DC FieldValueLanguage
dc.contributor.authorConn, Andrew R.-
dc.contributor.authorScheinberg, Katya-
dc.contributor.authorVicente, Luís Nunes-
dc.identifier.citationPré-Publicações DMUC. 03-09 (2003)en_US
dc.description.abstractWe show how to derive error estimates between a function and its interpolating polynomial and between their corresponding derivatives. The derivation is based on a new de nition of well-poisedness for the interpolation set, directly connecting the accuracy of the error estimates with the geometry of the points in the set. This de nition is equivalent to the boundedness of Lagrange polynomials, but it provides new geometric intuition. Our approach extracts the error bounds for all of the derivatives using the same analysis; the error bound for the function values is then derived a posteriori. We also develop an algorithm to build a set of well-poised interpolation points or to modify an existing set to ensure its well-poisedness. We comment on the optimal geometries corresponding to the best possible well-poised sets in the case of linear interpolation.en_US
dc.description.sponsorshipCentro de Matemática da Universidade de Coimbra; FCT under grant POCTI/35059/MAT/2000; European Union under grant IST-2000-26063; Fundação Calouste Gulbenkianen_US
dc.publisherCentro de Matemática da Universidade de Coimbraen_US
dc.subjectMultivariate Polynomial Interpolationen_US
dc.subjectError Estimatesen_US
dc.subjectDerivative-Free Optimizationen_US
dc.titleError estimates and poisedness in multivariate polynomial interpolationen_US
item.fulltextCom Texto completo-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Nacionais
Files in This Item:
File Description SizeFormat 
Error estimates and poisedness in multivariate polynomial interpolation.pdf228.75 kBAdobe PDFView/Open
Show simple item record
Google ScholarTM
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.