Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/94723
Title: Modelos de Avaliação de Risco de Crédito: Aplicação de Machine Learning
Other Titles: Credit Risk Assessment Models: Machine Learning Application
Authors: Abreu, Mariana da Conceição Ferreira
Orientador: Godinho, Pedro Manuel Cortesão
Keywords: Machine Learning; Credit Scoring; Ensemble; Machine Learning; Credit Scoring; Ensemble
Issue Date: 29-Apr-2020
Serial title, monograph or event: Modelos de Avaliação de Risco de Crédito: Aplicação de Machine Learning
Place of publication or event: Coimbra
Abstract: Existem vários métodos que ao longo dos anos tem sido empregues na avaliação de risco de crédito, sobretudo, metodologias tradicionais como o Modelo de Análise Discriminante (ADi), Modelo Logit e Modelo Probit, e metodologias mais sofisticadas de Machine Learning, como Árvores de Classificação (AC), Random Forests (RF), Redes Neuronais (RN) e Support Vector Machines (SVM). Na revisão de literatura são apresentados alguns estudos que recorrem a metodologias tradicionais e a metodologias de Machine Learning. Estas últimas não só se apresentam teoricamente como são estudadas na prática para avaliar diferentes aplicações de risco de crédito, sendo aplicados a duas bases reais, disponíveis publicamente, uma referente ao cumprimento de pagamento de cartões de crédito em Taiwan e outra referente ao risco de crédito na Alemanha. Ambas as bases de dados incluem uma variável de resposta binária relativa ao risco de crédito. Em cada modelo experimentaram-se alguns meta-parâmetros, tendo a devida precaução na sua seleção, de forma a não repeti-los nas diferentes combinações do mesmo modelo e, consequentemente, de forma a evitar o overfitting.Este estudo efetua uma análise do desempenho dos modelos de Machine Learning individuais e também do desempenho de uma técnica de Ensemble baseada nos resultados obtidos pelos diferentes modelos, com intuito de determinar qual destes revela um melhor desempenho na avaliação de risco de crédito. A maioria dos resultados deste estudo empírico permitem concluir que os desempenhos da técnica de Ensemble são superiores aos dos modelos individuais. Também o modelo Random Forest realçou os melhores desempenhos de entre todos os modelos individuais.
There are several methods that over the years have been used in credit risk assessment, especially traditional methodologies such as the Discriminant Analysis Model (ADi), Logit Model and Probit Model, and more sophisticated Machine Learning methodologies, such as Classification Trees (AC), Random Forests (RF), Neural Networks (RN) and Support Vector Machines (SVM). In the literature review presents some studies that use traditional methodologies and Machine Learning methodologies. This last not only present themselves theoretically, but are studied in practice to evaluate different applications of credit risk, being applied to two real bases, publicly available, one referring to the fulfillment of credit card payments in Taiwan and the other referring to credit risk. in Germany. Both databases include a binary response variable for credit risk.In each model, some meta-parameters were experimented, taking due care in their selection, so as not to repeat them in the different combinations of the same model and, consequently, in order to avoid overfitting.This study performs an analysis of the performance of the individual Machine Learning models and also of the performance of an Ensemble technique based on the results obtained by the different models, in order to determine which one shows a better performance in the credit risk assessment. Most of the results of this empirical study allow us to conclude that the performances of the Ensemble technique are superior to those of the individual models. Also the Random Forest model highlighted the best performances among all individual models.
Description: Trabalho de Projeto do Mestrado em Economia apresentado à Faculdade de Economia
URI: http://hdl.handle.net/10316/94723
Rights: openAccess
Appears in Collections:UC - Dissertações de Mestrado

Files in This Item:
File Description SizeFormat
Trabalho_de_Projeto_MarianaAbreu­_2014210056.pdf1.1 MBAdobe PDFView/Open
Show full item record

Page view(s)

24
checked on Jul 22, 2021

Download(s)

30
checked on Jul 22, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons