Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/106299
DC FieldValueLanguage
dc.contributor.authorFiolhais, M. C. N.-
dc.contributor.authorGonçalo, R.-
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-03-29T08:54:26Z-
dc.date.available2023-03-29T08:54:26Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/106299-
dc.description.abstractInclusive and differential cross-sections for the production of top quarks in association with a photon are measured with proton-proton collision data corresponding to an integrated luminosity of 139 fb−1. The data were collected by the ATLAS detector at the LHC during Run 2 between 2015 and 2018 at a centre-of-mass energy of 13 TeV. The measurements are performed in a fiducial volume defined at parton level. Events with exactly one photon, one electron and one muon of opposite sign, and at least two jets, of which at least one is b-tagged, are selected. The fiducial cross-section is measured to be 39.6−2.3+2.7 fb. Differential cross-sections as functions of several observables are compared with state-of-the-art Monte Carlo simulations and next-to-leading-order theoretical calculations. These include cross-sections as functions of photon kinematic variables, angular variables related to the photon and the leptons, and angular separations between the two leptons in the event. All measurements are in agreement with the predictions from the Standard Model.pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support sta from our institutions without whom ATLAS could not be operated e ciently. Concerning reference [10], we thank the authors, in particular M. Worek, for fruitful discussions and for providing dedicated theory predictions for our measurements. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZ S, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Sk lodowska-Curie Actions and COST, European Union; Investissements d'Avenir Labex, Investissements d'Avenir Idex and ANR, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co- nanced by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; G oran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (U.K.) and BNL (U.S.A.), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in ref.[73].pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.subjectHadron-Hadron scattering (experiments)pt
dc.subjectTop physicspt
dc.titleMeasurements of inclusive and differential cross-sections of combined tt¯ γ and tWγ production in the eμ channel at 13 TeV with the ATLAS detectorpt
dc.typearticle-
degois.publication.firstPage49pt
degois.publication.issue9pt
degois.publication.titleJournal of High Energy Physicspt
dc.peerreviewedyespt
dc.identifier.doi10.1007/JHEP09(2020)049pt
degois.publication.volume2020pt
dc.date.embargo2020-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-3826-3442-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

Page view(s)

55
checked on May 8, 2024

Download(s)

30
checked on May 8, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons