Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/80267
Title: Variability modes in core flows inverted from geomagnetic field models
Authors: Pais, M. A. 
Anna Morozova 
Nathanaël Schaeffer 
Keywords: Physics - Geophysics; Physics - Geophysics
Issue Date: 19-Jun-2014
Volume: 200
Issue: 1
Abstract: The flow of liquid metal inside the Earth's core produces the geomagnetic field and its time variations. Understanding the variability of those deep currents is crucial to improve the forecast of geomagnetic field variations, which affect human spacial and aeronautic activities. Moreover, it may provide relevant information on the core dynamics. The main goal of this study is to extract and characterize the leading variability modes of core flows over centennial periods, and to assess their statistical robustness. To this end, we use flows that we invert from two geomagnetic field models (gufm1 and COV-OBS), and apply Principal Component Analysis and Singular Value Decomposition of coupled fields. The quasi geostrophic (QG) flows inverted from both geomagnetic field models show similar features. However, COV-OBS has a less energetic mean and larger time variability. The statistical significance of flow components is tested from analyses performed on subareas of the whole domain. Bootstrapping methods are also used to extract significant flow features required by both gufm1 and COV-OBS. Three main empirical circulation modes emerge, simultaneously constrained by both geomagnetic field models and expected to be robust against the particular a priori used to build them (large scale QG dynamics). Mode 1 exhibits three large vortices at medium/high latitudes, with opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interestingly accounts for most of the variations of the Earth's core angular momentum. In this mode, the regions close to the tangent cylinder and to the equator are correlated, and oscillate with a period between 80 and 90 years. Each of these two modes is energetic enough to alter the mean flow, sometimes reinforcing the eccentric gyre, and other times breaking it up into smaller circulations. The three main circulation modes added together to the mean flow account for about 70% of the flows variability, 90% of the root mean square total velocities, and 95% of the secular variation induced by the total flows. Direct physical interpretation of the computed modes is not straightforward. Nonethe-less, similarities found between the two first modes and time/spatial features identified in different studies of core dynamics, suggest that our approach can help to pinpoint the relevant physical processes inside the core on centennial timescales.
URI: http://hdl.handle.net/10316/80267
DOI: 10.1093/gji/ggu403
Rights: openAccess
Appears in Collections:I&D CGUC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
ggu403.pdf10.98 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

15
checked on May 29, 2020

WEB OF SCIENCETM
Citations

16
checked on Sep 14, 2020

Page view(s)

144
checked on Sep 29, 2020

Download(s)

142
checked on Sep 29, 2020

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.