Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/10512
DC FieldValueLanguage
dc.contributor.authorRong, Qinfen-
dc.contributor.authorEspanol, Maryceline-
dc.contributor.authorFreitas, Duarte Mota de-
dc.contributor.authorGeraldes, Carlos F. G. C.-
dc.date.accessioned2009-07-07T08:21:42Z-
dc.date.available2009-07-07T08:21:42Z-
dc.date.issued1993-12-
dc.identifier.citationBiochemistry. 32:49 (1993) 13490-13498en_US
dc.identifier.issn0006-2960-
dc.identifier.urihttps://hdl.handle.net/10316/10512-
dc.description.abstractWe used 7Li NMR spin-lattice (TI) and spin-spin (Tz) relaxation time measurements to investigate the binding of Li+ in human red blood cell (RBC) suspensions. In RBCs containing 1.4 mM Li+, the intracellular 7Li NMR T2 relaxation value (0.30 f 0.03 s) was much smaller than the corresponding TI value (6.0 f 0.1 s), yielding a ratio of TI to T2 of 20. For 1.5 mM LiCl solutions whose viscosities were adjusted to 5 CP with glycerol, the values of the T1/T2 ratios were as follows: 49 for unsealed RBC membrane (2.0 mg of protein/mL); 4.4 for spectrin (1.9 mg/mL); 1.5 for 5.4 mM 2,3-bisphosphoglycerate (BPG); 2.2 for 2.7 mM carbonmonoxyhemoglobin (COHb); 1.6 for 2.0 mM ATP; and 1.2 for a 50/50% (v/v) glycerol-water mixture. Intracellular viscosity and the electric field gradients experienced by Li+ when traversing the spectrin-actin network therefore are not responsible for the large values of the Tl/ T2 ratios observed in Li+-loaded RBCs. We conclude that the RBC membrane is the major Li+ binding site in Li+-loaded RBCs (KI=, 215 f 36 M-l) and that the binding of Li+ to COHb, BPG, spectrin-actin, or ATP is weak. Partially relaxed 7Li NMR spectra of Li+-containing RBC membrane suspensions indicated the presence of two relaxation components, one broad and one narrow. At the same extravesicular Li+ and protein concentrations, the TI values for right-side-out RBC vesicle suspensions were at least 2-fold larger than those for inside-out RBC vesicle suspensions; the inner layer of the RBC membrane, which has a larger percentage of anionic phospholipids than the outer layer, contributes mostly to Li+ binding.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsopenAccesseng
dc.titleLithium-7 NMR relaxation study of lithium binding in human erythrocytesen_US
dc.typearticleen_US
dc.identifier.doi10.1021/bi00212a014-
uc.controloAutoridadeSim-
item.fulltextCom Texto completo-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.languageiso639-1en-
item.openairetypearticle-
item.cerifentitytypePublications-
item.grantfulltextopen-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.orcid0000-0002-0837-8329-
Appears in Collections:FCTUC Ciências da Vida - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
Lithium-7 NMR relaxation study of lithium.pdf1.18 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.