Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/110051
DC FieldValueLanguage
dc.contributor.authorTravasso, Rui D. M.-
dc.contributor.authorCorvera Poiré, Eugenia-
dc.contributor.authorCastro, Mário-
dc.contributor.authorRodríguez-Manzaneque, Juan Carlos-
dc.contributor.authorHernández-Machado, A.-
dc.date.accessioned2023-11-14T11:56:02Z-
dc.date.available2023-11-14T11:56:02Z-
dc.date.issued2011-
dc.identifier.issn1932-6203pt
dc.identifier.urihttps://hdl.handle.net/10316/110051-
dc.description.abstractUnderstanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools.pt
dc.description.sponsorshipThis work was supported by Fundação para a Ciencia e Tecnologia (http://www.fct.mctes.pt), project PTDC/SAU-ENB/110354/2009; Fundação Calouste Gulbenkian (http://www.gulbenkian.pt/), Estımulo a Investigação Prize; CONACyT (http://www.conacyt.mx/), project 83149; Instituto de Salud Carlos III (http:// www.isciii.es/), project EMER07/055; Spanish Ministry of Science and Innovation (http://www.micinn.es/), projects FIS2009-12964-C05-02 and FIS2009-12964-C05- 03.pt
dc.language.isoengpt
dc.publisherPublic Library of Sciencept
dc.relationPTDC/SAU-ENB/110354/2009pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subject.meshAngiogenesis Inducing Agentspt
dc.subject.meshAnimalspt
dc.subject.meshCapillariespt
dc.subject.meshCell Proliferationpt
dc.subject.meshChemotaxispt
dc.subject.meshDiffusionpt
dc.subject.meshMicept
dc.subject.meshNeoplasmspt
dc.subject.meshNeovascularization, Pathologicpt
dc.subject.meshModels, Biologicalpt
dc.subject.meshOrganogenesispt
dc.titleTumor angiogenesis and vascular patterning: a mathematical modelpt
dc.typearticle-
degois.publication.firstPagee19989pt
degois.publication.issue5pt
degois.publication.titlePLoS ONEpt
dc.peerreviewedyespt
dc.identifier.doi10.1371/journal.pone.0019989pt
degois.publication.volume6pt
dc.date.embargo2011-01-01*
uc.date.periodoEmbargo0pt
item.fulltextCom Texto completo-
item.grantfulltextopen-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
crisitem.author.orcid0000-0001-6078-0721-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Files in This Item:
Show simple item record

Page view(s)

88
checked on Oct 9, 2024

Download(s)

31
checked on Oct 9, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons