Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/103317
DC FieldValueLanguage
dc.contributor.authorMoniz, Inês-
dc.contributor.authorRamalho-Santos, João-
dc.contributor.authorBranco, Ana F.-
dc.date.accessioned2022-11-04T11:50:50Z-
dc.date.available2022-11-04T11:50:50Z-
dc.date.issued2022-03-29-
dc.identifier.issn1422-0067pt
dc.identifier.urihttps://hdl.handle.net/10316/103317-
dc.description.abstractMesenchymal stem cells reside under precise hypoxic conditions that are paramount in determining cell fate and behavior (metabolism, proliferation, differentiation, etc.). In this work, we show that different oxygen tensions promote a distinct proliferative response and affect the biosynthetic demand and global metabolic profile of umbilical cord-mesenchymal stem cells (UC-MSCs). Using both gas-based strategies and CoCl2 as a substitute for the costly hypoxic chambers, we found that specific oxygen tensions influence the fate of UC-MSCs differently. While 5% O2 potentiates proliferation, stimulates biosynthetic pathways, and promotes a global hypermetabolic profile, exposure to <1% O2 contributes to a quiescent-like cell state that relies heavily on anaerobic glycolysis. We show that using CoCl2 as a hypoxia substitute of moderate hypoxia has distinct metabolic effects, when compared with gas-based strategies. The present study also highlights that, while severe hypoxia regulates global translation via mTORC1 modulation, its effects on survival-related mechanisms are mainly modulated through mTORC2. Therefore, the experimental conditions used in this study establish a robust and reliable hypoxia model for UC-MSCs, providing relevant insights into how stem cells are influenced by their physiological environment, and how different strategies of modulating hypoxia may influence experimental outcomes.pt
dc.language.isoengpt
dc.relationCEECIND/00860/2018pt
dc.relationSTEM@REST Project (CENTRO-01-0145-FEDER-028871)pt
dc.relationCENTRO-01-0145-FEDER-000012- HealthyAging2020pt
dc.relationPOCI-01-0145-FEDER-007440pt
dc.relationUID/NEU/04539/2020pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectmesenchymal stem cellspt
dc.subjecthypoxiapt
dc.subjectmetabolismpt
dc.subjectmTORpt
dc.subjectcobalt chloridept
dc.subject.meshCell Differentiationpt
dc.subject.meshCell Hypoxiapt
dc.subject.meshCell Proliferationpt
dc.subject.meshCells, Culturedpt
dc.subject.meshHumanspt
dc.subject.meshHypoxiapt
dc.subject.meshOxygenpt
dc.subject.meshTOR Serine-Threonine Kinasespt
dc.subject.meshMesenchymal Stem Cellspt
dc.titleDifferential Oxygen Exposure Modulates Mesenchymal Stem Cell Metabolism and Proliferation through mTOR Signalingpt
dc.typearticle-
degois.publication.firstPage3749pt
degois.publication.issue7pt
degois.publication.titleInternational Journal of Molecular Sciencespt
dc.peerreviewedyespt
dc.identifier.doi10.3390/ijms23073749pt
degois.publication.volume23pt
dc.date.embargo2022-03-29*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitCNC - Center for Neuroscience and Cell Biology-
crisitem.author.researchunitCNC - Center for Neuroscience and Cell Biology-
crisitem.author.orcid0000-0002-0381-4101-
crisitem.author.orcid0000-0002-1172-4018-
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais
FCTUC Ciências da Vida - Artigos em Revistas Internacionais
Show simple item record

SCOPUSTM   
Citations

7
checked on Apr 29, 2024

WEB OF SCIENCETM
Citations

5
checked on May 2, 2024

Page view(s)

98
checked on May 7, 2024

Download(s)

52
checked on May 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons