Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/103705
Title: | Soil-Cement Mixtures Reinforced with Fibers: A Data-Driven Approach for Mechanical Properties Prediction | Authors: | Tinoco, Joaquim Correia, António Alberto S. Venda, Paulo da |
Keywords: | soil-cement mixtures; fibers; mechanical properties; machine learning; artificial neural networks | Issue Date: | 2021 | Project: | UIDB/04029/2020 UIDB/00102/2020 PTDC/ECICON/ 28382/2017 |
metadata.degois.publication.title: | Applied Sciences (Switzerland) | metadata.degois.publication.volume: | 11 | metadata.degois.publication.issue: | 17 | Abstract: | The reinforcement of stabilized soils with fibers arises as an interesting technique to overcome the two main limitations of the stabilized soils: the weak tensile/flexural strength and the higher brittleness of the behavior. These types of mixtures require extensive laboratory characterization since they entail the study of a great number of parameters, which consumes time and resources. Thus, this work presents an alternative approach to predict the unconfined compressive strength (UCS) and the tensile strength of soil-binder-water mixtures reinforced with short fibers, following a Machine Learning (ML) approach. Four ML algorithms (Artificial Neural Networks, Support Vector Machines, Random Forest and Multiple Regression) are explored for mechanical prediction of reinforced soil-binder-water mixtures with fibers. The proposed models are supported on representative databases with approximately 100 records for each type of test (UCS and splitting tensile strength tests) and on the consideration of sixteen properties of the composite material (soil, fibers and binder). The predictive models provide an accurate estimation (R2 higher than 0.95 for Artificial Neuronal Networks algorithm) of the compressive and the tensile strength of the soil-waterbinder- fiber mixtures. Additionally, the results of the proposed models are in line with the main experimental findings, i.e., the great effect of the binder content in compressive and tensile strength, and the significant effect of the type and the fiber properties in the assessment of the tensile strength. | URI: | https://hdl.handle.net/10316/103705 | ISSN: | 2076-3417 | DOI: | 10.3390/app11178099 | Rights: | openAccess |
Appears in Collections: | I&D CERES - Artigos em Revistas Internacionais I&D ISISE - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Soilcement-mixtures-reinforced-with-fibers-A-datadriven-approach-for-mechanical-properties-predictionApplied-Sciences-Switzerland.pdf | 2.05 MB | Adobe PDF | View/Open |
WEB OF SCIENCETM
Citations
5
checked on Nov 2, 2024
Page view(s)
84
checked on Oct 30, 2024
Download(s)
38
checked on Oct 30, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License