Please use this identifier to cite or link to this item:
Title: Nitric oxide in brain: diffusion, targets and concentration dynamics in hippocampal subregions
Authors: Ledo, Ana 
Frade, João 
Barbosa, Rui M. 
Laranjinha, João 
Keywords: Nitric oxide measurement; Nitric oxide dynamics; Nitric oxide signalling; Neurodegeneration; Hippocampus
Issue Date: 2004
Citation: Molecular Aspects of Medicine. 25:1-2 (2004) 75-89
Abstract: Nitric oxide (NO[radical sign]) is a diffusible regulatory molecule involved in a wide range of physiological and pathological events. At the tissue level, a local and temporary increase in NO[radical sign] concentration is translated into a cellular signal. From our current knowledge of biological synthesis and decay, the kinetics and mechanisms that determine NO[radical sign] concentration dynamics in tissues are poorly understood. Generally, NO[radical sign] mediates its effects by stimulating (e.g., guanylate cyclase) or inhibiting (e.g., cytochrome oxidase) transition metal-containing proteins and by post-translational modification of proteins (e.g., formation of nitrosothiol adducts). The borderline between the physiological and pathological activities of NO[radical sign] is a matter of controversy, but tissue redox environment, supramolecular organization and compartmentalisation of NO[radical sign] targets are important features in determining NO[radical sign] actions. In brain, NO[radical sign] synthesis in the dependency of glutamate NMDA receptor is a paradigmatic example; the NMDA-subtype glutamate receptor triggers intracellular signalling pathways that govern neuronal plasticity, development, senescence and disease, suggesting a role for NO[radical sign] in these processes. Measurements of NO[radical sign] in the different subregions of hippocampus, in a glutamate NMDA receptor-dependent fashion, by means of electrochemical selective microsensors illustrate the concentration dynamics of NO[radical sign] in the sub-regions of this brain area. The analysis of NO[radical sign] concentration-time profiles in the hippocampus requires consideration of at least two interrelated issues, also addressed in this review. NO[radical sign] diffusion in a biological medium and regulation of NO[radical sign] activity.
DOI: 10.1016/j.mam.2004.02.010
Rights: openAccess
Appears in Collections:FFUC- Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
fileb4841f223bb4472e8815cc204b500dc3.pdf300.71 kBAdobe PDFView/Open
Show full item record

Page view(s) 50

checked on Aug 16, 2022

Download(s) 50

checked on Aug 16, 2022

Google ScholarTM




Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.