Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/43977
Title: | Exact and Asymptotically Optimal Bandwidths for Kernel Estimation of Density Functionals | Authors: | Chacón, José E. Tenreiro, Carlos |
Issue Date: | 2011 | Project: | CMUC/FCT | metadata.degois.publication.title: | Methodology and Computing in Applied Probability | metadata.degois.publication.volume: | 14 | metadata.degois.publication.issue: | 3 | Abstract: | Given a density $f$ we pose the problem of estimating the density functional $\psi_r=\int f^{(r)}f$ for a non-negative even $r$ making use of kernel methods. This is a well-known problem but some of its features remained unexplored. We focus on the problem of bandwidth selection. Whereas all the previous studies concentrate on an asymptotically optimal bandwidth here we study the properties of exact, non-asymptotic ones, and relate them with the former. Our main conclusion is that, despite being asymptotically equivalent, for realistic sample sizes much is lost by using the asymptotically optimal bandwidth. In contrast, as a target for data-driven selectors we propose another bandwidth which retains the small sample performance of the exact one. | URI: | https://hdl.handle.net/10316/43977 | DOI: | 10.1007/s11009-011-9243-x | Rights: | embargoedAccess |
Appears in Collections: | I&D CMUC - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
gopt-author's version.pdf | 367.7 kB | Adobe PDF | View/Open |
SCOPUSTM
Citations
7
checked on Oct 28, 2024
WEB OF SCIENCETM
Citations
7
checked on Nov 2, 2024
Page view(s)
237
checked on Oct 29, 2024
Download(s)
248
checked on Oct 29, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.