Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/4664
DC FieldValueLanguage
dc.contributor.authorCaldeira, Cristina-
dc.contributor.authorSilva, J. A. Dias da-
dc.date.accessioned2008-09-01T11:36:08Z-
dc.date.available2008-09-01T11:36:08Z-
dc.date.issued1998en_US
dc.identifier.citationJournal of Number Theory. 72:2 (1998) 153-173en_US
dc.identifier.urihttp://hdl.handle.net/10316/4664-
dc.description.abstractLet be an arbitrary field. Letpbe the characteristic of in case of finite characteristic and [infinity] if has characteristic 0. LetAbe a finite subset of . By [logical and]2 Awe denote the set {a+b  a, b[set membership, variant]Aanda[not equal to]b}. Forc[set membership, variant][logical and]2 A, let[nu](R)cbe one-half of the cardinality of the set of pairs (a, b) satisfyinga[not equal to]banda+b=c. Denote by[mu](R)ithe cardinality of the set {c[set membership, variant][logical and]2 A  [nu](R)c[greater-or-equal, slanted]i}. We prove that, fort=1, ..., [left floor]A/2[right floor], [summation operator]ti=1 [mu](R)i[greater-or-equal, slanted]t min{p, 2(A-t)-1}. For =0pandt=1 we get the Erdos-Heilbronn conjecture, first proved by J. A. Dias da Silva and Y. O. Hamidoune (Bull. London Math. Soc.26, 1994, 140-146).en_US
dc.description.urihttp://www.sciencedirect.com/science/article/B6WKD-45J4X77-1/1/ea7f8e39bdfe983402cedd28faf36069en_US
dc.format.mimetypeaplication/PDFen
dc.language.isoengeng
dc.rightsopenAccesseng
dc.titleA Pollard Type Result for Restricted Sumsen_US
dc.typearticleen_US
item.languageiso639-1en-
item.fulltextCom Texto completo-
item.grantfulltextopen-
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais
Files in This Item:
File Description SizeFormat
filea5b2ab55c41e4d8087dd0ef43f345830.pdf323.76 kBAdobe PDFView/Open
Show simple item record

Page view(s) 50

300
checked on Oct 13, 2020

Download(s) 50

209
checked on Oct 13, 2020

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.