Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/103994
Title: Big data and machine learning to tackle diabetes management
Authors: Pina, Ana F
Meneses, Maria João
Sousa-Lima, Inês
Henriques, Roberto
Raposo, João F
Macedo, Maria Paula 
Keywords: big data; cluster analysis; diabetes; machine learning
Issue Date: 17-Oct-2022
Project: PD/BD/136887/2018 
PTDC/MEC-MET/29314/2017 
PTDC/BIM-MET/2115/2014 
UIDB/Multi/04462/2020 
info:eu-repo/grantAgreement/EC/H2020/722619 
metadata.degois.publication.volume: 53
metadata.degois.publication.issue: 1
Abstract: Type 2 Diabetes (T2D) diagnosis is based solely on glycaemia, even though it is an endpoint of numerous dysmetabolic pathways. Type 2 Diabetes complexity is challenging in a real-world scenario; thus, dissecting T2D heterogeneity is a priority. Cluster analysis, which identifies natural clusters within multidimensional data based on similarity measures, poses a promising tool to unravel Diabetes complexity.
URI: https://hdl.handle.net/10316/103994
ISSN: 0014-2972
1365-2362
DOI: 10.1111/eci.13890
Rights: embargoedAccess
Appears in Collections:I&D CNC - Artigos em Revistas Internacionais

Files in This Item:
File Description SizeFormat
BigDataandMachineLearning.pdf1.24 MBAdobe PDFView/Open
Show full item record

SCOPUSTM   
Citations

12
checked on Nov 4, 2024

WEB OF SCIENCETM
Citations

6
checked on Nov 2, 2024

Page view(s)

102
checked on Oct 30, 2024

Download(s)

36
checked on Oct 30, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons