Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/108755
DC FieldValueLanguage
dc.contributor.authorSantos, S. P. Amor dos-
dc.contributor.authorCarvalho, J.-
dc.contributor.authorFiolhais, M. C. N.-
dc.contributor.authorGalhardo, B.-
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-09-11T14:46:20Z-
dc.date.available2023-09-11T14:46:20Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/10316/108755-
dc.description.abstractA search is conducted for both resonant and non-resonant high-mass new phenomena in dielectron and dimuon final states. The search uses 3.2fb−1 of proton–proton collision data, collected at s=13TeV by the ATLAS experiment at the LHC in 2015. The dilepton invariant mass is used as the discriminating variable. No significant deviation from the Standard Model prediction is observed; therefore limits are set on the signal model parameters of interest at 95% credibility level. Upper limits are set on the cross-section times branching ratio for resonances decaying to dileptons, and the limits are converted into lower limits on the resonance mass, ranging between 2.74 TeV and 3.36 TeV, depending on the model. Lower limits on the ℓℓqq contact interaction scale are set between 16.7 TeV and 25.2 TeV, also depending on the model.pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Ar-menia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbai-jan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COL-CIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Re-public; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Mo-rocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Knut and Alice Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Région Au-vergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; Generalitat de Catalunya, Generalitat Valen-ciana, Spain; the Royal Society and Leverhulme Trust, United King-dom. The crucial computing support from all WLCG partners is ac-knowledged gratefully, in particular from CERN, the ATLAS Tier-1facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Swe-den), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref.[57].pt
dc.language.isoengpt
dc.publisherElsevierpt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titleSearch for high-mass new phenomena in the dilepton final state using proton–proton collisions at s=13TeV with the ATLAS detectorpt
dc.typearticle-
degois.publication.firstPage372pt
degois.publication.lastPage392pt
degois.publication.titlePhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physicspt
dc.peerreviewedyespt
dc.identifier.doi10.1016/j.physletb.2016.08.055pt
degois.publication.volume761pt
dc.date.embargo2016-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitCFisUC – Center for Physics of the University of Coimbra-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-3015-7821-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

41
checked on May 8, 2024

Download(s)

25
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons