Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/95400
Title: Ionic liquid based functionalized materials for the development of multi-responsive electroactive hydrogels
Authors: Kanaan, Akel Ferreira
Orientador: Sousa, Hermínio José Cipriano de
Dias, Ana Maria Antunes
Keywords: ionic liquid-based copolymers; ionic liquid-based s-IPNs; polysaccharides; stimuli-responsive hydrogels; electro-active hydrogels; electro-assisted sorption/release; electro-mechanical actuation; copolímeros à base de líquidos iónicos; polissacarídeos; hidrogéis eletroativos; atuação eletromecânica; s-IPNs à base de líquidos iónicos; hidrogéis multi-responsívos; sorção/libertação eletro-assistida
Issue Date: 17-Feb-2021
Project: CNPq 200808/2014-1 
UID/EQU/00102/2019 
IF/00455/2013 
Place of publication or event: Coimbra
Abstract: The main objective of the present thesis was the development and characterization of novel electroactive ionic liquid-based polycationic hydrogels. These materials were obtained by the functionalization of natural-origin and/or synthetic polymers with an ionic liquid-based vinyl monomer (functionalized at the cation) by two different approaches, namely by the formation of semi-interpenetrating polymer networks (s-IPNs) and by copolymerization with a non-charged comonomer. Through this doctoral work, three different multi-responsive systems were developed targeting a broad range of applications, such as, drug delivery devices, bioseparators, soft actuators, tissue engineering scaffolds, iontophoretic patches and wound dressings. The first approach was employed to obtain multi-responsive s-IPNs hybrid structures based on natural polymers (starch and chitosan) and homopolymers/copolymers of poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl) and poly(2-hydroxyethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). In the case of the starch-based s-IPNs, results demonstrated that the sorption/release capacity of these hydrogels towards L-tryptophan (used as a model biomolecule) could be adjusted depending on the intensity of the applied DC voltage and/or sorption/release medium. It was also confirmed that the process employed to dry the hydrogels (oven and freeze-drying) has a major influence on the conductivity of the materials and that freeze-drying induced higher conductivity values. Furthermore, biological tests demonstrated that the prepared s-IPNs were able to guarantee fibroblasts viability. These newly obtained hybrid materials demonstrated to have potential to be employed for bio-separation processes and for the sustained delivery of specific charged-biomolecules. In the case of the chitosan-based s-IPNs it was demonstrated that the prepared hybrid hydrogels presented enhanced mechanical properties, water swelling capacities (at different pH and ionic strengths) and sorption capacities towards charged molecules when compared to pristine chitosan. Obtained s-IPN hydrogels also demonstrated to have modulated lidocaine hydrochloride permeation/delivery profiles at low current densities (0.56 mA/cm2) and as a function of their charge density. Moreover, biological tests showed that the prepared s-IPN hydrogels were non-hemolytic and presented potential hemostatic capability. These “smart” s-IPNs presented advantageous properties for the design of topical iontophoretic patches and/or hemostatic agents. The second approach was employed to obtain multi-responsive electro-actuating hydrogels based on poly(HEMA-co-BVImCl) copolymers. Studies were performed to evaluate the influence of surface properties on the actuating behavior of the hydrogels in different aqueous media, with different pH and ionic strength values. The different surface properties were obtained by simply employing different mold subtracts, with different hydrophobicities (namely Teflon® and glass) during the copolymer free radical polymerization in aqueous media. Obtained results demonstrated that hydrogels synthesized on Teflon® molds presented the highest electro-actuation capacity in aqueous media, with equivalent bending motion on both directions according to the polarization applied. Moreover, it was also noticed that hydrogels surface charge density and water swelling capacity could be modulated depending on the type of mold utilized during polymerization. Resulting soft stimuli-responsive materials can be regarded as “smart” platforms for the design of soft actuators and cell culture scaffolds for biomedical applications. Overall, this PhD thesis allows concluding that the functionalization of natural and/or synthetic polymers with ILs represents a viable and efficient strategy for the development of multi-responsive electroactive materials for applications in biomedicine, (bio)separation and electrochemistry.
O objetivo principal desta tese foi o desenvolvimento e caracterização de novos hidrogéis eletroativos policatiónicos à base de líquidos iónicos. Esses materiais foram obtidos pela funcionalização de polímeros de origem natural e/ou sintéticos com um monómero vinílico à base de líquidos iónico (funcionalizados no catião) por meio de duas diferentes abordagens, nomeadamente redes poliméricas semi-interpenetradas (s-IPNs) e copolimerização com um comonómero não carregado. Durante a realização do trabalho, foram desenvolvidos três sistemas multi-responsívos diferentes visando uma vasta gama de aplicações, por exemplo, dispositivos para a entrega de fármacos, bioseparadores, atuadores soft, scaffolds para engenharia de tecidos, pensos para iontoforese e para tratamento de feridas. A primeira abordagem consistiu na obtenção de s-IPNs híbridos multi-responsívos à base de polímeros naturais (amido e quitosano) e homopolímeros/copolímeros de poli(cloreto de 1-butil-3-vinilimidazólio) (poli(BVImCl) e poli(metacrilato de 2-hidroxietila-co-cloreto de 1-butil-3-vinilimidazólio) (poli(HEMA-co-BVImCl)). No caso dos hidrogéis s-IPNs à base de amido, os resultados demonstraram que a capacidade de sorção/entrega de L-triptofano, usado como biomolécula modelo, poderia ser otimizada consoante a diferença de potencial aplicada e/ou o tipo de meio utilizado na sorção/libertação. O processo de secagem utilizado nos hidrogéis (secagem em estufa e liofilização), provou ter uma influência significativa na condutividade dos materiais estudados, sendo que os foram sujeitos ao processo de liofilização apresentaram valores superiores de condutividade. Concomitantemente, a viabilidade de fibroblastos na presença dos s-IPNs foi comprovada com recurso a testes biológicos. Desta forma, os materiais híbridos e inovadores desenvolvidos nesta abordagem demonstraram potencial para serem utlizados em processos de biosseparação e para entrega contínua de biomoléculas carregadas específicas. No caso dos s-IPNs à base de quitosano, foi demonstrado que os hidrogéis híbridos desenvolvidos apresentaram melhores propriedades mecânicas, capacidades de entumecimento em água (em diferentes condições de pH e força iónica) e capacidades de sorção para moléculas carregadas, quando comparados com o quitosano puro. Os s-IPNs exibiram perfis modulares de permeação/entrega de lidocaína, a baixas intensidades de corrente (0.56 mA/cm2), em função da respetiva densidade de cargas. Além disso, após testes biológicos, os hidrogéis s-IPN provaram ser não-hemolíticos e hemostáticos. Estes s-IPNs “inteligentes” apresentaram propriedades vantajosas para a preparação de pensos tópicos para iontoforese e/ou pensos hemostáticos. A segunda abordagem estudada foi baseada na obtenção de copolímeros electroactuators híbridos multi-responsívos à base de hidrogéis de poli(HEMA-co-BVImCl). A influência das propriedades de superfícies no comportamento de atuação dos hidrogéis em diferentes meios aquosos (com diferentes valores de pH e força iónica), foi avaliada. Diferentes propriedades de superfície foram obtidas pela simples utilização de diferentes moldes com hidrofobicidade distintas, nomeadamente Teflon® e vidro, durante a copolimerização por polimerização radicalar livre, em meio aquoso. Os resultados demonstraram que os hidrogéis preparados em moldes de Teflon® apresentaram superior capacidade de eletroatuação em meio aquoso, com atuação mecânica equivalente em ambas direções, de acordo com a polaridade aplicada. Para além disso, foi também verificado que a densidade de carga na superfície dos hidrogéis e a capacidade de entumecimento em água pode ser modulada de acordo com o tipo de molde utilizado durante a polimerização. Os materiais responsivos a estímulos podem ser equiparados a plataformas “inteligentes” para a produção de atuadores soft e scaffolds para cultura celular em aplicações biomédicas. Em suma, a presente tese de doutoramento permitiu concluir que a funcionalização de polímeros naturais e/ou sintéticos, com ILs, representa uma estratégia viável e eficiente para o desenvolvimento de materiais eletroativos multi-responsívos para aplicações na biomedicina, biosseparação e eletroquímica.
Description: Tese no âmbito do doutoramento em Engenharia Química, apresentada ao Departamento de Engenharia Química da Faculdade de Ciências e Tecnologia da Universidade de Coimbra.
URI: http://hdl.handle.net/10316/95400
Rights: embargoedAccess
Appears in Collections:FCTUC Eng.Química - Teses de Doutoramento
UC - Teses de Doutoramento

Files in This Item:
File Description SizeFormat
Tese Akel Ferreira Kanaan.pdf4.76 MBAdobe PDFView/Open
Show full item record

Page view(s)

30
checked on Oct 22, 2021

Download(s)

22
checked on Oct 22, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons