Please use this identifier to cite or link to this item: https://hdl.handle.net/10316/103792
Title: Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal
Authors: Almendra, Ricardo 
Santana, Paula 
Costa, Cláudia 
Keywords: COVID-19; geographical patterns; socioeconomic disparities; spatial analysis; COVID-19; patrones geográficos; disparidades socioeconómicas; análisis espacial
Issue Date: 2021
Publisher: Asociacion Espanola de Geografia
Project: UIDB/04084/2020 
Serial title, monograph or event: Boletin de la Asociacion de Geografos Espanoles
Issue: 91
Abstract: COVID-19 hit the world in a sudden and uneven way. Scientific community has provided strong evidence about socioeconomic characteristics of the territory associated with the geographical pattern of COVID-19 incidence. Still, the role played by these factors differs between study areas. Geographically Weighted Regression (GWR) models were applied to explore the spatially varying association between age-standardized COVID-19 incidence rate in 2020 and socioeconomic conditions in Portugal, at the municipality level. The spatial context was defined as a function of the number of neighbours; the bandwidth was determined through AIC. Prior, the validity of the GWR was assessed through ordinary least squares models. Border proximity, proportion of overcrowded living quarters, persons employed in manufacturing establishments and persons employed in construction establishments were found to be significant predictors. It was possible to observe that municipalities are affected differently by the same factor, and that this varying influence has identifiable geographical patterns, the role of each analysed factor varies importantly across the country. This study provides useful insights for policymakers for targeted interventions and for proper identification of risk factors.
COVID-19 golpeó al mundo de manera repentina y desigual. La comunidad científica ha aportado pruebas sobre las características socioeconómicas del territorio asociadas al patrón geográfico de incidencia de COVID-19. Se aplicaron modelos de regresión ponderada geográficamente (GWR) para explorar la asociación espacialmente variable entre la tasa de incidencia de COVID-19 estandarizada por edad y las condiciones socioeconómicas (viviendas superpobladas, capacidad en unidades de atención social para ancianos, trabajadores de la construcción y manufactura, proximidad de la frontera y personas que se desplazan para un municipio). El contexto espacial se definió en función del número de vecinos; el ancho de banda se determinó mediante AIC. Previamente se evaluó el GWR mediante modelos de mínimos cuadrados ordinarios. La proximidad de la frontera, la proporción de viviendas superpobladas, las personas empleadas en establecimientos manufactureros y las personas empleadas en establecimientos de construcción resultan ser predictores significativos. Se pudo observar que los municipios se ven afectados diferentemente por el mismo factor y que esta influencia variable tiene patrones geográficos identificables, el papel de cada factor analizado varía de manera importante a lo largo del país. Este estudio proporciona información útil para los formuladores de políticas para intervenciones específicas y para la identificación adecuada de factores de riesgo.
URI: https://hdl.handle.net/10316/103792
ISSN: 2605-3322
0212-9426
DOI: 10.21138/bage.3160
Rights: openAccess
Appears in Collections:FLUC Geografia - Artigos em Revistas Internacionais

Show full item record

Page view(s)

98
checked on Jun 19, 2024

Download(s)

70
checked on Jun 19, 2024

Google ScholarTM

Check

Altmetric

Altmetric


This item is licensed under a Creative Commons License Creative Commons