Please use this identifier to cite or link to this item: http://hdl.handle.net/10316/14579
Title: Protein conformational plasticity and aggregation : transthyretin and δ-toxin as two case studies
Authors: Ferreira, Nuno Ricardo Santos Loureiro da Silva 
Orientador: Brito, Rui Manuel Pontes Meireles Ferreira de
Keywords: Proteínas
Issue Date: 15-Nov-2010
Citation: FERREIRA, Nuno Ricardo Santos Loureiro da Silva - Protein conformational plasticity and aggregation : transthyretin and δ-toxin as two case studies [em linha]. Coimbra : [s.n], 2010. [Consult. Dia Mês Ano]. Tese de doutoramento. Disponível na WWW:<http://hdl.handle.net/10316/14579>
Serial title, monograph or event: Protein conformational plasticity and aggregation : transthyretin and δ-toxin as two case studies
Place of publication or event: Coimbra
Abstract: Os organismos vivos possuem atributos comuns que os distinguem do mundo inorgânico. Uma rede complexa de interacções entre moléculas orgânicas propicia a existência e a perpetuação da vida. As proteínas são uma das mais extraordinárias classes de biomoléculas, participando activamente em todos os processos biológicos. Esta ubiquidade das proteínas deve-se à sua relativa plasticidade conformacional, um requisito importante nas reacções bioquímicas, processos dinâmicos por definição. A maioria das proteínas tem uma estrutura tridimensional bem definida, essencial para a sua função biológica. Muitas das doenças hoje conhecidas têm a sua origem num incorrecto funcionamento das proteínas. O estudo da relação existente entre a estrutura de uma dada biomolécula e a sua dinâmica, é um dos tópicos mais importantes na compreensão dos mecanismos moleculares de múltiplas patologias. Relativamente a esta temática, duas proteínas foram o sujeito de estudo na elaboração desta tese. Foram utilizadas técnicas experimentais bem como protocolos computacionais, onde diferentes aspectos biofísicos foram abordados. A bactéria Staphylococcus aureus é responsável por inúmeros casos de septicémia. Umas das toxinas excretadas pela bactéria para o plasma, a d-toxina, é responsável pela desintegração membranar em organismos eucarióticos. Durante o mecanismo infeccioso, o peptídeo experiencia a influência de diferentes ambientes químicos, e por conseguinte com impacto na sua conformação tridimensional. A estrutura anfipática helical do peptídeo foi estudada por ressonância magnética nuclear (NMR). Simulações moleculares foram também produzidas no estudo da plasticidade conformacional e propensão à agregação do peptídeo em solução. A interacção do peptídeo com membranas foi também estudado por dinâmica molecular. Os resultados evidenciam que o estado de agregação do peptídeo pode ser relevante para o processo lítico. A transtirretina (TTR) humana é uma das muitas proteínas envolvidas em doenças amilóides. Dependendo da amiloidogeneceidade da variante proteica, a estabilidade do complexo tetramérico nativo é alterado, ocorrendo dissociação e formação de espécies monoméricas com tendência para agregar. Os agregados solúveis e as fibras amilóides insolúveis são responsáveis pelas alterações morfológicas e morte celular observadas nestas patologias. Um método computacional baseado em acoplagem molecular (“docking”) utilizando dados experimentais foi desenvolvido nesta tese. O objectivo do protocolo centrou-se na modelação molecular de um modelo protofilamentar, a unidade elementar das fibras amilóides. Os modelos polimórficos obtidos foram agrupados de acordo com a sua periodicidade helical, para posterior análise das interfaces proteicas e qualidade estereoquímica das estruturas. Os modelos produzidos poderão ter um impacto significativo em estudos terapêuticos com o objectivo de produzir fármacos que inibam a formação das fibras amilóides.
All living organisms possess common attributes that distinguishes them from the surrounding inorganic matter. A complex network of interacting organic molecules are responsible for the existence and perpetual of life. Among the most extraordinary biomolecules are proteins. Proteins are the workhorses of life, they actively participate in all biological processes. This is accomplished through an intrinsic conformational plasticity, a requisite in all biochemical reactions inherently dynamic processes. For most proteins a correct three dimensional structure is essential for its biological function. It is a fact that many diseases can be traced back to malfunction of proteins. Understanding the underlying connection between the biomolecule structure and its dynamics, is thus essential for current day medicine. Throughout this thesis, two proteins were the subject of study using both experimental and computational techniques. Different biophysical aspects were focused stressing the importance of the usage of different approaches to get complementary views. d-lysin is a small peptide excreted by the bacteria Staphylococcus aureus, responsible for the disruption of eukaryotic membranes in infection conditions. On its way to the membrane, the peptide experience subtle chemical environment changes with consequences on peptide conformation. The amphyphatic helical structure of this peptide was studied using nuclear magnetic resonance (NMR), and its conformational plasticity and propensity for aggregation in solution was assessed through molecular dynamics (MD) simulations and NMR. The first stages of the lytic process were also modeled by analyzing MD trajectories describing the interaction of the peptide with a zwiterionic membrane. The results show that peptide aggregation may play a key role in the process. Transthyretin (TTR) is one of the many proteins known to be involved in human amyloid diseases. Depending on the protein variant amyloidogenicity, the native tetrameric complex dissociates into monomeric species with high tendency for aggregation. Soluble aggregates and insoluble amyloid fibrils are responsible for the morphological alterations and cell observed in these pathologies. We developed a computational method using protein docking driven by experimental data, to build a high resolution molecular model of the elementary units that constitute the fibrils. We obtained a polymorphic set of protofilament models, further characterized in terms of helical periodicities and interface match. The overall stereochemical quality of the structures was assessed. This models may be a valuable instrument in the rational design of compounds with therapeutic potential to inhibit amyloid fibril formation.
Description: Tese de doutoramento em Química (Química Biológica), apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra
URI: http://hdl.handle.net/10316/14579
Rights: openAccess
Appears in Collections:FCTUC Química - Teses de Doutoramento

Files in This Item:
File Description SizeFormat
Tese Nuno Ferreira.pdf16.83 MBAdobe PDFView/Open
Show full item record

Page view(s)

282
checked on Aug 19, 2022

Download(s) 20

1,226
checked on Aug 19, 2022

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.