suppose now that (23) holds. Take f ∈ X and x0 ∈ �. Put f̃ (x) = f (x − x0), x ∈ R

n ,
where f (x) = f ∗(βn

|x |n
2n ), x ∈ R

n . Since ( f̃ )∗ = ( f )∗ and f ∈ X by Lemma 5, we have

f̃ ∈ X . Hence, u := f̃ ∗ gσ ∈ Hσ X . Moreover, since |x − y − x0| ≤ |x − x0| + |y| ≤ 2|y|
if |x − x0| ≤ |y| and since f , gσ are radially decreasing, we obtain

|u(x)| =
∫

Rn

f̃ (x − y) gσ (y) dy

=
∫

Rn

f (x − y − x0) gσ (y) dy

≥
∫

|y|≥|x−x0|
f (2y) gσ (y) dy

=
∫

|y|≥|x−x0|
f ∗(βn |y|n) g∗

σ (βn |y|n) dy

=
+∞∫

|x−x0|

∫

{|y|=ρ}
f ∗(βn |y|n) g∗

σ (βn |y|n) dϑ dρ

=
+∞∫

|x−x0|
f ∗(βnρn) g∗

σ (βnρn) n βn ρn−1 dρ

=
+∞∫

βn |x−x0|n
f ∗(s) g∗

σ (s) ds, x ∈ �.
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Together with the fact u ∈ B(�) (cf. (23)), this yields

+ ∞ > ‖u‖B(�) ≥
+∞∫

0

f ∗(s) g∗
σ (s) ds. (26)

Since inequality (26) holds for any f ∈ X , gσ belongs to X ′, which gives (24). ��

Remark 2 Let σ ∈ (0, 1) and let X = X (Rn) be a r. i. BFS such that ‖gσ ‖X ′ < +∞. Then

1∫

0

s
σ
n −1 f ∗(s) ds < +∞ for all f ∈ X (27)

(which implies that a function f ∈ X (Rn) belongs to the Lorentz space L
n
σ

,1(B) for any ball
B ⊂ R

n). Indeed, we deduce from (15) and (12) that g∗
σ (s) ≈ s

σ
n −1 for all s ∈ (0, 1) and so

the result follows from the Hölder inequality.

4 Key estimates

In the next theorem we present sharp estimates of modulus of smoothness of the convolution
of a function f from a r. i. BFS X (Rn) with the Bessel potential kernel gσ , 0 < σ < 1.
Such estimates are essential in what follows.

Theorem 1 Let σ ∈ (0, 1) and let X = X (Rn) be a r. i. BFS such that ‖gσ ‖X ′ < +∞. Then
f ∗ gσ ∈ CB(Rn) for all f ∈ X and

ω( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X. (28)

Moreover, estimate (28) is sharp in the sense that

ω( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (29)

where

f (x) := f ∗(βn |x |n)χ{y∈Rn : y1>0}∩B(0,1)(x), x = (x1, · · · , xn) ∈ R
n . (30)

(Note that f
∗
(t) = f ∗(2t) for all t ∈ (0, βn/2)).

Proof (i) Let h ∈ R
n , 0 < |h| < 1, and let x ∈ R

n . Put

B1 := B

(
x,

|h|
2

)
, B2 := B

(
x + h,

|h|
2

)
, B3 := B(x, 2|h|)\(B1 ∪ B2)

and

B4 := Bc(x, 2|h|) := R
n\B(x, 2|h|).
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Take f ∈ X (Rn) and put u = f ∗ gσ . Then, by Lemma 6 with � = R
n , u ∈ B(Rn), which

implies that (�hu)(x) is defined for all x ∈ R
n . Since

(�hu)(x) =
∫

Rn

f (y) (�h gσ )(x − y) dy for all x ∈ R
n,

we have

|(�hu)(x)| ≤ N1 + N2 + N3 + N4, (31)

where

N1 :=
∫

B1

| f (y)| |(�h gσ )(x − y)| dy,

N2 :=
∫

B2

| f (y)| |(�h gσ )(x − y)| dy,

N3 :=
∫

B3

| f (y)| |(�h gσ )(x − y)| dy,

N4 :=
∫

B4

| f (y)| |(�h gσ )(x − y)| dy.

If y ∈ B1, then |h| > 2|x − y| and

|x + h − y| ≥ |h| − |x − y| > |x − y|.
This and (13) yield, for all y ∈ B1\{x},

|(�h gσ )(x − y)| ≤ |gσ (x + h − y)| + |gσ (x − y)| � gσ (x − y).

Consequently,

N1 �
∫

B1

| f (y)| gσ (x − y) dy. (32)

Hardy’s lemma, cf. [5, Chapter 2, Theorem 2.2], and (17) give

N1 �
βn(|h|/2)n∫

0

f ∗(s) s
σ−n

n ds ≈
|h|n∫

0

f ∗(s) s
σ−n

n ds. (33)

Analogously, we arrive at

N2 �
∫

B2

| f (y)| gσ (x − y + h) dy (34)

and

N2 �
|h|n∫

0

f ∗(s) s
σ−n

n ds. (35)
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If y ∈ B3, then 2|h| > |x − y| ≥ |h|
2 and |x + h − y| ≥ |h|

2 . Hence, |x + h − y| ≤
|h| + |x − y| < 3|h|. Thus, by (12) and (15),

gσ (x − y) ≈ |x − y|σ−n ≈ |h|σ−n for all y ∈ B3

and

gσ (x + h − y) ≈ |x + h − y|σ−n ≈ |h|σ−n for all y ∈ B3.

This implies that

|(�h gσ )(x − y)| ≤ |gσ (x + h − y)| + |gσ (x − y)| ≈ |h|σ−n for all y ∈ B3

and so

N3 � |h|σ−n
∫

B3

| f (y)| dy. (36)

Applying Hardy’s lemma, we arrive at

N3 � |h|σ−n

βn(2|h|)n∫

0

f ∗(s) ds ≈ |h|σ−n

|h|n∫

0

f ∗(s) ds �
|h|n∫

0

f ∗(s) s
σ−n

n ds. (37)

To derive an estimate in the exterior of the ball B(x, 2|h|), we use some ideas from the
proof of [15, Lemma 2.5, p. 247]. The inequality

|�h gσ (x−y)| ≤ |h|
n∑

j=1

1∫

0

∣∣∣∣ ∂

∂x j
gσ (x−y+τh)

∣∣∣∣ dτ for all x, y ∈ R
n, x �= y, (38)

together with the obvious estimate

1

2
|x − y| ≤ |x − y + τh| ≤ 3

2
|x − y| if τ ∈ [0, 1] and y ∈ B4 = Bc(x, 2|h|)

and (16), yields

|�h gσ (x − y)χBc(x,2|h|)(y)| � |h||x − y|σ−n−1 χBc(x,2|h|)(y), y ∈ R
n\{x}.

Thus

N4 � |h|
∫

Rn

| f (y)| |x − y|σ−n−1 χBc(x,|h|)(y) dy. (39)

Putting

F(y) = |x − y|σ−n−1 χBc(x,|h|)(y), y ∈ R
n\{x},

and taking into account that σ − n − 1 < 0, we can easily see that

F∗(t) =
(

|h|n + t

βn

)(σ−n−1)/n

for all t > 0.

This and Hardy’s lemma imply that

N4 � |h|
+∞∫

0

f ∗(s)
(

|h|n + s

βn

)(σ−n−1)/n

ds.

123



A. Gogatishvili et al.

On the other hand, because σ < 1, we have

|h|
+∞∫

0

f ∗(s)(
|h|n + s

βn

)(n−σ+1)/n
ds

= |h|
|h|n∫

0

f ∗(s)(
|h|n + s

βn

)(n−σ+1)/n
ds

+|h|
+∞∫

|h|n

f ∗(s)(
|h|n + s

βn

)(n−σ+1)/n
ds

� |h|σ−n

|h|n∫

0

f ∗(s) ds + |h|
+∞∫

|h|n
f ∗(s) s(σ−n−1)/n ds

�
|h|n∫

0

f ∗(s) s
σ−n

n ds + |h| f ∗(|h|n)

+∞∫

|h|n
s(σ−n−1)/n ds

≈
|h|n∫

0

f ∗(s) s
σ−n

n ds + |h| f ∗(|h|n)
(|h|n)(σ−1)/n

≈
|h|n∫

0

f ∗(s) s
σ−n

n ds + f ∗(|h|n)
(|h|n)σ/n

�
|h|n∫

0

f ∗(s) s
σ−n

n ds +
|h|n∫

|h|n
2

f ∗(s) s
σ−n

n ds

≈
|h|n∫

0

f ∗(s) s
σ−n

n ds.

The last two estimates show that

N4 �
|h|n∫

0

f ∗(s) s
σ−n

n ds. (40)

Therefore, by (31), (33), (35), (37) and (40), we obtain

|(�hu)(x)| �
|h|n∫

0

f ∗(s) s
σ−n

n ds, h ∈ R
n, 0 < |h| < 1, for all x ∈ R

n . (41)

Together with (27), this implies that u is continuous on R
n . Thus (cf. Lemma 6 with � = R

n),
the function u belongs to CB(Rn) and (28) follows from (41).
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(ii) Now we are going to prove (29). Let u = f ∗ gσ , where f ∈ X . Take t ∈ (0, 1) and
put t = (−t, 0, . . . , 0) ∈ R

n . Then

ω(u, t) ≥ |u(t) − u(0)|. (42)

If y ∈ B(0, 1) and y1 > 0, then

|t − y| = ((−t − y1)
2 + (−y2)

2 + · · · + (−yn)2)1/2

≥ ((−y1)
2 + (−y2)

2 + · · · + (−yn)2)1/2 = | − y| = |y|.

Thus, by (13),

0 ≥ gσ (t − y) − gσ (−y) = gσ (t − y) − gσ (y).

Consequently,

|u(t) − u(0)| =
∫

{y∈Rn : y1>0}∩B(0,1)

f ∗(βn |y|n)
(
gσ (y) − gσ (t − y)

)
dy

≥
∫

{y∈Rn : y1>0}∩B(0,kt)

f ∗(βn |y|n)
(
gσ (y) − gσ (t − y)

)
dy (43)

for any k ∈ (0, 1). If |y| ≤ kt , then

|t − y| ≥ |t | − |y| = t − |y| ≥ t − kt = (1 − k)t ≥ 1 − k

k
|y|,

that is,

|y|k ≤ |t − y|, (44)

where k := (1 − k)/k. Observe that k → +∞ as k → 0+.
By (12) and (15),

c1|x |σ−n ≤ gσ (x) ≤ c2|x |σ−n for all x ∈ B(0, 2)\{0}. (45)

Together with (44), this gives

gσ (t − y) ≤ c2|t − y|σ−n ≤ c2
|y|σ−n

k
n−σ

≤ c2

c1k
n−σ

gσ (y) for all y ∈ B(0, kt)\{0}.

Choose k ∈ (0, 1) small so that c2

c1k
n−σ ≤ 1

2 . Then,

gσ (t − y) ≤ 1

2
gσ (y) for all y ∈ B(0, kt)\{0}. (46)
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Now, (42), (43), (46) and (45) yield

ω(u, t) �
∫

{y∈Rn : y1>0}∩B(0,kt)

f ∗(βn |y|n)gσ (y) dy

≈
∫

{y∈Rn : y1>0}∩B(0,kt)

f ∗(βn |y|n)|y|σ−n dy

≈
(kt)n∫

0

f ∗(s)s
σ−n

n ds

≈
tn∫

0

f ∗(s)s
σ−n

n ds

and the proof is complete. ��
The following corollary is a consequence of Theorem 1 and Lemma 6.

Corollary 1 Let σ ∈ (0, 1) and let X = X (Rn) be a r. i. BFS. Assume that � is a domain in
R

n. Then Hσ X (Rn) ↪→ C(�) if and only if ‖gσ ‖X ′ < +∞.

Remark 3 In Sect. 7 we shall investigate the compactness of the embedding

Hσ X (Rn) ↪→ �
µ(·)∞,r (�), (47)

where � will be a bounded domain in R
n . Note that, by (47), the restriction to � of a

function u ∈ Hσ X (Rn) belongs to the space �
µ(·)∞,r (�). Note also that u = f ∗ gσ for

some f ∈ X (Rn). Under the assumptions of Theorem 1, u ∈ CB(Rn), which implies that
u ∈ CB(�). To calculate ‖u|�µ(·)∞,r (�)‖, we need the modulus of continuity of the function
u. Clearly, ω(u, t) = ω�(u, t), t ≥ 0, that is, the modulus of continuity depends on a given
domain �. Recall also that the modulus of continuity ω( f ∗ gσ , ·) involved in Theorem 1 is
the modulus of continuity with respect to the whole R

n , that is, ωRn ( f ∗ gσ , ·).
To characterize the compactness of the embedding (47), we shall need analogues of esti-

mates (28) and (29) with ω replaced by ω�. Since

ω�( f ∗ gσ , t) ≤ ωRn ( f ∗ gσ , t), t ≥ 0,

estimate (28) implies that

ω�( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X. (48)

To get an analogue of (29), take x0 = (x01, . . . , x0n) ∈ � and r ∈ (0, 1] so that B(x0, r) ⊂ �.
Then

ω�( f ∗ gσ , t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1) and every f ∈ X, (49)

where

f (x) := f ∗(βn |x − x0|n)χ{y∈Rn : y1>x01}∩B(x0,r)(x), x = (x1, . . . , xn) ∈ R
n . (50)
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Indeed, take t ∈ (0, 1) and put t = (−tr, 0, . . . , 0) ∈ R
n . Then, instead of (42), we now

have

ω�(u, t) ≥ |u(t + x0) − u(x0)| (51)

and the same arguments as those used in part (ii) of the proof of Theorem 1 yield (49).
In what follows we shall omit the subscript � at the modulus of continuity since it will

be always clear from the context which modulus of continuity we have in mind.

5 A characterization of the continuous embedding

Now, we are able to characterize the continuous embedding of the space Hσ X (Rn), with
σ ∈ (0, 1) and a r. i. BFS X = X (Rn), into the generalized Hölder space �

µ(·)∞,r (R
n).

Assuming that gσ ∈ X ′ in the next theorem, we reduce this problem to inequality (53) below,
which involves the Hardy-type operator (6).

Theorem 2 Let σ ∈ (0, 1) and let X = X (Rn) = X (Rn, µn) be a r. i. BFS such that
‖gσ ‖X ′ < +∞. Assume that r ∈ (0,+∞] and µ ∈ Lr . Then

Hσ X (Rn) ↪→ �
µ(·)∞,r (R

n) (52)

if and only if
∥∥∥∥∥∥t−

1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,1)

� ‖ f ‖X for all f ∈ X. (53)

Proof Sufficiency. Assume that (53) holds. Let f ∈ X and u = f ∗gσ . Then, by Theorem 1,

ω(u, t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1),

which implies that

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,1) � ‖t−

1
r (µ(t))−1

tn∫

0

s
σ
n −1 f ∗(s) ds‖r;(0,1).

This, together with (53), yields

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,1) � ‖ f ‖X = ‖u‖Hσ X .

Thus, embedding (52) is a consequence of the last estimate and Corollary 1 (with � = R
n).

Necessity. Suppose that (52) holds. Then, for all h ∈ X and u = h ∗ gσ ,

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,1) � ‖u‖Hσ X = ‖h‖X . (54)

Let f ∈ X . Since X is a r. i. Banach function space, the function f given by (30) also belongs
to X and ( f )∗ ≤ f ∗, which implies that

‖ f ‖X ≤ ‖ f ‖X . (55)
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Putting u = f ∗ gσ , we have from Theorem 1 that

ω(u, t) �
tn∫

0

s
σ
n −1 f ∗(s) ds for all t ∈ (0, 1).

Together with (54) and (55), this yields

‖t−
1
r (µ(t))−1

tn∫

0

s
σ
n −1 f ∗(s) ds‖r;(0,1) � ‖ f ‖X ≤ ‖ f ‖X

and (53) is verified. ��
Using Theorem 2 and Lemma 6 with � = R

n , we arrive at the following corollary.

Corollary 2 Let σ ∈ (0, 1) and let X = X (Rn) be a r. i. BFS. Assume that r ∈ (0,+∞]
and µ ∈ Lr . Then embedding (52) holds if and only if ‖gσ ‖X ′ < +∞ and (53) is satisfied.

6 Applications of the embedding result

We are interested in embeddings in the case when the space X is a Lorentz–Karamata space
L p,q;b(Rn) with p ∈ (1,+∞), q ∈ [1,+∞] and b ∈ SV (0,+∞). Then X coincides with
a r. i. Banach function space and

X ′ = L p′,q ′;1/b(R
n) (56)

(see [32, Theorem 3.1] and replace γb by b and γ1/b by 1/b there).
To verify the assumption ‖gσ ‖X ′ < +∞ in Theorem 2, we shall use the next lemma.

Lemma 7 Let σ ∈ (0, n), p ∈ (1,+∞), q ∈ [1,+∞] and b ∈ SV (0,+∞). If X =
L p,q;b(Rn), then

gσ ∈ X ′

if and only if either

p >
n

σ
(57)

or

p = n

σ
and ‖t

− 1
q′ (b(t))−1‖q ′;(0,1) < +∞. (58)

Proof By (56)

‖gσ ‖X ′ ≈ ‖t
1
p′ − 1

q′ (b(t))−1g∗
σ (t)‖q ′;(0,1) + ‖t

1
p′ − 1

q′ (b(t))−1g∗
σ (t)‖q ′;(1,+∞)

=: N1 + N2. (59)

Since σ ∈ (0, n), by (17),

g∗
σ (t) � t (σ−n)/ne−ct1/n

for all t > 0.

Due to the exponential factor involved in this estimate, we obtain N2 < +∞. Thus, by (59),

‖gσ ‖X ′ < +∞ if and only if N1 < +∞.
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Using (12) and (15), we arrive at

g∗
σ (t) ≈ t (σ−n)/n for all t ∈ (0, 1).

This implies that N1 < +∞ if and only if either

1

p′ + σ

n
− 1 = σ

n
− 1

p
> 0

or

1

p′ + σ

n
− 1 = σ

n
− 1

p
= 0 and ‖t

− 1
q′ (b(t))−1‖q ′;(0,1) < +∞.

��

To characterize (53) when X is the Lorentz–Karamata space L p,q;b(Rn), we shall use the
following lemma (with ξ = 1).

Lemma 8 Let σ ∈ (0, 1), p ∈ [ n
σ
,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞), r ∈ (0,+∞],

µ ∈ Lr and let ξ ∈ (0, 1]. Then
∥∥∥∥∥∥t−

1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ1/n)

≤ C1 ‖ f ‖p,q;b (60)

for all f ∈ L p,q;b(Rn) if and only if
∥∥∥∥∥∥t−

1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

≤ C2 ‖t
1
p + 1

q′ − σ
n b(t)h(t)‖q;(0,ξ) (61)

for all h ∈ M+(0, ξ). Moreover, the best possible constants C1 = C1(ξ) and C2 = C2(ξ) in
(60) and (61) are equivalent and the constants involved in this equivalence are independent
of ξ .

Proof (i) Assume that (60) holds. Then the inequality
∥∥∥∥∥∥t−

1
r (µ(t))−1

tn∫

0

τ
σ
n −1g(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ1/n)

� ‖t
1
p − 1

q b(t)g(t)‖q;(0,ξ) (62)

holds for all g ∈ M+(0, ξ ; ↓). This implies that the inequality
∥∥∥∥∥∥t−

1
r (µ(t))−1

tn∫

0

τ
σ
n −1

⎛
⎝

ξ∫

τ

h(s) s− σ
n ds

⎞
⎠ dτ

∥∥∥∥∥∥
r;(0,ξ1/n)

�

∥∥∥∥∥∥t
1
p − 1

q b(t)

ξ∫

τ

h(s) s− σ
n ds

∥∥∥∥∥∥
q;(0,ξ)

(63)

is satisfied for all h ∈ M+(0, ξ).
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By Fubini’s theorem,

tn∫

0

τ
σ
n −1

⎛
⎝

ξ∫

τ

h(s) s− σ
n ds

⎞
⎠ dτ =

tn∫

0

h(s) s− σ
n

⎛
⎝

s∫

0

τ
σ
n −1 dτ

⎞
⎠ ds

+
ξ∫

tn

h(s) s− σ
n

⎛
⎝

tn∫

0

τ
σ
n −1 dτ

⎞
⎠ ds

≈
tn∫

0

h(s) ds + tσ
ξ∫

tn

h(s) s− σ
n ds

≥
tn∫

0

h(s) ds for all t ∈ (0, ξ1/n) (64)

(the constants involved in this estimate are independent of ξ ). This and a change of
variables give

LHS(63) �

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

h(s) ds

∥∥∥∥∥∥
r;(0,ξ1/n)

≈
∥∥∥∥∥∥t−

1
r (µ(t1/n))−1

t∫

0

h(s) ds

∥∥∥∥∥∥
r;(0,ξ)

. (65)

On the other hand, the Hardy inequality (cf. Lemma 3)
∥∥∥∥∥∥t

1
p − 1

q b(t)

⎛
⎝

ξ∫

t

h(s) s− σ
n ds

⎞
⎠

∥∥∥∥∥∥
q;(0,ξ)

≤ C‖t
1
p + 1

q′ − σ
n b(t) h(t)‖q;(0,ξ)

for all h ∈ M+(0, ξ), with C independent of ξ , shows that

RHS(63) � ‖t
1
p + 1

q′ − σ
n b(t) h(t)‖q;(0,ξ). (66)

The estimates (63)–(66) imply (61). The best possible constant C2 in (61) satisfies
C2 � C1.

(ii) Suppose now that (61) holds. Let f ∈ L p,q;b(Rn). Putting h(t) = t
σ
n −1 f ∗(t),

t ∈ (0, ξ), and using a change of variables, we obtain

LHS(61) ≈
∥∥∥∥∥∥t−

1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ1/n)

= LHS(60) (67)

and

RHS(61) ≈ ‖t
1
p + 1

q′ − σ
n b(t) t

σ
n −1 f ∗(t)‖q;(0,ξ)

= ‖t
1
p − 1

q b(t) f ∗(t)‖q;(0,ξ) � RHS(60) (68)
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(the constants involved in these estimates are independent of ξ ). Therefore, (61) and
estimates (67), (68) imply that (60) holds. The best possible constant C1 in (60) satisfies
C1 � C2. ��

Continuous embeddings of spaces Hσ L p,q;b(Rn) with σ ∈ (0, 1) into generalized
Hölder spaces in the superlimiting case (that is, when p > n/σ ) are characterized in the next
theorem.

Theorem 3 Let σ ∈ (0, 1), p ∈ ( n
σ
,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞), r ∈ (0,+∞]

and µ ∈ Lr . Let λ : (0, 1] → (0,+∞) be defined by

λ(x) := xσ− n
p (b(xn))−1 for all x ∈ (0, 1]. (69)

(Note that λ ∈ Lr for any r ∈ (0,+∞]).
(i) If 1 ≤ q ≤ r ≤ +∞, then

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

if and only if

lim
x→0+

λ(x)

µ(x)
< +∞. (70)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

if and only if

1∫

0

(
λ(x)

µ(x)

)u dx

x
< +∞, (71)

where 1
u := 1

r − 1
q .

Proof Put X = L p,q;b(Rn). By Lemma 7, ‖gσ ‖X ′ < +∞. Consequently, by Theorem 2 and
Lemma 8 (with ξ = 1),

Hσ X ↪→ �
µ(·)∞,r (R

n)

if and only if, for all h ∈ M+(0, 1),∥∥∥∥∥∥t−
1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,1)

� ‖t
1
p + 1

q′ − σ
n b(t)h(t)‖q;(0,1). (72)

(i) If 1 ≤ q ≤ r ≤ +∞, then Lemma 2 shows that (72) holds if and only if

sup
x∈(0,1)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

∥∥∥∥t
σ
n − 1

p − 1
q′ (b(t))−1

∥∥∥∥
q ′;(0,x)

< +∞. (73)

Since σ
n − 1

p > 0, Lemma 1(iii) implies that
∥∥∥∥t

σ
n − 1

p − 1
q′ (b(t))−1

∥∥∥∥
q ′;(0,x)

≈ x
σ
n − 1

p (b(x))−1 for all x ∈ (0, 1).
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Thus, (73) is equivalent to

sup
x∈(0,1)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

x
σ
n − 1

p (b(x))−1 < +∞. (74)

As µ and b have singularities only at 0, (74) is satisfied if and only if

lim
x→0+

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

x
σ
n − 1

p (b(x))−1 < +∞. (75)

Now, we are going to prove that (75) is equivalent to (70). First, suppose that (70) holds.
Then there exists δ ∈ (0, 1) such that

1

µ(x1/n)
� x

1
p − σ

n b(x) for all x ∈ (0, δ). (76)

On the other hand,∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

≈
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,δ)

+
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(δ,1)

=: N1 + C(δ),

where C(δ) is a constant depending on δ. Using (76) and the inequality 1
p − σ

n < 0, we arrive
at

N1 �
∥∥∥t−

1
r t

1
p − σ

n b(t)
∥∥∥

r;(x,δ)
≈ x

1
p − σ

n b(x).

Thus, ∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

� x
1
p − σ

n b(x) + C(δ) for all x ∈ (0, δ)

and, using the properties of slowly varying functions, we obtain that

lim
x→0+

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

x
σ
n − 1

p (b(x))−1 � lim
x→0+

(
1 + C(δ)x

σ
n − 1

p (b(x))−1
)
= 1,

which gives (75).
Suppose now that (75) holds. Then there exists δ ∈ (0, 1

2 ) such that, for all x ∈ (0, δ),

1 �
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

x
σ
n − 1

p (b(x))−1

≥
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,2x)

x
σ
n − 1

p (b(x))−1

≥ (µ((2x)1/n))−1(ln 2)1/r x
σ
n − 1

p (b(x))−1

≈ (µ((2x)1/n))−1(2x)
σ
n − 1

p (b(2x))−1,

that is,

y
σ
n − 1

p (b(y))−1

µ(y1/n)
� 1 for all y ∈ (0, 2δ)

and (70) follows.

(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 2 states that (72) holds if and only if

1∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,1)
(V (x))u/r ′ (

x
σ
n − 1

p (b(x))−1
)q ′ dx

x
< +∞, (77)
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where

V (x) =
∥∥∥∥t

σ
n − 1

p − 1
q′ (b(t))−1

∥∥∥∥
q ′

q ′;(0,x)

. (78)

Since σ
n − 1

p > 0, Lemma 1(iii) and (69) imply that

V (x) ≈
(

x
σ
n − 1

p (b(x))−1
)q ′

= (
λ(x1/n)

)q ′
.

This and the identity q ′( u
r ′ + 1) = u show that (77) is equivalent to

1∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,1)

(
λ(x1/n)

)u dx

x
< +∞. (79)

We claim that (79) and (71) are equivalent. Indeed, this follows on taking ξ = 1 in the
estimate

ξ∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,ξ)

(
λ(x1/n)

)u dx

x
≈

ξ1/n∫

0

(
λ(x)

µ(x)

)u dx

x
(80)

for all ξ ∈ (0, 1].
Thus, it remains to verify (80). Since ν := ( σ

n − 1
p )r > 0 and u

r > 1, (69) and Lemma 3
imply that

LHS(80 ) =
∥∥∥∥∥∥x− r

u
(
λ(x1/n)

)r
ξ∫

x

t−1(µ(t1/n))−r dt

∥∥∥∥∥∥

u
r

u
r ;(0,ξ)

=
∥∥∥∥∥∥xν− r

u (b(x))−r

ξ∫

x

t−1(µ(t1/n))−r dt

∥∥∥∥∥∥

u
r

u
r ;(0,ξ)

�
∥∥∥xν+1− r

u (b(x))−r x−1(µ(x1/n))−r
∥∥∥

u
r

u
r ;(0,ξ)

=
∥∥∥x− r

u
(
λ(x1/n)

)r
(µ(x1/n))−r

∥∥∥
u
r

u
r ;(0,ξ)

≈
ξ1/n∫

0

(
λ(x)

µ(x)

)u dx

x
for all ξ ∈ (0, 1]. (81)
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Moreover,

LHS(80) ≥
ξ
2∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,ξ)

(
λ(x1/n)

)u dx

x

≥
ξ
2∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,2x)

(
λ(x1/n)

)u dx

x

≥
ξ
2∫

0

(µ((2x)1/n))−u(ln 2)u/r (
λ(x1/n)

)u dx

x

≈
ξ1/n∫

0

(
λ(x)

µ(x)

)u dx

x
for all ξ ∈ (0, 1]. (82)

Combining estimates (81) and (82), we arrive at (80). ��
Remark 4 Assume that all the assumptions of Theorem 3 are satisfied.

(i) If r ∈ [q,+∞], then the embedding

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n) (83)

with µ = λ is sharp with respect to the parameter µ (which means that the target
space �

µ(·)∞,r (R
n) in (83) and the space �

λ(·)∞,r (R
n) (that is, the target space in (83) with

µ = λ) satisfy �
λ(·)∞,r (R

n) ↪→ �
µ(·)∞,r (R

n)). This follows from Theorem 3 (i) (condition
(70)).

(ii) Among embeddings (83) that one with µ = λ and r = q is optimal, that is, the target
space �

µ(·)∞,r (R
n) in (83) and the space �

λ(·)∞,q(Rn) (that is, the target space in (83) with
µ = λ and r = q) satisfy

�λ(·)∞,q(Rn) ↪→ �
µ(·)∞,r (R

n). (84)

Indeed, if r ∈ [q,+∞], this follows from part (i) and the fact that �
λ(·)∞,r (R

n) ↪→
�

λ(·)∞,s(R
n) if 0 < r < s ≤ +∞ (cf. [22, Eq. (3.6)]). To verify it when 0 < r < q ,

note that (84) is satisfied if∥∥∥∥t−1/r ω( f, t)

µ(t)

∥∥∥∥
r;(0,1)

�
∥∥∥∥t−1/q ω( f, t)

λ(t)

∥∥∥∥
q;(0,1)

for all f ∈ �λ(·)∞,q(Rn).

Since ω( f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [26, Proposi-
tion 2.1 (ii)] and [37, Lemma, p. 176]) if

1∫

0

∥∥∥t−
1
r (µ(t))−1

∥∥∥u

r;(x,1)
(λ(x))u dx

x
< +∞.

The last condition is equivalent to (71) (cf. the proof that (79) is equivalent to (71)).
The result follows from Theorem 3 (ii) since (71) is satisfied when (83) holds.
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(iii) The embedding

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

does not hold if µ = λ and r ∈ (0, q) (this follows from Theorem 3 (ii)).

(iv) Using the terminology of [25] or [38], we obtain that
(

λ(x)
x , q

)
is the continuity

envelope of Hσ L p,q;b(Rn) (this is a consequence of part (i) with r = +∞ and
part (iii)).

The following assertion is an analogue of Theorem 3 and concerns the limiting case when
p = n/σ .

Theorem 4 Let σ ∈ (0, 1), p = n
σ

, q ∈ (1,+∞], r ∈ (0,+∞], µ ∈ Lr and let b ∈
SV (0,+∞) be such that ‖t

− 1
q′ (b(t))−1‖q ′;(0,1) < +∞. Let λqr ∈ Lr be defined by

λqr (x) := bq ′/r (xn)

⎛
⎝

xn∫

0

b−q ′
(t)

dt

t

⎞
⎠

1
q′ + 1

r

, x ∈ (0, 1]. (85)

(i) If 1 < q ≤ r ≤ +∞, then

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

if and only if

lim
x→0+

‖t− 1
r (µ(t))−1‖r;(x,1)

‖t− 1
r (λqr (t))−1‖r;(x,1)

< +∞. (86)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

if and only if

1/2∫

0

( ‖t−1/r (µ(t))−1‖r;(x,1)

‖t−1/r (λqr (t))−1‖r;(x,1)

)u
⎛
⎝

xn∫

0

t−1b−q ′
(t) dt

⎞
⎠

−1

b−q ′
(xn)

dx

x
< +∞, (87)

where 1
u := 1

r − 1
q .

Proof Put X = L p,q;b(Rn). By Lemma 7, ‖gσ ‖X ′ < +∞. Consequently, by Theorem 2 and
Lemma 8 (with ξ = 1),

Hσ X ↪→ �
µ(·)∞,r (R

n)

if and only if, for all h ∈ M+(0, 1),
∥∥∥∥∥∥t−

1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,1)

� ‖t
1
q′ b(t)h(t)‖q;(0,1). (88)
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(i) If 1 < q ≤ r ≤ +∞, then Lemma 2 shows that (88) holds if and only if

sup
x∈(0,1)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

< +∞. (89)

Since

‖t−
1
r (λqr (t

1/n))−1‖r;(x,1) ≈
∥∥∥∥t

− 1
q′ (b(t))−1

∥∥∥∥
−1

q ′;(0,x)

for all x ∈ (0, 1/2) (90)

and as singularities of functions in question are only at 0, (89) is equivalent to

lim
x→0+

∥∥∥t− 1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

‖t− 1
r (λqr (t1/n))−1‖r;(x,1)

< +∞,

and (86) follows.
(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 2 shows that (88) holds if and only if

1∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,1)
(V (x))u/r ′

b−q ′
(x)

dx

x
< +∞, (91)

where

V (x) =
∥∥∥∥t

− 1
q′ (b(t))−1

∥∥∥∥
q ′

q ′;(0,x)

. (92)

Using the identity u
r ′ = u

q ′ − 1, (90) and the fact that the singularities of the functions
in question are only at 0, we see that (91) is equivalent to (87). ��

Remark 5 Assume that all assumptions of Theorem 4 are satisfied.

(i) If r ∈ [q,+∞], then the embedding

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n) (93)

with µ = λqr is sharp with respect to the parameter µ, that is, the target space

�
µ(·)∞,r (R

n) in (93) and the space �
λqr (·)∞,r (Rn) (that is, the target space in (93) with

µ = λqr ) satisfy �
λqr (·)∞,r (Rn) ↪→ �

µ(·)∞,r (R
n). Indeed, the last embedding is satisfied if

∥∥∥∥t−1/r ω( f, t)

µ(t)

∥∥∥∥
r;(0,1)

�
∥∥∥∥t−1/r ω( f, t)

λqr (t)

∥∥∥∥
r;(0,1)

for all f ∈ �
λqr (·)∞,r (Rn).

Since ω( f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [26, Proposi-
tion 2.1 (i)]) if

sup
x∈(0,1/2)

∥∥∥t−
1
r (µ(t))−1

∥∥∥
r;(x,1)

/∥∥∥t−
1
r (λqr (t))

−1
∥∥∥

r;(x,1)
< +∞,

which is equivalent to (86). The result follows from Theorem 4 (i) since (86) is satisfied
when (93) holds.
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(ii) Among embeddings (93) that one with µ = λqq and r = q is optimal, that is, the

target space �
µ(·)∞,r (R

n) in (93) and the space �
λqq (·)
∞,q (Rn) (that is, the target space in

(93) with µ = λqq and r = q) satisfy

�
λqq (·)
∞,q (Rn) ↪→ �

µ(·)∞,r (R
n). (94)

Indeed, if r ∈ [q,+∞], this follows from part (i) and the fact that �
λqr (·)∞,r (Rn) ↪→

�
λqs(·)∞,s (Rn) if q ≤ r ≤ s ≤ +∞ (the proof of this is analogous to the proof of

[22, Eq. (3.18)]). To verify it when 0 < r < q , note that (94) is satisfied if∥∥∥∥t−1/r ω( f, t)

µ(t)

∥∥∥∥
r;(0,1)

�
∥∥∥∥t−1/q ω( f, t)

λqq(t)

∥∥∥∥
q;(0,1)

for all f ∈ �
λqq (·)
∞,q (Rn).

Since ω( f, ·) is non-decreasing on (0, 1), this inequality holds (cf. [26, Proposi-
tion 2.1 (ii)] and [37, Lemma, p. 176]) if

1/2∫

0

∥∥∥t−
1
r (µ(t))−1

∥∥∥u

r;(x,1)

∥∥∥t−
1
q (λqq(t))−1

∥∥∥−q u
r

q;(x,1)

(
λqq(x)

)−q dx

x
< +∞,

which can be rewritten as (91). Furthermore, (91) is equivalent to (87) (cf. the proof of
Theorem 4 (ii)). The result follows from Theorem 4 (ii) since (87) is satisfied when
(93) holds.

(iii) The embedding

Hσ L p,q;b(Rn) ↪→ �
µ(·)∞,r (R

n)

does not hold if µ = λqr and r ∈ (0, q) (this follows from Theorem 4 (ii)).

(iv) Using the terminology of [25] or [38], we obtain that
(

λq∞(x)

x ,+∞
)

is the continuity

envelope of Hσ L p,q;b(Rn) (this is a consequence of part (i) with r = +∞ and part
(iii)).

7 Compactness

First, we characterize totally bounded subsets of the space �
µ(·)∞,r (�).

Theorem 5 Let r ∈ (0,+∞), µ ∈ Lr and let � be a bounded domain in R
n. Then S ⊂

�
µ(·)∞,r (�) is totally bounded if and only if S is bounded in �

µ(·)∞,r (�) and

sup
u∈S

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,ξ) → 0 as ξ → 0+. (95)

Proof Sufficiency. Since S is bounded in �
µ(·)∞,r (�), Lemma 4 implies that S is also bounded

in C(�).
Let ε ∈ (0, 1). By (95), there is δ ∈ (0, 1) such that

sup
u∈S

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,δ) <

ε

4
. (96)

Now, for this δ, there is a positive constant c(δ) such that, for all u ∈ S,

‖u|�µ(·)∞,r (�)‖ ≤ c(δ)‖u|L∞(�)‖ + ‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,δ). (97)
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By (96), for all ξ with |ξ | < δ,

1 > sup
u∈S

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,ξ)

= sup
u∈S

‖t1− 1
r (µ(t))−1ω̃(u, t)‖r;(0,ξ)

� sup
u∈S

ω̃(u, ξ)

µ(ξ)
‖t1− 1

r ‖r;(0,ξ)

≈ sup
u∈S

ω(u, ξ)

µ(ξ)
.

Hence,

sup
u∈S

ω(u, ξ) � µ(ξ), |ξ | < δ.

Since µ(t) → 0 as t → 0+, we obtain that

sup
u∈S

ω(u, ξ) → 0 as ξ → 0+,

which means that S is equicontinuous. Therefore, the Ascoli-Arzelà theorem implies that S
is totally bounded in C(�). Consequently, there exists a finite ε

2 c(δ) -net {u1, . . . , uN } ⊂ S
such that

min
k∈{1,...,N } ‖u − uk |L∞(�)‖ <

ε

2 c(δ)
for all u ∈ S. (98)

Using estimates (97), (98) and (96), we obtain for any u ∈ S that

min
k∈{1,...,N } ‖u − uk |�µ(·)∞,r (�)‖ ≤ c(δ) min

k∈{1,...,N } ‖u − uk |L∞(�)‖

+ sup
k∈{1,...,N }

‖t−
1
r (µ(t))−1ω(u − uk, t)‖r;(0,δ)

≤ c(δ) min
k∈{1,...,N } ‖u − uk |L∞(�)‖

+ sup
k∈{1,...,N }

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,δ)

+ sup
k∈{1,...,N }

‖t−
1
r (µ(t))−1ω(uk, t)‖r;(0,δ)

<
ε

2
+ ε

4
+ ε

4
= ε,

which proves that S is totally bounded in �
µ(·)∞,r (�).

Necessity. Suppose that S is totally bounded in �
µ(·)∞,r (�). Then S is bounded in �

µ(·)∞,r (�).
On the other hand, given ε > 0, there exists a finite ε

2 -net {u1, . . . , uN } ⊂ S such that

min
k∈{1,...,N } ‖u − uk |�µ(·)∞,r (�)‖ <

ε

2
for all u ∈ S. (99)

Because r ∈ (0,+∞), for each k ∈ {1, . . . , N } there is δk > 0 such that

‖t−
1
r (µ(t))−1ω(uk, t)‖r;(0,δk ) <

ε

2
. (100)

Let δ := mink∈{1,...,N } δk . Since, for all u ∈ S, any k ∈ {1, . . . , N } and all t ∈ (0, 1),

ω(u, t) ≤ ω(u − uk, t) + ω(uk, t),
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(99) and (100) imply that

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,δ) ≤ min

k∈{1,...,N } ‖t−
1
r (µ(t))−1ω(u − uk, t)‖r;(0,1)

+ sup
k∈{1,...,N }

‖t−
1
r (µ(t))−1ω(uk, t)‖r;(0,δ)

<
ε

2
+ ε

2
= ε for all u ∈ S.

Therefore,

sup
u∈S

‖t−
1
r (µ(t))−1ω(u, t)‖r;(0,δ) ≤ ε

and (95) follows. ��

Remark 6 (i) In Theorem 5 the implication

S ⊂ �
µ(·)∞,r (�) is bounded and (95) holds ⇒ S is totally bounded in �

µ(·)∞,r (�) (101)

remains true even if r = +∞. (This can be seen from the proof of Theorem 5).
(ii) If r = +∞ in Theorem 5, then the reverse implication to (101) holds provided that

we assume S ⊂ �
µ(·),0∞,∞ (�). Here �

µ(·),0∞,∞ (�) is a subspace of �
µ(·)∞,∞(�) consisting of

those functions u which satisfy

lim
δ→0+

‖(µ(t))−1 ω(u, t)‖∞;(0,δ) = 0.

(This follows from the necessity part of the proof of Theorem 5).
(iii) Summarizing what we have said, we arrive at the following result.

Let u ∈ L and let � be a bounded domain in R
n. Then S ⊂ �

µ(·),0∞,∞ (�) is totally

bounded in �
µ(·)∞,∞(�) if and only if S is bounded in �

µ(·)∞,∞(�) and

sup
u∈S

‖(µ(t))−1 ω(u, t)‖∞;(0,ξ) → 0 as ξ → 0+.

Now, we make use of Theorem 5 to characterize compact embeddings of Bessel potential
spaces Hσ X (Rn) into generalized Hölder spaces �

µ(·)∞,r (�).

Theorem 6 Let σ ∈ (0, 1) and let X = X (Rn) = X (Rn, µn) be a r. i. BFS such that
‖gσ ‖X ′ < ∞. Assume that r ∈ (0,+∞), µ ∈ Lr and that � is a bounded domain in R

n.
Then

Hσ X (Rn) ↪→↪→ �
µ(·)∞,r (�)1 (102)

if and only if

sup
‖ f ‖X ≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+. (103)

1 Recall that this means that the mapping u �→ u|� from Hσ X (Rn) into �
µ(·)∞,r (�) is compact.
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Proof Sufficiency. By (103), there is δ ∈ (0, 1) such that

sup
‖ f ‖X ≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,δ)

≤ 1. (104)

As, by Hölder inequality (cf. Remark 2),

1∫

0

τ
σ
n −1 f ∗(τ ) dτ � ‖gσ ‖X ′ ‖ f ‖X ,

and since the function t �→ (µ(t))−1 has a singularity only at 0, we obtain for all f ∈ X that

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;[δ,1)

�
∥∥∥t−

1
r (µ(t))−1

∥∥∥
r;[δ,1)

‖gσ ‖X ′ ‖ f ‖X � ‖ f ‖X .

Together with estimate (104), this yields

sup
‖ f ‖X ≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,1)

� 1 .

Therefore, by Theorem 2, Hσ X (Rn) ↪→ �
µ(·)∞,r (R

n), which implies that the unit ball of Hσ X

is bounded in �
µ(·)∞,r (�).

Let f ∈ X be such that ‖ f ‖X ≤ 1. Then, by (48) of Remark 3,

sup
‖ f ‖X ≤1

∥∥∥t−
1
r (µ(t))−1ω( f ∗ gσ , t)

∥∥∥
r;(0,ξ)

� sup
‖ f ‖X ≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

,

which, together with (103), gives

sup
‖ f ‖X ≤1

∥∥∥t−
1
r (µ(t))−1ω( f ∗ gσ , t)

∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+.

With respect to (18) and (19), this and Theorem 5 imply that the unit ball of the space Hσ X
is totally bounded in �

µ(·)∞,r (�) and the result follows.
Necessity. Suppose that (102) holds. Let f ∈ X , ‖ f ‖X ≤ 1, and define f by (50) of
Remark 3. Since ( f )∗ ≤ f ∗, we have that ‖ f ‖X ≤ 1. Moreover, by (49) of Remark 3, for
all ξ ∈ (0, 1),

sup
‖h‖X ≤1

∥∥∥t−
1
r (µ(t))−1ω(h ∗ gσ , t)

∥∥∥
r;(0,ξ)

≥
∥∥∥t−

1
r (µ(t))−1ω( f ∗ gσ , t)

∥∥∥
r;(0,ξ)

�

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

.
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Hence,

sup
‖h‖X ≤1

∥∥∥t−
1
r (µ(t))−1ω(h ∗ gσ , t)

∥∥∥
r;(0,ξ)

� sup
‖ f ‖X ≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

,

which, together with (102), (18), (19) and Theorem 5, gives (103). ��

Using Theorem 6 and Lemma 6, we arrive at the following corollary.

Corollary 3 Let σ ∈ (0, 1) and let X = X (Rn) be a r. i. BFS. Assume that r ∈ (0,+∞),
µ ∈ Lr and that � is a bounded domain in R

n. Then (102) holds if and only if ‖gσ ‖X ′ < +∞
and (103) is satisfied.

Remark 7 (i) In Theorem 6 the implication (103)�⇒ (102) remains true even if r = +∞.
(This can be seen from Remark 6 (i) and the proof of Theorem 6.)

(ii) We see from Remark 6 (iii) that if we assume additionally in Theorem 6 that r = +∞
and the space X (Rn) and µ ∈ L are such that

Hσ X (Rn) ↪→ �
µ(·),0∞,∞ (�), (105)

then (102) is equivalent to (103).
(iii) For example, (105) is satisfied provided that

the Schwartz space S (Rn) is dense in Hσ X (Rn), (106)

Hσ X (Rn) ↪→ �
µ(·)∞,∞(�), (107)

lim
t→0+

t/µ(t) = 0. (108)

Indeed, given u ∈ Hσ X (Rn) and ε > 0, there is v ∈ S (Rn) such that‖u−v‖Hσ X < ε.
Moreover, ω(v, t) ≤ ct for all t ∈ (0, 1), where c = c(v) is a positive constant. Thus,
using also (107), we obtain

‖(µ(t))−1ω(u, t)‖∞;(0,δ) ≤ ‖(µ(t))−1ω(u−v, t)‖∞;(0,δ)+‖(µ(t))−1ω(v, t)‖∞;(0,δ)

� ‖u − v‖Hσ X + c‖t/µ(t)‖∞;(0,δ)

≤ ε + c‖t/µ(t)‖∞;(0,δ) for all δ ∈ (0, 1).

Together with (108), this implies (105).
For instance, (106) holds if

the Schwartz space S (Rn) is dense in X (Rn). (109)

Indeed, this is a consequence of (18), (19), the fact that the mapping h �→ gσ ∗h maps
S (Rn) on S (Rn), and (109).
In particular, (109) is satisfied provided that the r. i. BFS X (Rn) has absolutely conti-
nuous norm (cf. [13, Remark 3.13]).
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8 Applications of the compactness result

We are interested in compact embeddings in the case when the space X is a Lorentz–Karamata
space L p,q;b(Rn) with p ∈ (1,+∞), q ∈ [1,+∞] and b ∈ SV (0,+∞). We shall start with
the following result, which is a consequence of Lemma 8.

Lemma 9 Let σ ∈ (0, 1), p ∈ [ n
σ
,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞), ξ ∈ (0, 1),

r ∈ (0,+∞] and let µ ∈ Lr . Then

sup
‖ f ‖p,q;b≤1

∥∥∥∥∥∥t−
1
r (µ(t))−1

tn∫

0

τ
σ
n −1 f ∗(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+ (110)

if and only if

sup
Nξ (h)≤1

∥∥∥∥∥∥t−
1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+, (111)

where Nξ (h) := ‖t
1
p + 1

q′ − σ
n b(t)h(t)‖q;(0,ξ) for all h ∈ M+(0, ξ) and ξ ∈ (0, 1).

Compact embeddings of spaces Hσ L p,q;b(Rn) with σ ∈ (0, 1) into generalized Hölder
spaces in the superlimiting case (that is, when p > n/σ ) are characterized in the next theorem.

Theorem 7 Let σ ∈ (0, 1), p ∈ ( n
σ
,+∞), q ∈ [1,+∞], b ∈ SV (0,+∞), r ∈ (0,+∞)

and let µ ∈ Lr . Assume that � is a bounded domain in R
n. Let λ : (0, 1] → (0,+∞) be

defined by

λ(x) := xσ− n
p (b(xn))−1 for all x ∈ (0, 1]. (112)

(Note that λ ∈ Lr for any r ∈ (0,+∞]).
(i) If 1 ≤ q ≤ r < +∞, then

Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)

if and only if

lim
x→0+

λ(x)

µ(x)
= 0. (113)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)

if and only if

1∫

0

(
λ(x)

µ(x)

)u dx

x
< +∞, (114)

where 1
u := 1

r − 1
q .
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Proof Put X = L p,q;b(Rn). By Lemma 7, ‖gσ ‖X ′ < +∞. Consequently, by Theorem 6 and
Lemma 9,

Hσ X ↪→↪→ �
µ(·)∞,r (�)

if and only if

sup
Nξ (h)≤1

∥∥∥∥∥∥t−
1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+, (115)

where Nξ (h) := ‖t
1
p + 1

q′ − σ
n b(t)h(t)‖q;(0,ξ) for all h ∈ M+(0, ξ) and ξ ∈ (0, 1).

(i) If 1 ≤ q ≤ r < +∞, then Lemma 2 states that (115) holds if and only if

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

∥∥∥∥t
σ
n − 1

p − 1
q′ (b(t))−1

∥∥∥∥
q ′;(0,x)

→ 0 as ξ → 0+. (116)

Since σ
n − 1

p > 0, Lemma 1(iii) shows that
∥∥∥∥t

σ
n − 1

p − 1
q′ (b(t))−1

∥∥∥∥
q ′;(0,x)

≈ x
σ
n − 1

p (b(x))−1 for all x ∈ (0, ξ).

Thus, (116) is equivalent to

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

x
σ
n − 1

p (b(x))−1 → 0 as ξ → 0+. (117)

Now, we are going to prove that (117) is equivalent to (113). First, suppose that (113)
holds. Then, given ε > 0, there exists δ ∈ (0, 1) such that

x
σ
n − 1

p (b(x))−1

µ(x1/n)
≤ ε for all x ∈ (0, δ). (118)

Let ξ ∈ (0, δ). Using (118), the inequality 1
p − σ

n < 0 and Lemma 1(iii), we arrive at
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

≤ ε

∥∥∥t−
1
r t

1
p − σ

n b(t)
∥∥∥

r;(x,1)
≈ εx

1
p − σ

n b(x) for all x∈(0, ξ).

Consequently,

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

x
σ
n − 1

p (b(x))−1 � ε for all ξ ∈ (0, δ),

which gives (117).

Conversely, suppose that (117) holds. Then, given ε > 0, there exists δ ∈ (0, 1) such that,
for all ξ ∈ (0, δ),

ε ≥ sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

x
σ
n − 1

p (b(x))−1

≥
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(ξ/2,ξ)

(ξ/2)
σ
n − 1

p (b(ξ/2))−1

≥ (µ(ξ1/n))−1(ln 2)1/r (ξ/2)
σ
n − 1

p (b(ξ/2))−1

≈ (µ(ξ1/n))−1ξ
σ
n − 1

p (b(ξ))−1,
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that is,

ξ
σ
n − 1

p (b(ξ))−1

µ(ξ1/n)
� ε for all ξ ∈ (0, δ),

and (113) follows.

(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 2 states that (115) holds if and only if

ξ∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,ξ)
(V (x))u/r ′(

x
σ
n − 1

p (b(x))−1
)q ′ dx

x
→ 0 as ξ→ 0+, (119)

with V from (78). Condition (119) can be rewritten as (cf. the proof that (77) is equi-
valent to (79))

ξ∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,ξ)

(
λ(x1/n)

)u dx

x
→ 0 as ξ → 0+. (120)

Moreover, using (80), we see that (120) holds if and only if

ξ1/n∫

0

(
λ(x)

µ(x)

)u dx

x
→ 0 as ξ → 0+. (121)

Finally, since the singularities of the functions λ and µ are only at the origin, (121) is
equivalent to (114). ��

The following assertion is an analogue of Theorem 7 and concerns the limiting case when
p = n/σ .

Theorem 8 Let σ ∈ (0, 1), p = n
σ

, q ∈ (1,+∞], r ∈ (0,+∞), µ ∈ Lr and let b ∈
SV (0,+∞) be such that ‖t

− 1
q′ (b(t))−1‖q ′;(0,1) < +∞. Assume that � is a bounded domain

in R
n. Let λqr ∈ Lr be defined by

λqr (x) := bq ′/r (xn)

⎛
⎝

xn∫

0

b−q ′
(t)

dt

t

⎞
⎠

1
q′ + 1

r

, x ∈ (0, 1]. (122)

(i) If 1 < q ≤ r < +∞, then

Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)

if and only if

lim
x→0+

‖t− 1
r (µ(t))−1‖r;(x,1)

‖t− 1
r (λqr (t))−1‖r;(x,1)

= 0. (123)

(ii) If 0 < r < q ≤ +∞ and q > 1, then

Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)
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if and only if

1/2∫

0

( ‖t−1/r (µ(t))−1‖r;(x,1)

‖t−1/r (λqr (t))−1‖r;(x,1)

)u
⎛
⎝

xn∫

0

t−1b−q ′
(t) dt

⎞
⎠

−1

b−q ′
(xn)

dx

x
< +∞, (124)

where 1
u := 1

r − 1
q .

Proof Put X = L p,q;b(Rn). By Lemma 7, ‖gσ ‖X ′ < +∞. Consequently, by Theorem 6 and
Lemma 9,

Hσ X ↪→↪→ �
µ(·)∞,r (�)

if and only if

sup
Nξ (h)≤1

∥∥∥∥∥∥t−
1
r (µ(t1/n))−1

t∫

0

h(τ ) dτ

∥∥∥∥∥∥
r;(0,ξ)

→ 0 as ξ → 0+, (125)

where Nξ (h) := ‖t
1
q′ b(t)h(t)‖q;(0,ξ) for all h ∈ M+(0, ξ) and ξ ∈ (0, 1).

(i) If 1 < q ≤ r < +∞, by Lemma 2, (125) holds if and only if

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

→ 0 as ξ → 0+. (126)

We show that (126) is equivalent to

lim
x→0+

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

= 0. (127)

Indeed, assume that (126) holds. Then, given ε > 0, there is � ∈ (0, 1) such that

sup
x∈(0,�)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,�)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

<
ε

2
.

As ‖t
− 1

q′ (b(t))−1‖q ′;(0,1) < +∞, q ′ < +∞, and µ ∈ Lr , we can find δ ∈ (0,�)

such that
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(�,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,δ)

<
ε

2
.

Therefore, for all x ∈ (0, δ),
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

≤
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(x,�)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

+
∥∥∥t−

1
r (µ(t1/n))−1

∥∥∥
r;(�,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

<
ε

2
+ ε

2
= ε,
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and (127) follows. The converse implication is a consequence of the estimate

sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,ξ)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

≤ sup
x∈(0,ξ)

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥
r;(x,1)

∥∥∥∥t
− 1

q′ (b(t))−1
∥∥∥∥

q ′;(0,x)

.

Since (90) holds, (127) is equivalent to (123) and the proof of part (i) is complete.
(ii) If 0 < r < q ≤ +∞ and q > 1, then Lemma 2 shows that (125) holds if and only if

ξ∫

0

∥∥∥t−
1
r (µ(t1/n))−1

∥∥∥u

r;(x,ξ)
(V (x))u/r ′

b−q ′
(x)

dx

x
→ 0 as ξ → 0+, (128)

with V (x) from (92). Using the identity u
r ′ = u

q ′ − 1 and (90), we see that (128) is
equivalent to

ξ∫

0

‖t−1/r (µ(t))−1‖u
r;(x,ξ)

‖t−1/r (λqr (t))−1‖u
r;(x,1)

⎛
⎝

xn∫

0

t−1b−q ′
(t) dt

⎞
⎠

−1

b−q ′
(xn)

dx

x
→ 0 as ξ → 0+. (129)

Finally, since singularities of functions in question are only at the origin, (129) is
satisfied if and only if (124) holds. ��

Remark 8 (i) In Theorem 7 (i) the implication

(113) �⇒ Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)

remains true even if we extend the range of q and r to 1 ≤ q ≤ r ≤ +∞. (Indeed, this
can be seen from the proof of Theorem 7 (i), where we use Theorem 6 and Remark 7 (i)
instead of Theorem 6).
Theorem 7 (i) continues to hold if we assume that 1 ≤ q ≤ r ≤ +∞, q < +∞,
and (108) is satisfied. (This follows from Remarks 7 (ii), (iii). Note that the condition
q < +∞ implies that the space L p,q;b(Rn) has absolutely continuous norm—cf. [33,
Lemma 3.2].)

(ii) Similarly, in Theorem 8 (i) the implication

(123) �⇒ Hσ L p,q;b(Rn) ↪→↪→ �
µ(·)∞,r (�)

remains true if we extend the range of q and r to 1 < q ≤ r ≤ +∞.
Theorem 8 (i) continues to hold if we assume that 1 < q ≤ r ≤ +∞, q < +∞, and
(108) is satisfied. (This follows from Remarks 7 (ii), (iii)).
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