Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/105236
DC FieldValueLanguage
dc.contributor.authorSilva, Marcionilo-
dc.contributor.authorRamos, Ana S.-
dc.contributor.authorSimões, Sónia-
dc.date.accessioned2023-02-10T09:38:05Z-
dc.date.available2023-02-10T09:38:05Z-
dc.date.issued2021-
dc.identifier.issn2075-4701pt
dc.identifier.urihttps://hdl.handle.net/10316/105236-
dc.description.abstractThis work aims to investigate the joining of Ti6Al4V alloy to alumina by diffusion bonding using titanium interlayers: thin films (1 m) and commercial titanium foils (5 m). The Ti thin films were deposited by magnetron sputtering onto alumina. The joints were processed at 900, 950, and 1000 C, dwell time of 10 and 60 min, under contact pressure. Experiments without interlayer were performed for comparison purposes. Microstructural characterization of the interfaces was conducted by optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). The mechanical characterization of the joints was performed by nanoindentation to obtain hardness and reduced Young’s modulus distribution maps and shear strength tests. Joints processed without interlayer have only been achieved at 1000 C. Conversely, joints processed using Ti thin films as interlayer showed promising results at temperatures of 950 C for 60 min and 1000 C for 10 and 60 min, under low pressure. The Ti adhesion to the alumina is a critical aspect of the diffusion bonding process and the joints produced with Ti freestanding foils were unsuccessful. The nanoindentation results revealed that the interfaces show hardness and reduced Young modulus, which reflect the observed microstructure. The average shear strength values are similar for all joints tested (52 14 MPa for the joint processed without interlayer and 49 25 MPa for the joint processed with interlayer), which confirms that the use of the Ti thin film improves the diffusion bonding of the Ti6Al4V alloy to alumina, enabling a decrease in the joining temperature and time.pt
dc.language.isoengpt
dc.publisherMDPIpt
dc.relationPTDC/CTM-CTM/31579/2017—POCI- 01-0145-FEDER-031579pt
dc.relationUIDB/EMS/00285/2020pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectdiffusion bondingpt
dc.subjectthin filmpt
dc.subjecttitaniumpt
dc.subjectAl2O3pt
dc.subjectsputteringpt
dc.titleJoining Ti6Al4V to Alumina by Diffusion Bonding Using Titanium Interlayerspt
dc.typearticle-
degois.publication.firstPage1728pt
degois.publication.issue11pt
degois.publication.titleMetalspt
dc.peerreviewedyespt
dc.identifier.doi10.3390/met11111728pt
degois.publication.volume11pt
dc.date.embargo2021-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.researchunitCEMMPRE - Centre for Mechanical Engineering, Materials and Processes-
crisitem.author.orcid0000-0001-7049-1245-
crisitem.author.orcid0000-0002-8486-5436-
Appears in Collections:I&D CEMMPRE - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 29, 2024

WEB OF SCIENCETM
Citations

2
checked on May 2, 2023

Page view(s)

59
checked on May 7, 2024

Download(s)

43
checked on May 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons