Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/114880
DC FieldValueLanguage
dc.contributor.authorKhan, Asad ur Rehman-
dc.contributor.authorRamzan, Muhammad-
dc.contributor.authorImran, Muhammad-
dc.contributor.authorZubair, Muhammad-
dc.contributor.authorShahab, Sana-
dc.contributor.authorAhmed, Sara J.-
dc.contributor.authorFerreira, Fábio-
dc.contributor.authorIqbal, Muhammad Faisal-
dc.date.accessioned2024-04-16T08:25:01Z-
dc.date.available2024-04-16T08:25:01Z-
dc.date.issued2022-
dc.identifier.issn2079-6412pt
dc.identifier.urihttps://hdl.handle.net/10316/114880-
dc.description.abstractOwing to its low resistivity, high transmittance, and tunable optical band gap, ZnO is of great interest for optoelectronic applications. Herein, the sol–gel technique was used to synthesize un-doped and zirconium-doped zinc oxide (ZZO) nanostructures with different concentrations of Zirconium (Zr). X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and photoluminescence (PL) measurements were used to investigate the influence of Zr doping on the structural, optical, and electrical properties of developed nanostructures. XRD and SEM confirmed the increase in crystallite size with increasing concentrations of Zr. Raman analysis indicated the presence of oxygen vacancies in synthesized nanostructures. UV-Vis spectroscopy illustrated the blue shift of band gap and red shift of the absorption edge for ZZO nanostructures with increasing concentrations of Zr. For the measurement of electrical properties, the spin-coating technique was used to deposit un-doped and Zr-doped ZnO layers of ~165 nm thickness. The four-probe-point (4PP) method illustrated that the doping of Zr caused a reduction in electrical resistance. Hall Effect measurements showed a high value, 3.78 1020 cm􀀀3, of the carrier concentration and a low value, 10.2 cm2/Vs, of the carrier mobility for the Zr-doped layer. The high optical transmittance of ~80%, wide band gap of 3.51 eV, low electrical resistivity of 1.35 10􀀀3 W cm, and maximum carrier concentration of 3.78 1020 cm􀀀3 make ZZO nanostructures one of the most promising candidates for the application of transparent conductive oxide (TCO) in optoelectronic devices.pt
dc.language.isoengpt
dc.publisherMDPIpt
dc.relationAl-Mustaqbal University College (Grant number: MUC-G-0322)pt
dc.relationPrincess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R259)pt
dc.relationPrincess Nourah bint Abdulrahman University, Riyadh, Saudi Arabiapt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectZr-doped ZnOpt
dc.subjectSol-gelpt
dc.subjectspin-coating methodpt
dc.subjectXRDpt
dc.subjectoxygen vacanciespt
dc.subjecttunable optical band gappt
dc.subjectPLpt
dc.subjectTCOpt
dc.titleTailoring the Structural, Optical and Electrical Properties of Zinc Oxide Nanostructures by Zirconium Dopingpt
dc.typearticle-
degois.publication.firstPage34pt
degois.publication.issue1pt
degois.publication.titleCoatingspt
dc.peerreviewedyespt
dc.identifier.doi10.3390/coatings13010034pt
degois.publication.volume13pt
dc.date.embargo2022-01-01*
uc.date.periodoEmbargo0pt
item.cerifentitytypePublications-
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.orcid0000-0002-1020-4758-
Appears in Collections:I&D CEMMPRE - Artigos em Revistas Internacionais
FCTUC Eng.Mecânica - Artigos em Revistas Nacionais
Show simple item record

Page view(s)

100
checked on May 15, 2024

Download(s)

88
checked on May 15, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons