Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/7764
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ulbrich, Michael | - |
dc.contributor.author | Ulbrich, Stefan | - |
dc.contributor.author | Vicente, Luís N. | - |
dc.date.accessioned | 2009-02-17T11:19:04Z | - |
dc.date.available | 2009-02-17T11:19:04Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.citation | Mathematical Programming. 100:2 (2004) 379-410 | en_US |
dc.identifier.uri | https://hdl.handle.net/10316/7764 | - |
dc.description.abstract | In this paper, the filter technique of Fletcher and Leyffer (1997) is used to globalize the primal-dual interior-point algorithm for nonlinear programming, avoiding the use of merit functions and the updating of penalty parameters. The new algorithm decomposes the primal-dual step obtained from the perturbed first-order necessary conditions into a normal and a tangential step, whose sizes are controlled by a trust-region type parameter. Each entry in the filter is a pair of coordinates: one resulting from feasibility and centrality, and associated with the normal step; the other resulting from optimality (complementarity and duality), and related with the tangential step. Global convergence to first-order critical points is proved for the new primal-dual interior-point filter algorithm. | en_US |
dc.language.iso | eng | eng |
dc.rights | openAccess | eng |
dc.title | A globally convergent primal-dual interior-point filter method for nonlinear programming | en_US |
dc.type | article | en_US |
dc.identifier.doi | 10.1007/s10107-003-0477-4 | en_US |
item.languageiso639-1 | en | - |
item.fulltext | Com Texto completo | - |
item.grantfulltext | open | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | article | - |
item.cerifentitytype | Publications | - |
crisitem.author.orcid | 0000-0003-1097-6384 | - |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
SCOPUSTM
Citations
152
checked on Oct 14, 2024
WEB OF SCIENCETM
Citations
1
139
checked on Oct 2, 2024
Page view(s) 50
571
checked on Nov 5, 2024
Download(s) 50
684
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.