Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/107724
DC FieldValueLanguage
dc.contributor.authorSantos, S. P. Amor dos-
dc.contributor.authorFiolhais, M. C. N.-
dc.contributor.authorGalhardo, B.-
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-07-28T11:23:47Z-
dc.date.available2023-07-28T11:23:47Z-
dc.date.issued2018-
dc.identifier.urihttps://hdl.handle.net/10316/107724-
dc.description.abstractCharged Higgs bosons produced either in top-quark decays or in association with a top-quark, subsequently decaying via H± → τ±ντ, are searched for in 36.1 fb−1 of proton-proton collision data at s=13 TeV recorded with the ATLAS detector. Depending on whether the top-quark produced together with H± decays hadronically or leptonically, the search targets τ+jets and τ+lepton final states, in both cases with a hadronically decaying τ-lepton. No evidence of a charged Higgs boson is found. For the mass range of mH± = 90–2000 GeV, upper limits at the 95% confidence level are set on the production cross-section of the charged Higgs boson times the branching fraction ℬ (H±→ τ±ντ) in the range 4.2–0.0025 pb. In the mass range 90–160 GeV, assuming the Standard Model cross-section for tt¯ production, this corresponds to upper limits between 0.25% and 0.031% for the branching fraction ℬ(t→bH±)×ℬ(H±→τ±ντ).pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sk lodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, R egion Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref. [95].pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectBeyond Standard Modelpt
dc.subjectHadron-Hadron scattering (experiments)pt
dc.subjectHiggs physicspt
dc.titleSearch for charged Higgs bosons decaying via H ± → τ ± ντ in the τ+jets and τ+lepton final states with 36 fb−1 of pp collision data recorded at √s=13 TeV with the ATLAS experimentpt
dc.typearticle-
degois.publication.firstPage139pt
degois.publication.issue9pt
degois.publication.titleJournal of High Energy Physicspt
dc.peerreviewedyespt
dc.identifier.doi10.1007/JHEP09(2018)139pt
degois.publication.volume2018pt
dc.date.embargo2018-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons