Utilize este identificador para referenciar este registo: https://hdl.handle.net/10316/108361
Título: Investigation of micro- and nanoscale barrier layer capacitance mechanisms of conductivity in CaCu3Ti4O12via scanning probe microscopy technique
Autor: Ivanov, M.S. 
Amaral, F.
Khomchenko, V. A. 
Paixão, J. A. 
Costa, L. C.
Data: 2017
Editora: Royal Society of Chemistry
Projeto: This work was supported by funds from FEDER (COMPETE 2020 Programme) and FCT-Portuguese Foundation for Science and Technology under the projects UID/CTM/50025/2013 and UID/ FIS/04564/2016.M. S. I. is grateful to the Fundac¸ao para a Ciencia e Tecnologia (FCT) for nancial support through the project “MATIS – Materiais e Tecnologias Industriais Sustent´aveis (CENTRO-01-0145-FEDER-000014). V. A. K. is grateful to FCT for nancial support through the FCT Investigator Programme (project IF/00819/2014/CP1223/CT0011). The authors are grateful to Dr A. L. Kholkin (University of Aveiro) for access to SPMfacility. 
Título da revista, periódico, livro ou evento: RSC Advances
Volume: 7
Número: 65
Resumo: In this work we disclose micro- and nanoscale origins of the unusually high dielectric constant characteristic of CaCu3Ti4O12 (CCTO) ceramic by using the Scanning Probe Microscopy (SPM) technique. Two main mechanisms responsible for the colossal dielectric constant specific to the CCTO compound have been revealed. There is a microscale barrier layer capacitance (MBLC) mechanism, attributed to the potential grain-to-grain barriers, and a nanoscale barrier layer capacitance (NBLC) mechanism, attributed to the potential barriers created by the structural defects such as twinning or slip planes. Using the contact spreading resistance mode of SPM, we have found two types of surface morphology which, being originated from planar defects, can be related to the NBLC mechanism. A clear confirmation of NBLC as the origin of the huge dielectric constant in CCTO has been obtained via the local current– voltage dependence measurements. By using this method, we have found the existence of two sources of conductivity (charge transfer and charge hopping) which simultaneously contribute to the NBLC mechanism. These sources (providing semiconducting and n-type conducting behavior, respectively) have been associated with the different stacking faults predicted for CCTO. The present work promotes a general understanding of anomalous colossal dielectric constant behavior in CCTO material at the macro- and nanoscale levels.
URI: https://hdl.handle.net/10316/108361
ISSN: 2046-2069
DOI: 10.1039/C7RA06385G
Direitos: openAccess
Aparece nas coleções:I&D CFis - Artigos em Revistas Internacionais

Mostrar registo em formato completo

Visualizações de página

51
Visto em 8/mai/2024

Downloads

35
Visto em 8/mai/2024

Google ScholarTM

Verificar

Altmetric

Altmetric


Este registo está protegido por Licença Creative Commons Creative Commons