Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/107685
DC FieldValueLanguage
dc.contributor.authorFonte, C. C.-
dc.contributor.authorGonçalves, L. M. S.-
dc.date.accessioned2023-07-27T08:21:42Z-
dc.date.available2023-07-27T08:21:42Z-
dc.date.issued2018-
dc.identifier.issn2194-9034pt
dc.identifier.urihttps://hdl.handle.net/10316/107685-
dc.description.abstractThe aim of this article is to assess if the data provided by soft classifiers and uncertainty measures can be used to identify regions with different levels of accuracy in a classified image. To this aim a soft Bayesian classifier was used, which enables the assignment of classifications confidence levels to all pixels. Two uncertainty measures were also used, namely the Relative Maximum Deviation (RMD) uncertainty measure and the Normalized Entropy (NE). The approach was tested on a case study. A multispectral IKONOS image was classified and the classification uncertainty and confidence where computed and analysed. Regions with different levels of uncertainty and confidence were identified. Reference datasets were then used to assess the classification accuracy of the whole study area and also in the regions with different levels of uncertainty and confidence. A comparative analysis was made on the variation of accuracy and classification uncertainty and confidence along the map and per class. The results show that for the regions with more uncertainty or less confidence the spatially constrained confusion matrices always generate lower values of global accuracy than for global accuracy of the regions with less uncertainty or more confidence. The analysis of the user’s and producer’s accuracy also shows the same general tendency. Proposals are then made on methodologies to use the information provided by the uncertainty and confidence to identify less reliable regions and also to improve classification results using fully automated approaches.pt
dc.language.isoengpt
dc.publisherInternational Society for Photogrammetry and Remote Sensingpt
dc.relationUID/MULTI/ 00308/2013pt
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectMultispectral imagespt
dc.subjectClassificationpt
dc.subjectUncertaintypt
dc.subjectConfidencept
dc.subjectAccuracypt
dc.subjectSpatial variationpt
dc.titleIdentification of low accuracy regions in land cover maps using uncertainty measures and classification confidencept
dc.typearticle-
degois.publication.firstPage201pt
degois.publication.lastPage208pt
degois.publication.issue4pt
degois.publication.titleInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archivespt
dc.peerreviewedyespt
dc.identifier.doi10.5194/isprs-archives-XLII-4-201-2018pt
degois.publication.volume42pt
dc.date.embargo2018-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.fulltextCom Texto completo-
item.openairetypearticle-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.researchunitINESC Coimbra – Institute for Systems Engineering and Computers at Coimbra-
crisitem.author.orcid0000-0001-9408-8100-
Appears in Collections:I&D INESCC - Artigos em Revistas Internacionais
FCTUC Matemática - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

58
checked on May 8, 2024

Download(s)

36
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons