Please use this identifier to cite or link to this item:
https://hdl.handle.net/10316/116155
Title: | A Parzen-Rosenblatt type density estimator for circular data: exact and asymptotic optimal bandwidths | Authors: | Tenreiro, Carlos | Keywords: | Parzen-Rosenblatt type density estimator; circular data; exact and asymptotic optimal bandwidths | Issue Date: | Aug-2024 | Publisher: | Taylor and Francis | Project: | info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/00324/2020 | metadata.degois.publication.title: | Communications in Statistics - Theory and Methods | metadata.degois.publication.volume: | 53 | metadata.degois.publication.issue: | 20 | Abstract: | For the Parzen-Rosenblatt type density estimator for circular data we prove the existence of a minimizer, h_{MISE}(f;K,n), of its exact mean integrated squared error (MISE) and show that it is asymptotically equivalent to the bandwidth h_{AMISE}(f;K,n) that minimizes the leading terms of the MISE, together with the order of convergence of the relative error h_{AMISE}(f;K,n)/h_{MISE}(f;K,n)-1. Some small and moderate sample size comparisons between the two bandwidths are also presented when the underlying density is a mixture of von Mises densities. | URI: | https://hdl.handle.net/10316/116155 | ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610926.2023.2264996 | Rights: | embargoedAccess |
Appears in Collections: | FCTUC Matemática - Artigos em Revistas Internacionais |
Files in This Item:
File | Description | Size | Format | Existing users please |
---|---|---|---|---|
prcd-author's version.pdf | article | 235.7 kB | Adobe PDF | Embargoed until August 1, 2025 Request a copy |
Page view(s)
65
checked on Nov 5, 2024
Download(s)
1
checked on Nov 5, 2024
Google ScholarTM
Check
Altmetric
Altmetric
This item is licensed under a Creative Commons License