Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/114472
Título: Network structure and transcriptomic vulnerability shape atrophy in frontotemporal dementia
Autor: Shafiei, Golia
Bazinet, Vincent
Dadar, Mahsa
Manera, Ana L.
Collins, D. Louis
Dagher, Alain
Borroni, Barbara
Sánchez-Valle, Raquel 
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B.
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
de Mendonça, Alexandre
Tagliavini, Fabrizio 
Santana, Isabel 
Butler, Chris
Gerhard, Alex
Danek, Adrian
Levin, Johannes
Otto, Markus
Sorbi, Sandro
Jiskoot, Lize C.
Seelaar, Harro
van Swieten, John C.
Rohrer, Jonathan D. 
Misic, Bratislav
Ducharme, Simon
Palavras-chave: connectome; frontotemporal dementia; disease epicentre; gene expression; network spreading
Data: 5-Jan-2023
Editora: Oxford University Press
Projeto: This research was undertaken thanks in part to funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative. B.M. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN #017-04265) and from the Canada Research Chairs Program. S.D. receives salary support from the Fonds de Recherche du Québec— Santé (FRQS). G.S. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Fonds de recherche du Québec—Nature et Technologies (FRQNT). V.B. acknowledges support from the Fonds de recherche du Québec—Nature et Technologies (FRQNT). FTLDNI data collection and sharing was funded by the Frontotemporal Lobar Degeneration Neuroimaging Initiative (National Institutes of Health Grant R01 AG032306) and is coordinated through the University of California, San Francisco, Memory and Aging Center. 
Título da revista, periódico, livro ou evento: Brain
Volume: 146
Número: 1
Resumo: Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.
URI: https://hdl.handle.net/10316/114472
ISSN: 0006-8950
1460-2156
DOI: 10.1093/brain/awac069
Direitos: openAccess
Aparece nas coleções:FMUC Medicina - Artigos em Revistas Internacionais
I&D CNC - Artigos em Revistas Internacionais

Ficheiros deste registo:
Mostrar registo em formato completo

Visualizações de página

11
Visto em 8/mai/2024

Downloads

6
Visto em 8/mai/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons