Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/4667
DC FieldValueLanguage
dc.contributor.authorRodrigues, José Francisco-
dc.contributor.authorUrbano, José Miguel-
dc.date.accessioned2008-09-01T11:36:11Z-
dc.date.available2008-09-01T11:36:11Z-
dc.date.issued1998en_US
dc.identifier.citationInternational Journal of Non-Linear Mechanics. 33:4 (1998) 555-566en_US
dc.identifier.urihttps://hdl.handle.net/10316/4667-
dc.description.abstractWe discuss the existence of weak solutions to a steady-state coupled system between a two-phase Stefan problem, with convection and non-Fourier heat diffusion, and an elliptic variational inequality traducing the non-Newtonian flow only in the liquid phase. In the Stefan problem for the p-Laplacian equation the main restriction comes from the requirement that the liquid zone is at least an open subset, a fact that leads us to search for a continuous temperature field. Through the heat convection coupling term, this depends on the q-integrability of the velocity gradient and the imbedding theorems of Sobolev. We show that the appropriate condition for the continuity to hold, combining these two powers, is pq> n. This remarkably simple condition, together with q> 3n/(n + 2), that assures the compactness of the convection term, is sufficient to obtain weak solvability results for the interesting space dimension cases n = 2 and n = 3.en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6TJ2-3SYS06P-1/1/cb47394863f129892f05efa43738440aen_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.subjectfree boundary problemsen_US
dc.subjectBoussinesq-Stefan problemen_US
dc.subjectnon-Newtonian flowen_US
dc.subjectthermomechanics of solidificationen_US
dc.subjectp-Laplacianen_US
dc.subjectvariational inequalitiesen_US
dc.titleOn the stationary Boussinesq-Stefan problem with constitutive power-lawsen_US
dc.typearticleen_US
dc.identifier.doi10.1016/s0020-7462(97)00041-3-
uc.controloAutoridadeSim-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.cerifentitytypePublications-
item.languageiso639-1en-
crisitem.author.researchunitCMUC - Centre for Mathematics of the University of Coimbra-
crisitem.author.orcid0000-0002-5715-2588-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
file224ec5ad0bd641ad891bab96e7d98e10.pdf1.03 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.