Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/7764
DC FieldValueLanguage
dc.contributor.authorUlbrich, Michael-
dc.contributor.authorUlbrich, Stefan-
dc.contributor.authorVicente, Luís N.-
dc.date.accessioned2009-02-17T11:19:04Z-
dc.date.available2009-02-17T11:19:04Z-
dc.date.issued2004en_US
dc.identifier.citationMathematical Programming. 100:2 (2004) 379-410en_US
dc.identifier.urihttps://hdl.handle.net/10316/7764-
dc.description.abstractIn this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step. Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm.en_US
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleA globally convergent primal-dual interior-point filter method for nonlinear programmingen_US
dc.typearticleen_US
dc.identifier.doi10.1007/s10107-003-0477-4en_US
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypearticle-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-1097-6384-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
obra.pdf276.08 kBAdobe PDFView/Open
Show simple item record

SCOPUSTM   
Citations

152
checked on Oct 14, 2024

WEB OF SCIENCETM
Citations 1

139
checked on Oct 2, 2024

Page view(s) 50

571
checked on Nov 5, 2024

Download(s) 50

684
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.