Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/4583
Título: Orthogonal polynomials on the unit circle via a polynomial mapping on the real line
Autor: Petronilho, J. 
Palavras-chave: Orthogonal polynomials; Unit circle; Polynomial mappings; Verblunsky coefficients; Recurrence relations; Stieltjes transforms; Carathéodory functions; Borel measures
Data: 2008
Citação: Journal of Computational and Applied Mathematics. 216:1 (2008) 98-127
Resumo: Let {[Phi]n}n[greater-or-equal, slanted]0 be a sequence of monic orthogonal polynomials on the unit circle (OPUC) with respect to a symmetric and finite positive Borel measure d[mu] on [0,2[pi]] and let -1,[alpha]0,[alpha]1,[alpha]2,... be the associated sequence of Verblunsky coefficients. In this paper we study the sequence of monic OPUC whose sequence of Verblunsky coefficients iswhere b1,b2,...,bN-1 are N-1 fixed real numbers such that bj[set membership, variant](-1,1) for all j=1,2,...,N-1, so that is also orthogonal with respect to a symmetric and finite positive Borel measure on the unit circle. We show that the sequences of monic orthogonal polynomials on the real line (OPRL) corresponding to {[Phi]n}n[greater-or-equal, slanted]0 and (by Szegö's transformation) are related by some polynomial mapping, giving rise to a one-to-one correspondence between the monic OPUC on the unit circle and a pair of monic OPRL on (a subset of) the interval [-1,1]. In particular we prove thatd[mu][small tilde]([theta])=[zeta]N-1([theta])sin[theta]sin[theta]N([theta])d[mu]([theta]N([theta]))[theta]N'([theta]),supported on (a subset of) the union of 2N intervals contained in [0,2[pi]] such that any two of these intervals have at most one common point, and where, up to an affine change in the variable, [zeta]N-1 and cos[theta]N are algebraic polynomials in cos[theta] of degrees N-1 and N (respectively) defined only in terms of [alpha]0,b1,...,bN-1. This measure induces a measure on the unit circle supported on the union of 2N arcs, pairwise symmetric with respect to the real axis. The restriction to symmetric measures (or real Verblunsky coefficients) is needed in order that Szegö's transformation may be applicable.
URI: https://hdl.handle.net/10316/4583
DOI: 10.1016/j.cam.2007.04.024
Direitos: openAccess
Aparece nas coleções:FCTUC Matemática - Artigos em Revistas Internacionais

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato
filed0b3e9ec452749be91fe95bef24d4b90.pdf381.96 kBAdobe PDFVer/Abrir
Mostrar registo em formato completo

Citações SCOPUSTM   

8
Visto em 9/nov/2022

Citações WEB OF SCIENCETM

8
Visto em 2/mai/2023

Visualizações de página

285
Visto em 17/jul/2024

Downloads

203
Visto em 17/jul/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.