Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/106040
DC FieldValueLanguage
dc.contributor.authorFiolhais, M. C. N.-
dc.contributor.authorVeloso, F.-
dc.contributor.authorWolters, H.-
dc.contributor.authorATLAS Collaboration-
dc.date.accessioned2023-03-16T11:31:07Z-
dc.date.available2023-03-16T11:31:07Z-
dc.date.issued2020-
dc.identifier.urihttps://hdl.handle.net/10316/106040-
dc.description.abstractThe inclusive top quark pair (t ¯t) production cross-section σt ¯t has been measured in proton–proton collisions at √ s = 13 TeV, using 36.1fb−1 of data collected in 2015–2016 by the ATLAS experiment at the LHC. Using events with an opposite-charge eμ pair and b-tagged jets, the cross-section is measured to be: σt ¯t = 826.4 ± 3.6 (stat) ± 11.5 (syst) ± 15.7 (lumi) ±1.9 (beam) pb, where the uncertainties reflect the limited size of the data sample, experimental and theoretical systematic effects, the integrated luminosity, and the LHC beam energy, giving a total uncertainty of 2.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. It is used to determine the top quark pole mass via the dependence of the predicted cross-section on mpole t , giving mpole t = 173.1+2.0 −2.1 GeV. It is also combined with measurements at √ s = 7 TeV and √ s = 8 TeV to derive ratios and double ratios of t ¯t and Z cross-sections at different energies. The same event sample is used to measure absolute and normalised differential cross-sections as functions of singlelepton and dilepton kinematic variables, and the results are compared with predictions from various Monte Carlo event generators.pt
dc.description.sponsorshipWe thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS,MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS and CEA-DRF/IRFU, France; SRNSFG, Georgia; BMBF, HGF and MPG, Germany; GSRT, Greece; RGC and Hong Kong SAR, China; ISF and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russia Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, CANARIE, Compute Canada and CRC, Canada; ERC, ERDF, Horizon 2020, Marie Skłodowska-Curie Actions and COST, European Union; Investissements d’Avenir Labex, Investissements d’Avenir Idex and ANR,France;DFGandAvHFoundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF, Greece; BSF-NSF and GIF, Israel; CERCA Programme Generalitat de Catalunya and PROMETEO Programme Generalitat Valenciana, Spain; Göran Gustafssons Stiftelse, Sweden; The Royal Society and Leverhulme Trust, United Kingdom. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN, theATLAS Tier-1 facilities at TRIUMF (Canada),NDGF(Denmark, Norway, Sweden), CC-IN2P3 (France),KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), the Tier-2 facilities worldwide and large non-WLCG resource providers. Major contributors of computing resources are listed in Ref. [110].pt
dc.language.isoengpt
dc.publisherSpringer Naturept
dc.rightsopenAccesspt
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt
dc.titleMeasurement of the tt¯ production cross-section and lepton differential distributions in eμ dilepton events from pp collisions at √s=13TeV with the ATLAS detectorpt
dc.typearticle-
degois.publication.firstPage528pt
degois.publication.issue6pt
degois.publication.titleEuropean Physical Journal Cpt
dc.peerreviewedyespt
dc.identifier.doi10.1140/epjc/s10052-020-7907-9pt
degois.publication.volume80pt
dc.date.embargo2020-01-01*
uc.date.periodoEmbargo0pt
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairetypearticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextCom Texto completo-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.researchunitLIP – Laboratory of Instrumentation and Experimental Particle Physics-
crisitem.author.orcid0000-0002-9588-1773-
Appears in Collections:FCTUC Física - Artigos em Revistas Internacionais
Show simple item record

SCOPUSTM   
Citations

60
checked on Apr 29, 2024

WEB OF SCIENCETM
Citations

54
checked on May 2, 2024

Page view(s)

78
checked on May 7, 2024

Download(s)

25
checked on May 7, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons