Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/11221
Title: PSwarm: A hybrid solver for linearly constrained global derivative-free optimization
Authors: Vaz, A. Ismael F. 
Vicente, L. N. 
Keywords: Direct search; Linear constraints; Bound constraints; Pattern search; Coordinate search; Particle swarm; Derivative-free optimization; Global optimization
Issue Date: 2008
Publisher: Centro de Matemática da Universidade de Coimbra
Citation: Pré-Publicações DMUC. 08-47 (2008)
Abstract: PSwarm was developed originally for the global optimization of functions without derivatives and where the variables are within upper and lower bounds. The underlying algorithm used is a pattern search method, more specifically a coordinate search method, which guarantees convergence to stationary points from arbitrary starting points. In the (optional) search step of coordinate search, the algorithm incorporated a particle swarm scheme for dissemination and thus it can globally explore the possible nonconvexity of the objective function. Our extensive numerical experiments showed that the resulting algorithm is highly competitive with other global optimization methods also based on function values. PSwarm is extended is this paper to handle general linear constraints. The poll step incorporates now positive generators for the tangent cone of the approximated active constraints, including a provision for the degenerate case. The search step has also been adapted accordingly. In particular, the initial population for particle swarm used in the search step is computed by first inscribing an ellipsoid of maximum volume to the feasible set. We have again compared PSwarm to other solvers (including some designed for global optimization) and the results confirm its competitiveness in terms of efficiency and robustness.
URI: http://hdl.handle.net/10316/11221
Rights: openAccess
Appears in Collections:FCTUC Matemática - Vários

Files in This Item:
File Description SizeFormat
PSwarm A hybrid solver for linearly constrained global.pdf283.77 kBAdobe PDFView/Open
Show full item record

Page view(s)

247
checked on Aug 11, 2022

Download(s)

190
checked on Aug 11, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.