Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/109639
Title: A stable and reproducible human blood-brain barrier model derived from hematopoietic stem cells
Authors: Cecchelli, Romeo
Aday, Sezin
Sevin, Emmanuel
Almeida, Catarina 
Culot, Maxime
Dehouck, Lucie
Coisne, Caroline
Engelhardt, Britta
Dehouck, Marie-Pierre 
Ferreira, Lino 
Issue Date: 2014
Publisher: Public Library of Science
Project: This work was supported by a Marie Curie-Reintegration Grant (FP7-People-2007-4-3-IRG; contract no 230929), funds of FEDER through the ‘‘Programa Operacional Factores de Competitividade- Compete’’ and Portuguese funds through FCT-Science and Technology Foundation (PTDC/CTM/099659/2008, PEst-C/ SAU/LA0001/2013–2014; and SFRH/BD/42871/2008, a fellowship to S.A.), COMPETE funding (Project ‘‘Stem cell based platforms for Regenerative and Therapeutic Medicine’’, Centro-07-ST24-FEDER-002008), FP7 (contracts 201024 and 202213 (European Stroke Network)) and PRIM (from the region Nord-Pas de Calais (France)). 
Serial title, monograph or event: PLoS ONE
Volume: 9
Issue: 6
Abstract: The human blood brain barrier (BBB) is a selective barrier formed by human brain endothelial cells (hBECs), which is important to ensure adequate neuronal function and protect the central nervous system (CNS) from disease. The development of human in vitro BBB models is thus of utmost importance for drug discovery programs related to CNS diseases. Here, we describe a method to generate a human BBB model using cord blood-derived hematopoietic stem cells. The cells were initially differentiated into ECs followed by the induction of BBB properties by co-culture with pericytes. The brain-like endothelial cells (BLECs) express tight junctions and transporters typically observed in brain endothelium and maintain expression of most in vivo BBB properties for at least 20 days. The model is very reproducible since it can be generated from stem cells isolated from different donors and in different laboratories, and could be used to predict CNS distribution of compounds in human. Finally, we provide evidence that Wnt/β-catenin signaling pathway mediates in part the BBB inductive properties of pericytes.
URI: https://hdl.handle.net/10316/109639
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0099733
Rights: openAccess
Appears in Collections:IIIUC - Artigos em Revistas Internacionais
I&D CNC - Artigos em Revistas Internacionais

Show full item record

Page view(s)

55
checked on Apr 24, 2024

Download(s)

15
checked on Apr 24, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons