Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/113861
DC FieldValueLanguage
dc.contributor.authorOliveira, Alexandre C.-
dc.contributor.authorFilipe, Hugo A. L.-
dc.contributor.authorLoura, Luís M. S.-
dc.date.accessioned2024-03-07T10:38:49Z-
dc.date.available2024-03-07T10:38:49Z-
dc.date.issued2023-02-28-
dc.identifier.issn1420-3049pt
dc.identifier.urihttps://hdl.handle.net/10316/113861-
dc.description.abstractFluorescence probes are indispensable tools in biochemical and biophysical membrane studies. Most of them possess extrinsic fluorophores, which often constitute a source of uncertainty and potential perturbation to the host system. In this regard, the few available intrinsically fluorescent membrane probes acquire increased importance. Among them, cis- and trans-parinaric acids (c-PnA and t-PnA, respectively) stand out as probes of membrane order and dynamics. These two compounds are long-chained fatty acids, differing solely in the configurations of two double bonds of their conjugated tetraene fluorophore. In this work, we employed all-atom and coarse-grained molecular dynamics simulations to study the behavior of c-PnA and t-PnA in lipid bilayers of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), representative of the liquid disordered and solid ordered lipid phases, respectively. All-atom simulations indicate that the two probes show similar location and orientation in the simulated systems, with the carboxylate facing the water/lipid interface and the tail spanning the membrane leaflet. The two probes establish interactions with the solvent and lipids to a similar degree in POPC. However, the almost linear t-PnA molecules have tighter lipid packing around them, especially in DPPC, where they also interact more with positively charged lipid choline groups. Probably for these reasons, while both probes show similar partition (assessed from computed free energy profiles across bilayers) to POPC, t-PnA clearly partitions more extensively than c-PnA to the gel phase. t-PnA also displays more hindered fluorophore rotation, especially in DPPC. Our results agree very well with experimental fluorescence data from the literature and allow deeper understanding of the behavior of these two reporters of membrane organization.pt
dc.language.isoengpt
dc.publisherMDPIpt
dc.relationThis research was funded by the European Regional Development Fund, through COMPETE2020-Operational Program for Competitiveness and Internationalization, and Portuguese funds via FCT-Fundação para a Ciência e a Tecnologia, under projects UIDB/00313/2020 and UIDP/00313/2020 (Portugal). H.A.L.F. was funded by Programa Operacional Regional do Centro (CENTRO-04-3559-FSE-000162) within the European Social Fund (ESF). A.C.O. acknowledges FCT for the PhD grant SFRH/BD/120934/2016, funded through MCTES and also co-funded by EU through ESF, “Programa Operacional Regional Centro”.pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectfluorescence spectroscopypt
dc.subjectlipid membranespt
dc.subjectmembrane probept
dc.subjectmolecular dynamics simulationspt
dc.subject.meshMolecular Dynamics Simulationpt
dc.subject.meshPhosphatidylcholinespt
dc.subject.meshLipid Bilayerspt
dc.subject.meshFluorescent Dyespt
dc.titleFluorescent Probes cis- and trans-Parinaric Acids in Fluid and Gel Lipid Bilayers: A Molecular Dynamics Studypt
dc.typearticle-
degois.publication.firstPage2241pt
degois.publication.issue5pt
degois.publication.titleMoleculespt
dc.peerreviewedyespt
dc.identifier.doi10.3390/molecules28052241pt
degois.publication.volume28pt
dc.date.embargo2023-02-28*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.researchunitCQC - Coimbra Chemistry Centre-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.parentresearchunitFaculty of Sciences and Technology-
crisitem.author.orcid0000-0001-6935-4307-
crisitem.author.orcid0000-0002-1051-2312-
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais
FCTUC Química - Artigos em Revistas Internacionais
I&D CQC - Artigos em Revistas Internacionais
FFUC- Artigos em Revistas Internacionais
Show simple item record

Page view(s)

13
checked on May 8, 2024

Download(s)

1
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons