Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/116155
Title: A Parzen-Rosenblatt type density estimator for circular data: exact and asymptotic optimal bandwidths
Authors: Tenreiro, Carlos 
Keywords: Parzen-Rosenblatt type density estimator; circular data; exact and asymptotic optimal bandwidths
Issue Date: Aug-2024
Publisher: Taylor and Francis
Project: info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB/00324/2020 
metadata.degois.publication.title: Communications in Statistics - Theory and Methods
metadata.degois.publication.volume: 53
metadata.degois.publication.issue: 20
Abstract: For the Parzen-Rosenblatt type density estimator for circular data we prove the existence of a minimizer, h_{MISE}(f;K,n), of its exact mean integrated squared error (MISE) and show that it is asymptotically equivalent to the bandwidth h_{AMISE}(f;K,n) that minimizes the leading terms of the MISE, together with the order of convergence of the relative error h_{AMISE}(f;K,n)/h_{MISE}(f;K,n)-1. Some small and moderate sample size comparisons between the two bandwidths are also presented when the underlying density is a mixture of von Mises densities.
URI: https://hdl.handle.net/10316/116155
ISSN: 0361-0926
1532-415X
DOI: 10.1080/03610926.2023.2264996
Rights: embargoedAccess
Appears in Collections:FCTUC Matemática - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat Existing users please
prcd-author's version.pdfarticle235.7 kBAdobe PDFEmbargoed until August 1, 2025    Request a copy
Show full item record

Page view(s)

65
checked on Nov 5, 2024

Download(s)

1
checked on Nov 5, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons