Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/103261
Title: Viability Study of Machine Learning-Based Prediction of COVID-19 Pandemic Impact in Obsessive-Compulsive Disorder Patients
Authors: Tubío-Fungueiriño, María
Cernadas, Eva
Gonçalves, Óscar 
Segalas, Cinto
Bertolín, Sara
Mar-Barrutia, Lorea
Real, Eva
Fernández-Delgado, Manuel
Menchón, Jose M
Carvalho, Sandra
Alonso, Pino
Carracedo, Angel 
Fernández-Prieto, Montse
Keywords: COVID-19; OCD; Y-BOCS; classification; machine learning; obsessive-compulsive disorder; regression
Issue Date: 2022
Project: PTDC/PSIESP/ 29701/2017 
Xunta de Galicia 
Serial title, monograph or event: Frontiers in Neuroinformatics
Volume: 16
Abstract: Machine learning modeling can provide valuable support in different areas of mental health, because it enables to make rapid predictions and therefore support the decision making, based on valuable data. However, few studies have applied this method to predict symptoms' worsening, based on sociodemographic, contextual, and clinical data. Thus, we applied machine learning techniques to identify predictors of symptomatologic changes in a Spanish cohort of OCD patients during the initial phase of the COVID-19 pandemic.
URI: https://hdl.handle.net/10316/103261
ISSN: 1662-5196
DOI: 10.3389/fninf.2022.807584
Rights: openAccess
Appears in Collections:FPCEUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
fninf-16-807584.pdf1.17 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

4
checked on Sep 9, 2024

WEB OF SCIENCETM
Citations

3
checked on Sep 2, 2024

Page view(s)

81
checked on Oct 16, 2024

Download(s)

44
checked on Oct 16, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons