Please use this identifier to cite or link to this item:
Title: Twisted Jacobi manifolds, twisted Dirac-Jacobi structures and quasi-Jacobi bialgebroids
Authors: Costa, J. M. Nunes da 
Petalidou, F. 
Keywords: Twisted Jacobi manifold; Twisted Dirac-Jacobi structure; Jacobi bialgebroid; Courant-Jacobi algebroid; Quasi-Jacobi bialgebroid
Issue Date: 2006
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 06-19 (2006)
Abstract: We study twisted Jacobi manifolds, a concept that we had introduced in a previous Note. Twisted Jacobi manifolds can be characterized using twisted Dirac-Jacobi, which are sub-bundles of Courant-Jacobi algebroids. We show that each twisted Jacobi manifold has an associated Lie algebroid with a 1-cocycle. We introduce the notion of quasi-Jacobi bialgebroid and we prove that each twisted Jacobi manifold has a quasi-Jacobi bialgebroid canonically associated. Moreover, the double of a quasi-Jacobi bialgebroid is a Courant-Jacobi algebroid. Several examples of twisted Jacobi manifolds and twisted Dirac-Jacobi structures are presented.
Rights: openAccess
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat
Twisted Jacobi manifolds, twisted Dirac-Jacobi structures.pdf298.07 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

checked on Aug 4, 2022


checked on Aug 4, 2022

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.