Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/112192
DC FieldValueLanguage
dc.contributor.authorKhan, Taj Muhammad-
dc.contributor.authorAslam, Nazim-
dc.contributor.authorIqbal, Amjad-
dc.contributor.authorAbbasi, Shahab Ahmed-
dc.contributor.authorAli, Dilawar-
dc.date.accessioned2024-01-24T09:50:19Z-
dc.date.available2024-01-24T09:50:19Z-
dc.date.issued2023-
dc.identifier.issn2196-7350pt
dc.identifier.issn2196-7350pt
dc.identifier.urihttps://hdl.handle.net/10316/112192-
dc.description.abstractThis paper describes a study where an argon cold plasma jet, generated by a dielectric-barrier discharge (DBD), is combined with nanosecond laser ablation (248 nm, 25 ns, 10 Hz) to deposit silver particle aerosols onto the substrate at atmospheric pressure. The deposition of the particle is examined using various microscopy techniques and absorption spectroscopy for the plasma jet produced by operating DBD in the normal and reversed mode. Plasma facilitated the deposition process by delivering the particle to the substrate and significantly influenced its morphology depending on the jet interaction, length, and substrate position. In both cases, the particles are clustered; however, there is less deposit for the plasma ignited in the reverse mode. The theoretical analysis of the deposition process is performed using ANSYS software and evaluated in terms of plasma-induced flow velocity. This study infers that the hybrid plasma-laser deposition scheme considered is attractive for material processing and deposition, especially overextended substrate distances, and for altering the properties of the deposited particles for practical utilization in surface-enhanced Raman spectroscopy, solar cells, and catalysis.pt
dc.language.isoengpt
dc.publisherWiley-Blackwellpt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectargon plasma jetpt
dc.subjectcomputational analysispt
dc.subjecthelium ion microscopypt
dc.subjecthighresolution transmission electron microscopypt
dc.subjectplasmonic surfacespt
dc.titleCold Plasma Jet Coupled Nanosecond Laser Ablation Scheme For Plasmonic Nanostructured Surfacespt
dc.typearticle-
degois.publication.issue21pt
degois.publication.titleAdvanced Materials Interfacespt
dc.peerreviewedyespt
dc.identifier.doi10.1002/admi.202300280pt
degois.publication.volume10pt
dc.date.embargo2023-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.orcid0000-0001-7405-0324-
Appears in Collections:FCTUC Eng.Mecânica - Artigos em Revistas Internacionais
I&D CEMMPRE - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

30
checked on May 8, 2024

Download(s)

26
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons