Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/115113
DC FieldValueLanguage
dc.contributor.authorDas, Bimal-
dc.contributor.authorSingh, Akhilendra-
dc.contributor.authorRai, Akhand-
dc.contributor.authorBranco, Ricardo-
dc.date.accessioned2024-05-08T13:55:53Z-
dc.date.available2024-05-08T13:55:53Z-
dc.date.issued2024-
dc.identifier.issn13506307pt
dc.identifier.urihttps://hdl.handle.net/10316/115113-
dc.description.abstractThis study investigates the synergistic assessment of cyclic plasticity damage and hydrogen-induced cracking of transformation-induced plasticity (TRIP) steel subjected to asymmetric strain-controlled fatigue loading. The presence of hydrogen in TRIP steel hardening observed in hydrogen-free specimens is attributed to the predominance of hardening induced by martensitic results in cyclic softening throughout its life, suppressing the hardening behavior induced by martensitic transformation. The mild transformation over cyclic softening. The increase in mean strain leads to higher mean stress relaxation, suppressing the compressive stress developed during the deformation-induced martensitic transformation phenomenon. Geometrically necessary dislocation (GND) density map and fractographic images substantiate the hydrogen-enhanced decohesion failure mechanism, decreasing fatigue resistance for hydrogen-induced TRIP steel. The failure mechanisms of the fatigue damage due to the ingress of hydrogen atoms in the material are proposed for further insights.pt
dc.description.sponsorshipThe authors acknowledge the Science and Engineering Research Board, India (SERB) for assisting with this work through Grant Project No.IITP/ R&D/SP/ME/ DST/2020-21/508 (SERB, DST reference number: CRG/2020/005550).pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.rightsclosedAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/pt
dc.subjectCyclic hardeningpt
dc.subjectCyclic softeningpt
dc.subjectGeometrically necessary dislocation densitypt
dc.subjectHydrogen-enhanced decohesion failurept
dc.subjectMean stress relaxationpt
dc.titleSynergistic effect of fatigue and hydrogen-induced damage under asymmetric loading of TRIP steelpt
dc.typearticle-
degois.publication.firstPage108352pt
degois.publication.titleEngineering Failure Analysispt
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1350630724003984?pes=vorpt
dc.peerreviewedyespt
dc.identifier.doi10.1016/j.engfailanal.2024.108352pt
degois.publication.volume161pt
dc.date.embargo2024-01-01*
uc.date.periodoEmbargo0pt
item.openairetypearticle-
item.fulltextCom Texto completo-
item.languageiso639-1en-
item.grantfulltextreserved-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.orcid0000-0003-2471-1125-
Appears in Collections:FCTUC Eng.Mecânica - Artigos em Revistas Internacionais
I&D CEMMPRE - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat Login
1-s2.0-S1350630724003984-main.pdf11.62 MBAdobe PDF    Request a copy
Show simple item record

Page view(s)

64
checked on Jul 17, 2024

Download(s)

24
checked on Jul 17, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons