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Abstract

Nowadays, data is deeply entangled in nearly all aspects of our daily lives,

from social, business, transportation, energy, and even medical applications.

Data is among us, it’s continuously growing, and its potential is immensely

powerful. Nevertheless, its only value relies on our ability to understand it

and transform it into meaningful insights. This task currently falls upon the

shoulders of machine learning algorithms, that due to their ability to estab-

lish connections, patterns, and trends we humans cannot see, have become

the cornerstone in analysing, interpreting, and extracting knowledge from

data.

Traditional machine learning algorithms expect their input data to be well-

behaved regarding several factors, such as balanced class distributions, well-

represented concepts and decision boundaries, an adequate training set size,

consistent and correctly labelled instances, and a complete set of observed

values in all features, among others. However, when applied “in the wild”,

machine learning algorithms are inevitably faced with data imperfection, as

many of these assumptions are broken, giving rise to several data problems

such as imbalanced data, small disjuncts, class overlap, lack of data, noisy

data, dataset shift, and missing data. These imperfections may arise either

due to errors in the data acquisition, transmission, and collection processes,

or due to the intrinsic nature of the domains, and they are responsible for

the degradation of classification performance, and the generation of biased

predictions.

What ultimately determines the success of machine learning applications

is therefore their ability to transform imperfect data into smart data, i.e.,

data of sufficient quality to allow classifiers to draw accurate and reliable

inferences on the domain.

In order to move from imperfect to smart data, it is critical to develop a thor-

ough data understanding, which comprehends a well-grounded perception of

a multitude of aspects regarding the domain and the data at hand. This

involves a strong understanding of the bias generated by each data imperfec-

tion and how it aligns with the learning bias of classification or preprocessing

algorithms, how data imperfections relate to other characteristics of the do-
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mains, how they exacerbate each other when appearing in combination, and

why certain circumstances are especially harmful to classification tasks.

Following this line of thought, this thesis dedicates time and effort to the

characterisation and understanding of data imperfections. We focus particu-

larly on the problems of imbalanced data and missing data, which currently

constitute two major lines of research, and further discuss the issues of small

disjuncts and class overlap within the scope of imbalanced data. Accord-

ingly, our main goal is to transfer some thoughts, discuss observations, and

produce perceptive insights on working with complex scenarios where these

data imperfections occur. This comprises the characterisation of the data

domains and the bias they may entail; the identification, characterisation,

and quantification of data imperfections in real-world domains; the identifi-

cation of proper conditions for the efficient use of classifiers and preprocessing

techniques; and the analysis of the bias associated with certain experimental

setup hazards – all of which fall onto our notion of data understanding.
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Resumo

Nos dias que correm, os dados encontram-se profundamente incorporados em

praticamente todos os aspetos da nossa vida quotidiana, desde aplicações so-

ciais, comerciais, de transporte, energia e até médicas. Os dados tornaram-se

parte do tecido das nossas vidas, estão a crescer continuamente e têm um

potencial transformador enorme. No entanto, o seu valor está irrefutavel-

mente dependente da nossa capacidade de os interpretar e transformar em

informação útil. Atualmente, essa tarefa recai sobre os sistemas de apren-

dizagem automática que, devido à sua capacidade de estabelecer conexões

e identificar padrões e tendências que nós, enquanto humanos, não con-

seguimos discernir, tornaram-se a pedra basilar da análise, interpretação

e extração de conhecimento dos dados.

Tradicionalmente, os algoritmos de aprendizagem automática baseiam-se em

certas premissas acerca dos dados que têm dispońıveis para treinar os seus

modelos. Nomeadamente, que a distribuição das classes é equilibrada, que

os conceitos existentes estão bem representados e as fronteiras de decisão

bem delimitadas, que o tamanho do conjunto de dados é adequado à apren-

dizagem, que todos os padrões são consistentes e estão correctamente cat-

egorizados, e que não existem valores em falta. No entanto, na maioria

dos domı́nios da vida quotidiana, estas premissas são violadas e os sistemas

de aprendizagem automática ficam sujeitos a certas imperfeições dos da-

dos, que dão origem a vários problemas como o desequiĺıbrio de classes, o

aparecimento de pequenos disjuntos, a sobreposição de classes, a falta de

representatividade nos conjuntos de treino, os dados ruidosos, as alterações

dos conceitos entre as fases de treino e teste, e os dados em falta. Estas

imperfeições podem surgir tanto devido a erros nos processos de aquisição,

transmissão e recolha de dados, bem como devido à própria natureza dos

domı́nios, e são responsáveis pela degradação do desempenho dos algoritmos

e pela geração de previsões enviesadas.

Em última análise, o que determina o sucesso dos sistemas de aprendiza-

gem automática é a sua capacidade de transformar dados imperfeitos em

dados inteligentes, ou seja, dados de elevada qualidade que permitam aos

classificadores produzir inferências precisas e confiáveis acerca dos domı́nios.
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Para isso, é fundamental que se desenvolva um processo de compreensão dos

dados completo e cuidadoso, o que requer uma forte percepção de diversos

aspetos relacionados com os domı́nios e os dados em questão. Esta percepção

pressupõe uma grande compreensão do viés gerado por cada imperfeição de

dados e de como ele se alinha com o viés de aprendizagem dos algoritmos

de classificação ou pré-processamento, de como as imperfeições dos dados se

relacionam com outras caracteŕısticas dos domı́nios, de como se exacerbam

mutuamente ao surgir em combinação, e o motivo pelo qual certas situações

são especialmente prejudiciais para as tarefas de classificação.

O principal objetivo desta tese é discutir observações e estabelecer algu-

mas recomendações relativas ao tratamento de domı́nios complexos afec-

tados pela imperfeição dos dados. Estas tarefas compreendem a caracter-

ização dos domı́nios de dados e o viés que eles podem introduzir nos sis-

temas de aprendizagem automática; a identificação, caracterização e quan-

tificação de imperfeições de dados nos contextos da vida quotidiana; o estudo

das condições adequadas para o uso eficiente de classificadores e técnicas de

pré-processamento; e a análise do viés associado a certas configurações ex-

perimentais – todos os processos essenciais a uma compreensão dos dados

eficaz.
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Chapter 1

Introduction

This chapter starts with an introduction to the world of imperfect data and a discussion

regarding why and how machine learning research should move towards high-quality, smart

data. Then, the main research goals of this thesis are given, as well as a comprehensive

outline of this document, in order to help the reader navigate the topics covered within.

Finally, the research contributions produced in the scope of the thesis are presented and

reviewed in detail.

1.1 A world of Imperfect Data

From social to medical applications, data is deeply embedded in nearly all aspects of

our lives. We rely on machine learning systems to recommend suitable options for our

favourite playlists or our Sunday movie-night, to write out our text messages or set our

appointments for the day via speech recognition, and even to define our credit scoring or

personalise our course of medical treatment [321, 343, 372, 378, 389].

In this new era of data, machine learning systems provide a base to analyse and interpret

immense amounts of information, uncovering patterns that we cannot see, and producing

the most adequate responses in order to successfully achieve our goals. Nevertheless, as

idyllic as this may seem, imperfection is always lurking [107]. And in some domains, imper-

fection is disastrous and may have nefarious consequences for people’s lives: an erroneous

alert of credit card fraud that lead to the loss of a critical investment; a failed tumour

detection that transformed into the hard choice between a painful course of treatment or

a end-of-life decision; a misjudgment between individuals with similar face structures that

mistakenly sentences one to face the law and sets the other one free; a failed identification

of terrorist speech or suicidal thoughts, now responsible for the mourning of loved ones.

Imperfection may cost us our money, our freedom, and our lives.
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It is therefore crucial that machine learning systems are able to handle data imperfection,

producing models and predictions that are unbiased and reliable. Accordingly, in this

thesis we will take the concept of Imperfect Data as the set of all data characteristics, pe-

culiarities, and problems responsible for the unfolding of situations that deviate from the

ideal data quality standard expected for the training of unbiased models. Hence, certain

“imperfections” are not to be taken in the literal sense of the word, which translates to

defective data to some extent. In fact, some data imperfections may even be associated

with the context from which data is generated and are likely to arise naturally, irrespective

of how flawless the process of data acquisition, transmission, or collection is. They are a

product of the intrinsic nature of the domains (i.e., a characteristic of data) rather than

“defective data”. We will enlighten the reader with some examples further along in this

introduction. Nevertheless, they remain problematic since they create complex situations

for which traditional classifiers are likely to produce biased responses. In the literature,

these data peculiarities are often referred to as data intrinsic characteristics [136], data

difficulty factors [462], or data irregularities [107], and may define distinct groupings re-

garding which characteristics are considered imperfections. In this thesis, however, the

concept of Imperfect Data is regarded as an umbrella term and used to describe any data

properties, idiosyncrasies, or issues that are prone to bias the behaviour and performance

of standard classifiers, as we explain in what follows.

Traditionally, standard classifiers rely on several assumptions regarding the data at hand,

namely that i) existing classes are equally represented, ii) existing sub-concepts in data

are equally represented, iii) instances from different classes occupy different regions of

the input space, iv) there is a sufficiently large number of training instances to learn the

underlying concepts in data, v) feature values are consistent and instances are correctly

labelled, vi) training and test data data follow the same distribution, and vii) all feature

values are available for all instances. When these assumptions are broken, they arise as

data imperfections, respectively i) imbalanced data, ii) small disjuncts, iii) class overlap,

iv) lack of data or lack of density, v) noisy data, vi) dataset shift, and vii) missing data.

Although all of these issues stand individually as challenging factors for classification,

handling imbalanced data and missing data has become ubiquitous and indispensable for

appropriately addressing several domains and applications in most sciences [178, 260, 420].

Accordingly, they currently constitute two major lines of investigation in data science and

data mining research, whereas the remaining data imperfections are frequently discussed

in conjunction with these topics, most often with imbalanced data, acting as exacerbators

of already complex problems [271, 319].

In this thesis, as will be fully detailed in Section 1.2, we will mainly address imbalanced and

missing data. Within the scope of imbalanced data, we further focus on the problems of

small disjuncts and class overlap more deeply. Nevertheless, to provide the reader with an

overview of the problems associated with imperfect data, each data problem is explained

2
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in what follows. Accordingly, we start by imbalanced data and its associated complicating

factors (small disjuncts, class overlap, lack of density, noisy data, and dataset shift), and

end with a discussion on missing data.

Imbalanced data is represented by a disproportion of the number of representatives of

each class in a dataset, and is a good example of how data imperfection can naturally

arise in a given domain [178]. Let us consider the case of breast cancer diagnosis and

prognosis. In a medical facility where decades of data may have been collected during

regular appointments, a patient database is more likely to have a larger number of records

that belong to healthy patients than to patients with breast cancer [191]. This leads to a

class imbalance situation, where the minority class (“patients with breast cancer”) is less

represented that the majority class (“healthy patients”), considering a binary-classification

task. As standard classifiers are traditionally biased towards the most represented concepts

in data, the learning process becomes faulty, causing them to potentially overlook or

disregard the true class of interest and the objective of the classification task in this

domain: accurately identifying possible signs of breast cancer disease.

Despite the fact that imbalanced data is widely appointed as one of the major challenging

imperfections for classification, over the years researchers have come to a consensus in

what concerns its role in performance degradation [241]. Since there are situations where

classifiers are able to obtain good outcomes even in the presence of severe class imbalance

(e.g., linearly separable domains or domains with low complexity), the currently estab-

lished postulation is that what most often harms the learning process of algorithms is its

conjunction with other data imperfections, namely lack of density, small disjuncts, class

overlap, noisy data, and dataset shift [136].

Small disjuncts, originally arising within the rule-based learning literature, are often con-

sidered as rules that cover a small set of examples and consequently complicate the gen-

eralisation capability of classifiers [66, 289]. Outside that paradigm, small disjuncts are

frequently associated with a phenomenon called within-class imbalance and characterised

by the existence of small underrepresented sub-concepts, understood as small clusters

within a single class [210, 214]. As classifiers learn by generating rules for well-represented

concepts (i.e., larger disjuncts), they are susceptible to overfit examples represented by

small disjuncts, which leads to a poor classification performance for new examples. In

imbalanced datasets, it is far more complicated to determine whether smaller disjuncts

represent valid sub-concepts or if they should be considered noise. Regarding our example,

disjuncts can be thought of as clusters of breast cancer patients with different character-

istics. For instance, one cluster may comprise young women with a genetic background

prone to cancer disease, whereas another may include mostly women of advanced ages with

associated co-morbidities (e.g., diabetes, heart disease, smoking habits, or high blood pres-

sure). Despite the fact that both clusters belong to the same class, the truth is that in

most domains, class concepts are commonly diverse, and instances of the same class rarely
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populate a homogeneous region of the domain. Due to that domain heterogeneity, class

concepts may be split into several sub-concepts spread over the input space. Additionally,

if our cluster of younger women is less represented than the other (i.e., comprising a con-

siderably smaller number of instances, as typically the disease is less likely to develop in

younger women), then it may constitute a small disjunct.

Class overlap occurs when examples from different classes coexist in the same regions of the

data space, thus creating serious difficulties to their discrimination [70, 114]. In conjunc-

tion with class imbalance, the problem of class overlap is even more serious since the scarce

amount of minority class representatives that could be collected may fall onto regions si-

multaneously populated by other class(es), which gravely compromises their recognition.

With respect to our example, class overlap may occur if certain healthy and breast cancer

patients share some similarities. For instance, that would be the case with some patients

in the early stages of the disease, whose clinical values may be similar to those of healthy

patients. In this scenario, dataset features might not be able to distinguish between class

concepts, as the decision boundaries will overlap to some extent.

The problem of lack of density, sometimes designated as lack of data, small sample size,

or lack of information [272], refers to a situation where the number of training examples

is insufficient to adequately define the decision boundary between classes [290, 292, 361].

Since the classification error is highly associated with the training set size [360], the prob-

lem of lack of density affects the generalisation of the learned models. When faced with

insufficient information, classifiers are not able to accurately learn the underlying concepts

in the domains and may further overfit the training data. This is especially true for highly

imbalanced data domains, where minority class instances may be mistaken as noise due to

their lack of representation. Considering our breast cancer example, the problem of lack

of data would arise in a situation where patient data is collected from a single local or re-

gional centre [191]. Naturally, the sample size would be much smaller than what would be

expected for a national or international centre, and the consequences are two-fold. First,

several important concepts may be missing from the dataset entirely; and secondly, those

that have been collected are likely to be poorly represented, in some cases reduced to a

few representatives, especially for the minority class.

Noisy data is often characterised as the occurrence of “inconsistencies in data”, either

associated to feature values (e.g., suffering from the addition of Gaussian noise), or class

labels (e.g., mislabelling minority/majority instances) [136]. Due to these inconsistencies,

noisy examples of one class may appear in homogeneous regions of another (i.e., scattered

across regions populated by other classes and far from the remaining examples of their own

class), which complicates the generation of adequate decision boundaries. In imbalanced

data domains, the influence of noisy data on classification performance is even greater

since a small number of noisy examples is sufficient to disturb the concepts learned by the

classifier. Considering our breast cancer dataset, noisy data can occur if a faulty device
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outputs erroneous values for some clinical measurements (i.e., feature noise). For instance,

a healthy patient’s blood pressure measurement may be incorrectly estimated, producing

an unexpected and inconsistent value, perhaps similar to that of an unhealthy patient.

Likewise, a human error during data transcription may result in the mislabelling of some

patient’s outcome (e.g., a “breast cancer” patient is categorised as “healthy”), which is

another form of noisy data (i.e., class noise).

Dataset shift occurs when the conditions in which the classifiers were trained differ from

what they will encounter during the testing stage [408]. The problem of dataset shift is

therefore associated with changes in the distributions learned by the models, and although

they may arise due to several underlying reasons, two of the most typical are prior prob-

ability shift and simple covariate shift [311, 312]. Prior probability shift occurs when the

prior probabilities of existing classes change between the time we learn the model and the

time we expect to use it. In other words, it occurs when the proportion of representatives

that define a given concept significantly differs between the training and test partitions. In

turn, simple covariate shift or “population drift”, depicts a situation where the distribu-

tion of the input features changes, i.e., the typically observed feature values at which the

decision function needs to be evaluated change. Overall, the problem of dataset shift leads

to a classification bias, given that the training set may not be completely representative

of the domain (especially for future data). Naturally, this issue becomes more critical

when data is imbalanced, since the classification performance becomes highly dependent

on singular misclassification errors of the minority class [272]. Regarding our breast cancer

example, a situation of prior probability shift could occur if our medical centre suddenly

becomes a national or international reference cancer centre. As more breast cancer suspi-

cions are likely to be redirected to our facilities, and as the concerned patients themselves

are more likely to recur to specialised centres, the prior probabilities of receiving breast

cancer cases change over time. In parallel, a situation of simple covariate shift could be due

to the implementation of a public smoking ban, which may change the patients’ smoking

habits. Consequently, the distribution of observed values in features such as “number of

cigarettes smoked per day”, for instance, would change.

Missing data, or data incompleteness, is another form of data imperfection, characterised

by the appearance of absent values in data, which may render classifiers inapplicable, or

severely compromise their predictions [384]. Further along this thesis, we will describe the

mechanisms under which data might be missing. For this introduction, let us simply state

that this missingness may be associated to the intrinsic nature of the domain itself, or

due to reasons completely unrelated to the data. Regarding our breast cancer dataset, the

presence of missing values might be related to the study being conducted or the data being

collected. For instance, missing data may arise due to a faulty sensor that shuts down

for high values of blood pressure. Another possibility is that missing values in feature

“weight” are more likely to be missing for older women, which are less inclined to reveal

this information. Similarly, obese patients may be less likely to share their weight. On the
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other hand, data can also be missing for reasons that are in no way related to the study. A

patient may have some of her information missing because a flat tire caused her to miss a

doctors appointment. As another example, data may also be missing due to human error

during data collection or transcription. For instance, if the person responsible for filling

patients’ information misplaces of misreads some documents.

Just as in the breast cancer study example, real-world applications are often plagued with

several data imperfections. Some examples have been described above, where we discussed

the possible harmful effects of biased models in fraud detection [328], disease diagnosis and

prognosis [444], and facial and emotion recognition [268]. In real-life domains, data imper-

fections can either arise separately or in combination, and are overall critical for all families

of machine learning algorithms [107]. The success of data science applications therefore

revolves around the ability of machine learning systems to transform such imperfect data

into smart data.

Smart data refers to high-quality data, i.e., data of sufficient quality to produce high-

quality data mining processes [199]. It can also be defined as the process of transforming

raw data into quality data, from which valuable knowledge can be retrieved [255]. In

the literature, this term appears often associated with big data technologies, tools, and

platforms, where beyond the challenges of handling massive amounts of data, data min-

ing processes also need to cope with imperfect data [162, 422]. In this thesis, the term

smart data is taken as the equivalent of quality data, and used to characterise data that

potentiates a successful learning process of algorithms, leading to the rendering of ac-

curate, unbiased, and high-performing machine learning classifiers, capable of producing

meaningful and reliable insights on the domain.

The idea of moving from imperfect to smart data greatly borrows from the traditional

data preprocessing process. Indeed, a vast amount of the solutions explored for most

data imperfections refer to the cleaning, enrichment, and resampling of data prior to the

training of models. However, our favouring of the word smart over quality when referring

to a notion of “ideal data”, is connected to our understanding of how this preprocessing

should be guided, which is through data understanding rather than one-fits all, brute-force

approaches. By data understanding we refer to the ability to acknowledge and analyse the

bias generated by each data imperfection, how it aligns with the learning bias of classifi-

cation or preprocessing algorithms, how data imperfections relate to other characteristics

of the domains, how they exacerbate each other when appearing in combination, and why

certain situations are especially critical for classification tasks.

In the past decade, in order to cope with the increasing complexity associated with real-

world data, it seems that machine learning research has become more and more focused

on the development of robust, flexible, and resilient classifiers, especially in the new ad-

vent of deep learning paradigms [376], sometimes neglecting the “garbage-in, garbage-out”

premise to some extent. Indeed, machine learning algorithms have proven and will con-
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tinue to prove transformative in a plethora of real-life domains, and nonetheless, data

understanding will hold as a crucial stage preceding their application, and must not, by

all means, be overlooked, as it conditions the quality of insights provided by algorithms,

and ultimately, the value of their predictions. Yet, research is becoming rather obsessed

with metrics, rather than behaviours [329], which will pose complex challenges to the

evaluation of models and interpretation of results in the years to come, since important

questions regarding the actual data remain unseen and unanswered, as they are not the

focus (the current issues we are facing in the scope of data fairness is such an exam-

ple of this problem [371]). These questions concern the characterisation of domains and

the bias they may entail; the identification, characterisation and quantification of data

imperfections in real-world data; the identification of proper conditions for the efficient

use of classifiers and preprocessing techniques, as well as the bias associated with certain

experimental setup hazards – all of which fall onto our notion of data understanding.

Understanding the data domains and the problems they may subjected to defines, in our

view, the difference between applying ad hoc solutions that globally ease the issue (but

might as well completely fail to solve it), and performing informed, specialised decisions

based on the data characteristics (i.e., powered by meta-knowledge on the domain), which

in the long run paves the way for the devise of more effective solutions. In short, data

understanding defines the evolution from hard to smart decision-making.

In this sense, this thesis is a manifesto advocating for the study of imperfect data and the

conceptualisation of insights that allow research to move towards its transformation into

smart data, through the process of data understanding. All in all, the topics covered in this

thesis could be framed within the scope of what would be the Venn diagram connection

between the fields of data processing, data complexity, and meta-learning.

1.2 Research Goals

The study of imperfect data is multidisciplinary by nature. As data irregularities are

bound to happen in numerous application domains, and may occur either in isolation or

in combination, handling imperfect data requires an horizontal thinking process. Horizon-

tal thinking privileges a broader perspective on several related problems, allowing to cross

concepts and solutions between fields and producing more perceptive insights. It is focused

on why the problems occur and how to characterise them on a wider panorama. Accord-

ingly, this thesis mostly follows an horizontal thinking strategy, dedicating time and effort

to the characterisation and understanding of two main data imperfections: Imbalanced

Data and Missing Data.

After sifting through the state of the art in imbalanced and missing data, and realising

that learner performance is strongly dependent on data characteristics, we started gath-
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ering evidence of how the nature of data may influence the obtained conclusions. Hence,

our main goal is to transfer some thoughts, discuss observations, and produce perceptive

insights on working with complex scenarios where these data imperfections occur, aiming

to address the following Research Questions (RQ):

RQ-1: Learning from Imbalanced Data

• What characterises the overoptimistic and overfitting effects when handling imbal-

anced datasets?

• How does oversampling change the nature of data, consequently influencing the

performance of classifiers?

RQ-2: Addressing real-world imbalanced domains

• Can concept heterogeneity be interpreted as a form of class imbalance? How can it

be handled in real-world domains?

RQ-3: Identification of Small Disjuncts

• Is it possible to identify small disjuncts in real-world domains?

• How to adjust the parametrization of clustering algorithms to the identification of

small disjuncts?

• Which clusters represent valid concepts, which correspond to underrepresented con-

cepts (small disjuncts), and which may be considered noisy examples?

RQ-4: Interplay of Class Imbalance and Class Overlap

• What is the influence of intrinsic data characteristics (data decomposition, data

structure, data dimensionality, data typology) on the classification performance of

imbalanced and overlapped domains?

• How do classifiers with different nature (distinct learning biases) handle imbalanced

and overlapped domains?

• How can class overlap be characterised in real-world imbalanced domains?

• What are the state-of-the-art methods to handle class overlap in imbalanced data

domains? What are their key characteristics?
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• What are the main limitations of current research preventing that a consensus on

the synergy between class imbalance and overlap is reached? What are the most

pressing future directions to embrace in the years to come?

RQ-5: Learning from Missing Data

• What are the state-of-the-art approaches to generate synthetic missing data?

• What are their limitations when applied to real-world domains? How can these

limitations be surpassed?

RQ-6: Impact of Missing Data Imputation on Data Distribution

• Is there a relationship between data distribution and imputation performance? Which

imputation techniques can efficiently reproduce the true values in data without caus-

ing the distortion of their distribution? Is it possible to derive some heuristics on

the choice of proper imputation techniques depending on the data distribution?

RQ-7: Behaviour of k-Nearest Neighbours on the imputation of real-world

heterogeneous data

• Do distance functions significantly affect k-Nearest Neighbours imputation, and con-

sequently classification performance? Is there a distance function more beneficial for

some datasets? Are trends similar when the focus shifts to the analysis of the im-

putation quality?

• To what extent does each component of a distance function definition influence

imputation and classification performance?

• Does the type of features (continuous or categorical) affected by missing data in-

fluence the imputation process? Are the obtained results related to other data

characteristics, beyond the nature of features?

Following an horizontal thinking strategy, this thesis is centred on problem-specific re-

search questions. In other words, each group of research questions is addressed in the scope

of a particular line of investigation, and is associated with a specific part and chapter of

this thesis. Accordingly, the underlying motivation for the presented research questions,

as well as the established sub-objectives involved in their assessment, are presented in the

respective chapters. In detail, research questions RQ-1 to RQ-4 fall onto the scope of

Imbalanced Data (Part II) and are discussed in Chapters 2 to 4, whereas research ques-

tions RQ-5 to RQ-7 are dedicated to the field of Missing Data (Part III) and are further
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elaborated in Chapters 7 to 11. The outline of this thesis is further detailed in Section

1.3.

All of the research lines (with the exception of RQ-3, which constitutes preliminary work)

have been published in international conferences or peer-reviewed journals during the

course of this thesis, guaranteeing that contributions to knowledge have been achieved in

all of the proposed directions. Section 1.4 summarises both primary and secondary con-

tributions of this thesis. Note that although some research questions are validated across

medical and biomedical domains, the experiments and approaches developed in the scope

of this thesis are not exclusive of healthcare contexts. These domains have been chosen for

applicational studies for two main reasons. First, due to the fact that they are commonly

rich in terms of data characteristics – number of samples, number and heterogeneity of

features, degrees of classification complexity – and often subjected to several data imper-

fections, such as those addressed in this thesis: imbalanced data, small disjuncts, class

overlap, and missing data. Secondly, due to my background as a biomedical engineer,

studying domains associated with medicine and biology makes it all the more motivat-

ing to address the data issues explored within the scope of this thesis, since I am more

aware of their impact on machine learning models used in healthcare, and consequently to

the darksome consequences they may have on people’s lives under certain circumstances.

Additionally, my experience with biomedical domains further allows me to add a layer of

interpretation to how certain data characteristics may impact classification tasks, which

promotes a deeper understanding of the studied data problems, the conceptualisation of

hypothesis to explain the observed results and behaviours, the development of specialised

solutions, and the extrapolation of insights to other domains.

In Chapter 12, Conclusions, the reader may find the answers to all of the research questions

identified above.

1.3 Outline

This thesis is structured into four main parts: Part I, which introduces the scope and

objectives of the thesis; Parts II and III, which constitute the core work of the thesis and

its main contributions; and finally Part IV, which ends the thesis, summarising its main

conclusions. In what follows, we further detail the content of each part and the underlying

motivation behind each research direction.

In Part I, we guide the reader through the world of Imperfect Data. Throughout Chapter

1, we discuss the importance of data quality to develop unbiased models and produce

meaningful and reliable knowledge. Then, we characterise a series of data imperfections

often encountered in real-world domains and applications, demonstrating the significance

of studying imbalanced and missing data – two types of imperfections that constitute
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major fields of research in machine learning and data science nowadays.

Accordingly, in Part II, our efforts are primarily directed to understanding and handling

Imbalanced Data.

In Chapter 2, we start by addressing one fundamental aspect of handling imbalanced data,

discussing the joint-application of cross-validation and data oversampling. Although this

procedure seems quite straightforward, we observed that for researchers new to the field

of imbalanced learning, this was a confusing notion that in most cases led to a ill-designed

experimental setup, threatening the validity of the obtained results. We therefore pro-

vide an overview of the intricacies of studying imbalanced data, from an introduction

to basic concepts in the field to the most appropriate performance measures to evaluate

imbalanced domains. We further discuss the state-of-the-art approaches used to handle

these contexts, and the experimental setup hazards that may arise while evaluating their

performance. Additionally, contrary to traditional approaches to imbalanced data, often

addicted to optimal performance measures, we focus on behaviour, aiming to understand

how oversampling changes the nature of data, consequently influencing the performance of

classifiers. Hence, we assess and compare the performance of 15 well-established oversam-

pling techniques, focusing on a data complexity analysis in order to analyse and summarise

their behaviour in what concerns the modifications they produce on the training data, and

how those modifications may benefit or hinder the classification tasks.

During the investigation performed in Chapter 2, we found that a core strength of re-

sampling algorithms relied on their attentiveness to within-class imbalance, increasing

the representation of underrepresented, although important, sub-concepts in data. This

is a particularly relevant characteristic for some application domains, namely healthcare

contexts, which require that approaches are attentive to disease heterogeneity, i.e., that

approaches account for the fact that patients with the same outcome may sometimes

present distinct characteristics. Accordingly, in Chapter 3, we propose and evaluate a

cluster-based oversampling approach applied to a real-world clinical problem: the survival

prediction of hepatocellular carcinoma patients.

As confirmed in Chapter 3, the ability to inflate underrepresented clusters in data, i.e.,

small disjuncts, is a key distinguishing factor between a standard solution that globally

alleviates class imbalance, and a specialised solution that takes the data characteristics

into account, producing optimal results. Unfortunately, the identification of small dis-

juncts in real-world data is still an ongoing topic of discussion in the data science com-

munity. Although some specialised solutions have been proposed throughout the years,

they are applied either considering some background knowledge on the domain (e.g., dis-

ease heterogeneity as in Chapter 3), or simply assuming that all domains are theoretically

susceptible to small disjuncts. Hence, in Chapter 4, we concentrate on the development

of an algorithm for the identification of small disjuncts. To this end, we focus on the

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and
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explore the adjustment of its parameters to find meaningful sub-concepts in data. We

further propose an approach to determine a clustering solution that is representative of

the problem domain, through the definition of a fine-tuning approach and new measures

of concept representativity.

Finally, we end Part II by addressing yet another difficulty factor for imbalanced datasets:

the presence of class overlap. This was another significant finding from Chapter 2: not

only did class overlap reveal to be a major predictor of classification performance, but

also a strong predictor of the good or poor behaviour of resampling techniques. Realis-

ing that this observation was in line with several recently published research, and that

there was a clear setback in the characterisation of the problem of class overlap and its

synergy with class imbalance, we proceeded to look at the interplay between these two

problems, which lead to the investigation conducted in Chapters 5 and 6. Accordingly, in

Chapter 5, we provide a critical review of the joint-effect of class imbalance and overlap.

We start by discussing precursor work and raising some questions inherent to the charac-

terization of class overlap in real-world domains. We further characterise class overlap as

a heterogeneous concept, propose two new taxonomies for class overlap complexity mea-

sures and class overlap-based approaches, and identify the major drawbacks that need to

be addressed in order to move towards a unifying view of the problem. Then, in Chap-

ter 6, we push forward the boundaries of the understanding of class overlap in imbalanced

domains. Acknowledging class overlap as the overarching problem, we extend and sys-

tematise the characterisation of the class overlap problem proposed in Chapter 5, and

discuss the interrelation between class imbalance and overlap across several important ar-

eas of machine learning research, namely Data Analysis, Data Preprocessing, Algorithm

Design, and Meta-learning, presenting our view on the most emergent research directions

to address in the following years.

In Part III, we focus on the problem of Missing Data, starting with Chapter 7, where we

present the fundamentals of missing data theory, from the basic notation and terminology

to the formal description and analysis of missing data mechanisms and their synthetic

generation strategies.

During the overview provided in Chapter 7, beyond the lack of understanding and as-

sessment of synthetic missing data generation strategies, we observed two subsidiary gaps

in knowledge in what concerns the classical approach to data imputation studies. One

is that the evaluation of imputation performance often relies solely on the assessment of

the classification error resulting from models constructed with the imputed data, thus

neglecting other important measures associated to imputation quality, namely predictive

and distributional accuracy. The other is that data imputation research is often focused

on brute force approaches. This entails conducting experiments with a comprehensive set

of techniques, or performing exhaustive combinations of parameters, where the objective

is to achieve optimal results. However, no relationships between the internal operations
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of the imputation methods and the characteristics of the data to which they are applied

are derived, which prevents to gain deeper insights on the topic. There is too much focus

on metrics, and not enough on behaviour. The following chapters therefore address these

concerns, as we proceed to explain.

In Chapter 8, we focus on the relationship between data distribution and the perfor-

mance of standard imputation techniques. We assess and compare the imputation quality

produced by well-established imputation algorithms with distinct paradigms, and study

whether it is possible to devise some recommendations regarding suitable imputation meth-

ods depending on the endgame (i.e., optimal predictive or distributional accuracy), and

the characteristics of data, namely features’ distribution. From the obtained experimental

results, we observed that imputation algorithms following distance-based learning solu-

tions, namely k-Nearest Neighbours (kNN) and Self Organising Maps, showed a robust

behaviour in what concerns both the predictive and distributional properties of data. In

fact, this lead to the realisation that distance-based learning is a cornerstone of learn-

ing from imperfect data across several application domains. Considering imbalanced and

missing data, distance-based learning (and the kNN algorithm in particular) is incorpo-

rated into the internal operations of a plethora of highly-regarded approaches. From data

resampling (oversampling, undersampling, and cleaning techniques) to data imputation

and data complexity, there is a multitude of algorithms that greatly rely on assessing the

similarity between patterns.

This was the underlying motivation for the final investigation conducted in this thesis.

In Chapters 9 to 11, we analyse the behaviour of kNN in complex contexts encompassing

heterogeneous, imbalanced, and missing data. In the experiments conducted in these chap-

ters, the class imbalance problem is however secondary, whereas we mainly focus on the

ability of kNN to handle real-world datasets comprising feature heterogeneity and missing

data, via the exploration of distinct heterogeneous distance functions. In Chapter 9, we

present a preliminary study on the topic, demonstrating that distance functions have a

significant impact on kNN imputation (and consequently classification) of datasets with

different characteristics (continuous, categorical, and heterogeneous datasets). Then, in

Chapter 10, we focus on investigating the impact of each component of the definition of

distance functions (distance computation of continuous, categorical, and missing values)

on the final imputation results.

Finally, we conclude Part III by focusing specifically on the imputation of medical datasets.

Contrary to the previous chapters, where the missing data is generated completely at

random, Chapter 11 introduces more complex missing data scenarios, where features are

either randomly affected, equally affected, or the missing values are generated exclusively

on the continuous or categorical features.

Part IV, Smart Data, concludes this thesis with Chapter 12. We summarise the findings

of our work, revealing how fostering science that goes beyond metrics, and rather focuses
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on behaviour, will prove transformative for the next years of machine learning and data

science research.

1.4 Research Contributions

As detailed in the Outline, the core of this thesis is encompassed in two main parts: Part II

(Imbalanced Data), and Part III (Missing Data). Accordingly, in what follows we describe

the main contributions of our work with respect to these two problems individually.

With respect to the field of Imbalanced Data, the following main contributions are high-

lighted:

Learning from Imbalanced Data: We addressed the central issue of cross-validation

and oversampling with imbalanced data, which was proven to be a confusing aspect of the

experimental setup for researchers far from the imbalanced learning field aiming to address

imbalanced domains in their areas of study. We defined and distinguished the notions

of overoptimism and overfitting, and performed an extensive theoretical and empirical

analysis of well-known oversampling techniques, comparing their inner procedures through

a data complexity analysis.

Our findings detail important aspects on how to properly address imbalanced classification

domains in a way that the nature of the problem is acknowledged and the most appropriate

validation and oversampling techniques are well understood. Overall, we showed that

the overoptimism effect is associated with the design of inappropriate cross-validation

strategies. It occurs irrespective of the sample size or imbalance ratio of the data, although

the data complexity is a good predictor of its impact: the more complex the classification

task is, the more biased (overoptimistic) the results of a ill-designed validation setup will

be. In turn, overfitting is influenced by the chosen oversampling technique: techniques

that generate exact replicas of existing training examples (e.g., random oversampling)

are more likely to cause an overfit of the model in its learning stage. Additionally, the

best oversampling methods have shown to possess three key characteristics: use of cleaning

procedures to handle overlapping regions in data, cluster-based synthetisation of examples

to increase the representation of sub-concepts in data, and adaptive weighting of minority

examples to boost the synthetisation of examples with specific characteristics.

This work resulted in the following publication:

P Santos, M. S., Soares, J. P., Abreu, P. H., Araújo, H., & Santos, J.

(2018). Cross-validation for imbalanced datasets: avoiding overoptimistic

and overfitting approaches (Research Frontier). IEEE Computational

Intelligence Magazine, 13(4), 59-76. [Artificial Intelligence (Q1);

Theoretical Computer Science (Q1)].

14



Introduction

Cluster-Based Oversampling Approach: We propose a cluster-based oversampling

approach robust to small and imbalanced datasets with missing data. The approach is

developed for the survival prediction of patients with hepatocellular carcinoma, using a real

clinical dataset composed of heterogeneous features, and accounts for patient heterogeneity

by improving the representation of patient profiles with reduced sizes.

The experimental findings have proven that our approach is a feasible solution to design

survival prediction models in a complex context such as the hepatocellular carcinoma

domain: a small dataset, with considerable between and within-class imbalance, and com-

prising heterogeneous features with missing values. Although the issue of reproducibility

and generalisation was not addressed (experiments are focused solely on the hepatocel-

lular carcinoma dataset), real-world domains are commonly affected by the same factors

explored in this work, and the proposed approach may be further investigated in other

domains, beyond healthcare contexts. The produced work resulted in the following pub-

lication:

P Santos, M. S., Abreu, P. H., Garćıa-Laencina, P. J., Simão, A., & Car-

valho, A. (2015). A new cluster-based oversampling method for improv-

ing survival prediction of hepatocellular carcinoma patients. Journal of

Biomedical Informatics, 58, 49-59. [Computer Science Applications (Q1);

Health Informatics (Q1)].

Interplay of Class Imbalance and Class Overlap: We start by providing a com-

prehensive review of the joint-effect of class imbalance and overlap on classification per-

formance, discussing two influential factors often neglected in the literature: the impact

of intrinsic data characteristics in synergy with class imbalance and overlap, and the be-

haviour of classifiers with different learning biases in imbalanced and overlapped domains.

Then, we detail the existing limitations associated to a lack of standard definition and mea-

surement of class overlap in real-world domains, and advocate towards a unified view of the

problem. What follows is a characterisation of class overlap according to multiple sources

of complexity, and the initial proposal of four main representations of the problem: feature

overlap, instance overlap, structural overlap, and multiresolution overlap. Accordingly, we

entail a thorough revision of class overlap measures and state-of-the-art approaches for im-

balanced and overlapped domains in order to establish two novel taxonomies aligned with

the proposed representations of class overlap: one regarding class overlap complexity mea-

sures and the other regarding class overlap-based approaches. Then, moving towards a

unifying view on the topic and acknowledging class overlap as the overarching problem,

we discuss the key concepts associated to its definition, identification, and measurement in

real-world domains, while extending our initial characterisation of the problem attending

to several sources of complexity, and developing an improved version of the proposed taxon-

omy of class overlap complexity measures. Accordingly, we systematise the understanding

15



Chapter 1

of the problem of class overlap by identifying three main components underlying its char-

acterisation: the decomposition of the domains into regions of interest, the identification

of problematic regions, and the quantification of the problem in the domain. Complexity

measures are then categorised into distinct class overlap representations, depending on the

approaches followed within each component. Finally, we produce a multi-view panorama

on the synergy of class imbalance and overlap, summarising the current state of knowledge

across four main areas of research (Data Analysis, Data Preprocessing, Algorithm Design,

and Meta-learning) and establishing the most pressing open challenges to address in the

following years. We further highlight several promising lines of future research for each of

the identified open avenues.

Our work consists of the most comprehensive review on the subject, from seminal to

emergent research, and is the first to put forward a proposal for the conceptualisation

of class overlap as a heterogeneous concept, systematising both class overlap measures

and approaches towards that characterisation. The concepts and ideas explored in this

work, culminating in the proposal of the new taxonomies of class overlap complexity

measures and approaches, lay the foundation for a global and unique view of the interplay

of class imbalance and overlap and the development of improved measures or approaches

to handle class overlap in real-world imbalanced domains. What is more, our work further

identifies the main open issues across several research fields, where the joint-effect of class

overlap and class imbalance may severely compromise the outcome of the applications,

and suggests several important directions to gain a deeper understanding of this complex

problem in each of the identified fields.

This work resulted in the following publications:

P Santos, M. S., Abreu, P. H., Japkowicz, N., Fernández, A., Soares,

C., Wilk, S., & Santos, J. (2022). On the joint-effect of class imbal-

ance and overlap: a critical review. Artificial Intelligence Review, 1-69.

[Artificial Intelligence (Q1); Language and Linguistics (Q1);

Linguistics and Language (Q1)].

P Santos, M. S., Abreu, P. H., Japkowicz, N., Fernández, A., & Santos, J.

(2022). A Unifying View of Class Overlap and Imbalance: Key Concepts,

Multi-View Panorama, and Open Avenues for Research. Accepted with

minor changes to Information Fusion. [Hardware and Architecture (Q1);

Information Systems (Q1); Signal Processing (Q1); Software (Q1)].

Identification of Small Disjuncts: We developed a density-based clustering fine-tuning

approach to identify sub-concepts in data, corresponding to small disjuncts. The approach

is based on exploring appropriate criteria to tune the parameters of the Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) algorithm, and defining the
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optimal clustering solution that finds existing underrepresented clusters in data. To that

end, we develop a new fine-tuning approach and propose new measures to define concept

representativity. The approach has shown promising results during its validation with

synthetic data. However, some details need to be further improved, namely its adjustment

to changes in cluster densities.

In the field of Missing Data, we highlight the following main contributions:

Literature Review on Missing Data Theory and Mechanisms: We conducted

a systematic study on state-of-the-art approaches to missing data generation, analysing

their practical details and discussing their application to real-world domains. We started

by reviewing the fundamentals of missing data theory – notation, terminology, and formal

description of missing data mechanisms – and proceeded to evaluate existing approaches

for synthetic missing data generation. We reviewed approaches both for univariate (miss-

ing values inserted only in one feature) and multivariate (missing values inserted in several

features) configurations, across all of the established missing data mechanisms: Missing

Completely at Random (MCAR), Missing At Random (MAR), and Missing Not At Ran-

dom (MNAR).

Our analysis allowed to characterise the constraints of each approach, namely the max-

imum possible missing rate that they are able to generate, and uncover important limi-

tations of the techniques, such as the identification of situations where the assumptions

of the missing mechanisms may be weakened or broken. Additionally, we summarised

our main findings into a collection of theoretical flaws, empirical flaws, and experimen-

tal setup hazards that researchers should consider for an effective design of missing data

experiments.

This work resulted in the following publication:

P Santos, M. S., Pereira, R. C., Costa, A. F., Soares, J. P., Santos, J.,

& Abreu, P. H. (2019). Generating synthetic missing data: A review

by missing mechanism. IEEE Access, 7, 11651-11667. [Computer Science

(Q1); Engineering (Q1)].

Impact of Missing Data Imputation on Data Distribution: We performed an

empirical study to assess which standard imputation techniques can efficiently reproduce

the true values in data, while maintaining the features’ original distribution. To that

end, we compared several well-established imputation algorithms in what concerns their

predictive accuracy (the ability to recover the original values in data) and their distribu-

tional accuracy (the ability to preserve the data distribution). We investigated whether

is was possible to define a relationship between the imputation methods and specific data

distributions, by searching for heuristic rules to guide an appropriate choice of methods
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depending on certain data characteristics.

Our findings show that most of the considered imputation techniques are influenced by

data distribution and that it is possible to obtain a descriptive decision tree model that

allows the extraction of general rules regarding the best imputation algorithms for each

data distribution, based on the generation type of missing data and missing rate. Other

less obvious factors have also proven impactful, such as the sample size, goodness-of-fit

of features, and the ratio between the number of features and the different distributions

comprised in the dataset.

This work resulted in the following publications:

P Santos, M. S., Soares, J. P., Henriques Abreu, P., Araújo, H., & Santos,

J. (2017, June). Influence of data distribution in missing data imputation.

In Conference on Artificial Intelligence in Medicine in Europe (pp. 285-

294). Springer, Cham. [CORE2017 Ranking B].

P Pompeu Soares, J., Seoane Santos, M., Henriques Abreu, P., Araújo, H.,

& Santos, J. (2018, October). Exploring the effects of data distribution

in missing data imputation. In International Symposium on Intelligent

Data Analysis (pp. 251-263). Springer, Cham. [CORE2018 Ranking A].

Behaviour of k-Nearest Neighbours on the imputation of heterogeneous data:

We performed a large experimental study focusing on the behaviour of k-Nearest Neigh-

bours algorithm to address complex scenarios comprising heterogeneous data – continuous

and categorical (nominal and binary) features – and missing data, where the missing values

themselves are incorporated in distance computation. This consists of the most compre-

hensive collection and investigation of heterogeneous distance functions, namely HEOM,

HEOM-R, HVDM, HVDM-R, HVDM-S, MDE, and SIMDIST. First, our preliminary ex-

periments focused on determining whether distinct distance functions had a significant

impact on kNN imputation and consequently on classification performance of datasets

with distinct characteristics (continuous, categorical, and heterogeneous datasets). Then,

using an extended experimental setup, we focused on understanding to what extent each

component of a heterogeneous function definition (distance computation of continuous,

categorical, and missing values) influences imputation and classification performance. Fi-

nally, we pursued an applicational study of heterogeneous distance functions in real-world

domains, focusing on the imputation of medical datasets in more complex missing data

scenarios.

Our findings showed that distance functions have a significant impact on kNN imputa-

tion, and that differences between functions mostly rely on their respective approaches to

the distance computation of missing values. Furthermore, it was possible to devise some

recommendations regarding the most appropriate distance functions for kNN imputation.
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This choice ultimately depends on the desired downstream task (classification performance

or imputation quality), and on the characteristics of the dataset (nature of features and

missing rate). Finally, we have also observed that HEOM, a standard distance function

widely used in heterogeneous domains, was frequently outperformed, showing that the

search for optimal distance functions should not be a neglected parameter in kNN impu-

tation, as it has been over the past decades.

This work resulted in the following publications:

P Santos, M. S., Abreu, P. H., Wilk, S., & Santos, J. (2020). How dis-

tance metrics influence missing data imputation with k-nearest neigh-

bours. Pattern Recognition Letters, 136, 111-119. [Computer Vision and

Pattern Recognition (Q1); Software (Q1)].

P Santos, M. S., Abreu, P. H., Fernández, A., Luengo, J., & Santos, J.

(2022). The Impact of Heterogeneous Distance Functions on Missing

Data Imputation and Classification Performance. Engineering Applica-

tions of Artificial Intelligence, 111, 104791. [Artificial Intelligence

(Q1); Control and Systems Engineering (Q1); Electrical and Electronic

Engineering (Q1)].

P Santos, M. S., Abreu, P. H., Wilk, S., & Santos, J. (2020). Assessing

the impact of distance functions on k-nearest neighbours imputation of

biomedical datasets. In International Conference on Artificial Intelli-

gence in Medicine (pp. 486-496). Springer, Cham. [CORE2020 Ranking

B].

Overall, the research work encompassed in this thesis resulted in the following first author

publications: 6 research papers published in Q1 journals (plus 1 accepted with

minor changes), and 2 papers published in B conferences.

In addition to the main contributions of this thesis, several subsidiary contributions asso-

ciated with the research work developed during this doctoral program may be highlighted.

These result either from i) preliminary work performed during the writing of the thesis

proposal, ii) the co-supervision of master’s thesis during the time of the doctoral program,

or iii) collaborations with fellow doctoral colleagues.

Literature Review on Breast Cancer Recurrence: We provide a literature review on

small data, imbalanced data, and missing data in the context of breast cancer recurrence,

showing that these issues are rarely addressed in related work. This work derived from

the analysis conducted for the writing of the thesis proposal and resulted in the following

publication:
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P Abreu, P. H., Santos, M. S., Abreu, M. H., Andrade, B., & Silva, D. C.

(2016). Predicting breast cancer recurrence using machine learning tech-

niques: a systematic review. ACM Computing Surveys (CSUR), 49(3),

1-40. [Computer Science (Q1); Theoretical Computer Science (Q1)].

Autoencoders for Missing Data Imputation: We provide a literature review on

trends and applications on the use of autoencoders for missing data imputation, and

perform an experimental comparison of autoencoders with well-established imputation

techniques. These works derived from a collaboration with a fellow colleague, and the

supervision of a master’s thesis, respectively, and resulted in two publications:

P Pereira, R. C., Santos, M. S., Rodrigues, P. P., & Abreu, P. H. (2020).

Reviewing autoencoders for missing data imputation: Technical trends,

applications and outcomes. Journal of Artificial Intelligence Research,

69, 1255-1285. [Artificial Intelligence (Q2)].

P Costa, A. F., Santos, M. S., Soares, J. P., & Abreu, P. H. (2018). Missing

data imputation via denoising autoencoders: the untold story. In Inter-

national symposium on intelligent data analysis (pp. 87-98). Springer,

Cham. [CORE2018 Ranking A].

Footprint of Classifiers in Imbalanced and Overlapped Domains: We perform an

experimental study to determine the joint-impact of class imbalance and overlap in the

performance degradation of classifiers with distinct learning paradigms. This work derived

from the supervision of a master’s thesis and resulted in the following publication:

P Mercier, M., Santos, M. S., Abreu, P. H., Soares, C., Soares, J. P., &

Santos, J. (2018). Analysing the Footprint of Classifiers in Overlapped

and Imbalanced Contexts. In International Symposium on Intelligent

Data Analysis (pp. 200-212). Springer, Cham. [CORE2018 Ranking A].

MNAR imputation of Healthcare Contexts: We develop an approach to improve

data imputation under the Missing Not At Random (MNAR) mechanism by considering

information from multiple sources within the same context. This work resulted from the

collaboration with a fellow colleague and culminated in the following publication:

P Pereira, R. C., Santos, M. S., Rodrigues, P. P., & Abreu, P. H. (2019).

MNAR imputation with distributed healthcare data. In EPIA Confer-

ence on Artificial Intelligence (pp. 184-195). Springer, Cham. [Regional

Ranking].

Fairness-Aware Oversampling: We develop an oversampling algorithm attentive to

unfair treatment by handling the class imbalance among sensitive attributes. This work
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was developed under collaboration with a fellow colleague, resulting in the following pub-

lication:

P Salazar, T., Santos, M. S., Araújo, H., & Abreu, P. H. (2021). FAWOS:

Fairness-Aware Oversampling Algorithm Based on Distributions of Sen-

sitive Attributes. IEEE Access, 9, 81370-81379. [Computer Science (Q1);

Engineering (Q1)].

In sum, the work developed during the course of this doctoral program resulted in the

following research contributions: 8 research papers published in Q1 journals (plus

1 accepted with minor changes), 1 research paper published in a Q2 journal, 3

conference papers published in A conferences, and 2 papers published in B

conferences.

21



This page is intentionally left blank.



Part II

Imbalanced Data



This page is intentionally left blank.



Chapter 2

Cross-Validation for Imbalanced

Datasets: Avoiding Overoptimistic

and Overfitting Approaches

Imbalanced data occurs when a class is underrepresented within a given domain, and

may be surpassed using oversampling approaches. Although cross-validation is a standard

procedure for performance evaluation, its joint application with oversampling remains an

open question for researchers far from the imbalanced data topic. A frequent experimental

flaw is the application of oversampling algorithms to the entire dataset, resulting in biased

models and overly-optimistic estimates. In this work, we emphasise and distinguish be-

tween the concept of overoptimism and overfitting, showing that the former is associated

with the cross-validation procedure, while the latter is influenced by the chosen oversam-

pling algorithm. We observe that overoptimism is also influenced by data complexity

(F1 measure), though not by sample size or imbalance ratio. Furthermore, we perform

a thorough empirical comparison of well-established oversampling algorithms, supported

by a data complexity analysis. The best oversampling techniques seem to possess three

key characteristics: use of cleaning procedures, cluster-based example synthetisation, and

adaptive weighting of minority examples, where SMOTE + Tomek Links (SMOTE+TL)

and Majority Weighted Minority Oversampling Technique (MWMOTE) stand out, being

able of increasing the discriminative power of data. We also discuss how the test classifica-

tion performance relates to the complexity measures obtained from the respective training

sets.
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2.1 Introduction

Imbalanced Data (ID) occurs when there is a considerable difference between the class

priors of a given problem. Considering a binary-classification problem, a dataset is said

to be imbalanced if there exists an under-represented concept (a minority class) when

compared to the other (a majority class) [185]. Prediction models built from imbalanced

datasets are most often biased towards the majority concept, which is especially critical

when there is a higher cost of misclassifying the minority examples, such as diagnosing

rare diseases, preventing fraud, or detecting faulty systems [271].

Over the years, several researchers have proposed different approaches to handle imbal-

anced scenarios, which can be mainly divided into data-level approaches, where the data is

preprocessed in order to achieve a (re)balanced dataset for classification, and algorithmic-

level approaches, where the classifiers are adapted to deal with the characteristic issues of

imbalanced data [52, 84, 154, 310].

By far, data-level approaches are the most commonly used, as they have proven to be

efficient, are simple to implement, and are completely classifier-independent [271, 296].

Data-level strategies fall onto two main categories: undersampling and oversampling. The

former consists in removing majority examples, while the latter replicates the minority

examples. Researchers often invest in oversampling procedures since they are capable

of balancing class distributions without ruling out potentially critical majority examples

[178]. The most widely used oversampling technique is the Synthetic Minority Oversam-

pling Technique (SMOTE) [452], from which numerous extensions have been proposed

(e.g., ADASYN, Borderline-SMOTE, MWMOTE) [44, 180, 186].

Cross-validation (CV) is a standard procedure to evaluate classification performance; yet,

its joint application with oversampling raises some questions for researchers far from the

imbalanced data community. Some researchers who are not familiarised with the topic tend

to misunderstand some aspects of a standard experimental setup in imbalanced domains.

One of their frequent misconceptions relates to the joint-use of CV and oversampling al-

gorithms: oversampling seems to be applied to the entire original data, and only then

the cross-validation and model evaluation is performed [134, 331, 355, 431]. This mis-

conception naturally leads to the design of biased models and the consequent output of

overoptimistic error estimates (examples of these situations will be illustrated in Section

2.3).

In traditional CV, the entire dataset is initially partitioned into k folds, where k−1 folds are

used to train the prediction model and the left-out fold is used for testing. The folds then

rotate so that all are used for training and testing the model, and the final performance

metrics are averaged across the k estimates of each test fold. This process assures that k

independent sets are used to test the model, simulating unseen data: the test set is never

seen during the training of the model, to avoid overfitting the data. Incorrectly applying
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oversampling while performing CV may derive into two main issues: overoptimism and

overfitting, as we proceed to explain.

Regarding the issue of overoptimism, consider Approach 1 (CV after Oversampling) and

Approach 2 (CV during Oversampling) as depicted in Figure 2.1. In the first approach

(Approach 1) we design a cross-validation setup prone to overoptimism: the entire dataset

is first oversampled to achieve a 50-50 distribution between classes and the cross-validation

is applied afterwards. In this scenario, it is possible that copies of the same patterns appear

both in the training and test sets, making this design subjected to overoptimism (Figure

2.1 - CV after Oversampling). In the second approach (Approach 2), the oversampling

procedure is performed during cross-validation: the dataset is first divided into k stratified

partitions and only the training set (corresponding to k − 1 partitions) is oversampled

(Figure 2.1 - CV during Oversampling). In this scenario, the patterns included in the

test set are never oversampled or seen by the model in the training stage, thus allowing a

proper evaluation of the model’s capability to generalise from the training data.

Original Data

A B C

1 2 3 4 5 6 7 8 9 10

D E a c a d b
Oversampling

CV after Oversampling CV during Oversampling

A B C 1 2
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Figure 2.1: Different cross-validation approaches: Approach 1 – CV after oversampling
(left) and Approach 2 – CV during oversampling (right). When the cross-validation is
implemented after the oversampling is applied, similar patterns may appear in both the
training and test partitions (marked in the schema with an asterisk), leading to overopti-
mistic error estimates. When the cross-validation is applied during oversampling, only the
training patterns are considered for the generating of new patterns, avoiding overoptimism.
In both approaches, similar or exact copies may appear in the training partitions, leading
to overfitting, which is surpassed by an appropriate choice of oversampling techniques.
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Regarding the issue of overfitting, some researchers directly associate it to all oversam-

pling procedures, while others refer to the overoptimistic results of a CV approach as

“overfitting”, which confuses both concepts and hinders their identification. For this rea-

son, we here distinguish both ideas and explain how they relate to CV and oversampling

approaches, providing some examples:

• Overfitting occurs when the classifier is “tightly fitted” to the training data points,

and therefore loses its generalisation ability for the test data. Because of this, the

classification performance is lower in the test set when compared to the training

set. In this context, overfitting is usually associated to oversampling techniques

that generate exact replicas of training data patterns (e.g., Random Oversampling -

ROS), causing an overfit of the model in its learning stage;

• Overoptimism occurs when exact or similar replicas of a given pattern exist in both

the training and test sets (as represented in Figure 2.1 - CV after Oversampling).

In this case, the classification performance in the test sets will be similar to the one

obtained in the training sets, not because the model is able to correctly generalise for

the test data, but rather because there are similar patterns in both training and test

partitions. In this context, overoptimism is associated to incorrect implementations

of cross-validation approaches, when oversampling is used.

As an example, consider that we divided a dataset into 5 equal folds. If we considered 4

partitions for training and applied the ROS algorithm, exact replicas of existing minority

patterns would be generated: the classifier could be so exaggeratedly fitted to the train-

ing data that it would misclassify the test patterns (overfitting occurs). On the other

hand, imagine that we considered all 5 partitions to perform oversampling, creating simi-

lar patterns rather than exact replicas (e.g., using SMOTE). Although we are not using a

technique prone to overfitting, we are considering all the data points in the oversampling

procedure and therefore the probability that similar patterns appear both in the train-

ing and test partition increases (Figure 2.1). In this case, we are in the presence of an

overoptimistic approach.

The importance of a proper cross-validation approach in imbalanced domains was first

emphasised by Blagus and Lusa [55]. Authors evaluated the bias introduced in Classifica-

tion and Regression Trees (CART) when cross-validation and sampling techniques (ran-

dom undersampling, random oversampling, and SMOTE) are jointly used. The results

showed that incorrect CV achieved overly-optimistic estimates for random oversampling

and SMOTE, while random undersampling produced accurate predictions, resilient to the

change of CV procedure. Although this work provides an interesting take on the problem,

some questions remained unanswered from the experimental setup.

First, the number of real-world datasets used was rather small (10 datasets) and there was

not much variability in terms of sample size. Therefore, although authors claimed that a
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higher bias (overoptimistic effects) was observed for smaller datasets, the lack of variability

does not allow a complete analysis: in this work, we use a larger number of real-world

datasets (86 datasets) to provide a thorough evaluation of this topic. Blagus and Lusa

also refer that the bias is marginal when the prediction task is “easy”, without supporting

this claim with any type of complexity measures: we therefore explore well-established

data complexity measures to characterise the difficulty of each dataset. Furthermore, the

following novel analyses are included:

• Determine whether the Imbalance Ratio (IR) influences the classification bias (overop-

timistic effects);

• Evaluate incorrect versus correct CV approaches from a complexity perspective, by

analysing the data complexity in training and test partitions;

• Analyse a higher number of oversampling algorithms, in order to compare their inner

behaviour, determine how they handle data complexity, and assess which are more

susceptible to overfitting and which provide the largest improvement in classification

performance.

Motivated by the topics presented above, the purpose of this work is as follows:

• To fully characterise the risk of overoptimism when CV and oversampling algorithms

are used, extending the work of Blagus and Lusa [55], as previously described;

• To distinguish the problem of overoptimism from the overfitting problem, including

a novel analysis on the risk of overfitting and on the influence of data complexity on

classification results;

• To study the behaviour of 15 well-established oversampling algorithms and their

influence on classification performance, providing a thorough analysis of their inner

behaviour.

In this way, the contribution of this research is twofold. First, it details important aspects

on how to properly address imbalanced data problems, so that researchers far from the

imbalanced data topic or new researchers in the field truly understand the nature of the

problem and acknowledge the most correct validation procedures and promising resam-

pling techniques. Secondly, for researchers familiarised with the imbalanced data field, it

provides a thorough empirical analysis of a comprehensive set of oversampling techniques,

focusing on their behaviour/inner procedure and strengths/faults, supported by a data

complexity analysis.

The reader should navigate this work as follows: Section 2.2 presents some background

knowledge on oversampling techniques, complexity measures, classifiers, and performance
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measures. Then, Section 2.3 reviews a series of related research in order to discuss previous

works that produce overoptimistic cross-validation procedures. The experimental setup

used in this work is thoroughly described in Section 2.4, while the results are discussed

in Section 2.5. Finally, Section 2.6 summarises the conclusions of the work and refers to

some directions for future research.

2.2 Background Knowledge

This section reviews some background information so that the reader is able to follow the

Related Work (Section 2.3) and the different stages of this work, detailed in Section 2.4.

We start by explaining the oversampling algorithms commonly found among related work

and used in this research. Then, the complexity metrics analysed are presented. Finally,

a brief discussion of the implemented classifiers and performance metrics concludes this

section.

2.2.1 Oversampling Algorithms

ROS: Random Oversampling (ROS) is the simplest of oversampling techniques, where

the existing minority examples are replicated until the class distribution is (re)balanced.

This approach is often criticised since it does not introduce any new information to the

data (the oversampled examples are mere copies of the original data points) and may lead

to overfitting (even if CV is performed properly) [123].

SMOTE: Synthetic Minority Oversampling Technique (SMOTE) works by generating

synthetic minority examples along the line segments joining randomly chosen G minority

examples and their k-nearest minority class neighbours [433]. G is the number of minority

examples to oversample in order to obtain the desired balancing ratio between the classes,

and along with the value of k, it can be specified by the user. SMOTE will then generate

a new synthetic sample s according to s = x + ϕ(x− v), where x is the minority sample

to oversample, v is one of its chosen nearest neighbours and ϕ is called a gap, a random

number between 0 and 1. By generating similar examples to the existing minority points,

SMOTE creates larger and less specific decision boundaries that increase the generalisation

capability of classifiers, therefore increasing their performance.

ADASYN: Instead of producing an equal number of synthetic minority instances for

each minority example, the Adaptive Synthetic Sampling Approach (ADASYN) algorithm,

proposed by He et al. [186], specifies that minority examples harder to learn are given a

greater importance, being oversampled more often. ADASYN determines a weight (wi) for

each minority example, defined as the normalised ratio of majority examples Ni among its

k nearest neighbours: wi = Ni
k×z , where z is a normalisation constant. Then, the number

of synthetic data points to generate for each minority example is specified as gi = wi×G,
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being G the total necessary number of synthetic minority samples to produce according to

the required amount of oversampling. The oversampling procedure is the same as SMOTE;

the only difference is that harder minority examples are replicated more often.

Borderline-SMOTE: Based on the same idea of providing a more clear decision bound-

ary, Han et al. [180] suggested two new variations of SMOTE – Borderline-SMOTE1 and

Borderline-SMOTE2 – in which only the minority examples near the borderline are con-

sidered for oversampling. Borderline-SMOTE first considers the division of the minority

examples into three mutually exclusive sets: noise, safe, and danger. This division is

made by considering the number of majority examples m′ found among each minority

example’s k nearest neighbours. Thus, if m′ = k, all the nearest neighbours of a minority

data point pi are majority examples and pi is considered noise; conversely, if k
2 > m′ ≥ 0,

pi is considered safe, and if k > m′ ≥ k
2 , pi is surrounded by more majority examples

than minority ones (or surrounded by the exact same number) and therefore is considered

danger. The “danger” data points are considered the minority borderline examples, and

only them are oversampled, following a SMOTE-like procedure. For Borderline-SMOTE1,

new synthetic examples are created along the line between the danger examples and their

minority nearest neighbours; Bordeline-SMOTE2 uses the same procedure as Borderline-

SMOTE1 although it further considers the nearest majority example of each danger data

point to produce one more synthetic example: the distance between each danger point

and its nearest majority neighbour is multiplied by a gap between 0 and 0.5 so that the

new point falls closer to the minority class, thus strengthening the minority borderline

examples.

Safe-Level-SMOTE: Contrary to Borderline-SMOTE, the Safe-Level-SMOTE technique,

proposed by Bunkhumpornpat et al. [62], only synthesises minority examples around safe

regions. To specify a safe region, a coefficient named safe level ratio (slratio) is defined,

which is the ratio between the number of minority examples found among each minor-

ity example’s (p) k nearest neighbours, slp, and the number of minority examples found

among a randomly chosen neighbour’s (n) k-neighbourhood, sln. Depending on the slratio

of a given minority examples, five different scenarios may be applied to the SMOTE-based

generation: if both slp and sln are 0, no oversampling occurs; if slp > 0 and sln = 0,

then the SMOTE’s gap is set to 0 (the minority example is duplicated); if slratio = 1, the

gap is as in the original formulation of SMOTE (rand(0, 1)); if slratio > 1, the gap is set

to rand(0, 1
slratio

) so that the new example is generated closer to the minority example p

and finally, if slratio < 1, the gap is set to rand(1− slratio, 1) so that, conversely, the new

example is generated closer to the nearest neighbour n.

SMOTE+TL: SMOTE + Tomek Links (SMOTE+TL) also works on the basis of cre-

ating clear safe regions, by applying Tomek links after the data is oversampled with

SMOTE [123]. A Tomek link is defined as a pair of examples from different classes,

one from the minority class and the other from the majority class, (xi, xj), that are each
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other’s closest neighbours [421]. In this technique, SMOTE is first applied to oversample

the minority examples; then, the Tomek links are identified and the both data points of

each pair are removed.

SMOTE+ENN: Similar to SMOTE+TL, SMOTE + Wilson’s Edited Nearest Neighbour

Rule (SMOTE+ENN) first generates synthetic examples from the minority class (through

SMOTE), after which a process of data cleaning is applied, using the Wilson’s Edited

Nearest Neighbour Rule (ENN). ENN removes any example (either from the minority

or majority class) whose class differs from at least two of its three nearest neighbours

[248]. By removing the examples that are misclassified by its three nearest neighbours,

SMOTE+ENN provides a deeper data cleaning than SMOTE+TL [123].

ADOMS: Adjusting the Direction Of the synthetic Minority clasS examples (ADOMS)

algorithm combines SMOTE with Principal Component Analysis (PCA) to produce new

synthetic minority examples along the first principal component of the data surrounding

each minority example [412]. For each minority example to replicate, ADOMS searches for

its k-nearest minority class neighbours and performs PCA to determine the first principal

component axis of the local data. The generation of the new example is done in a SMOTE-

like fashion, but instead of being placed along the line that joins a minority example and

one of its k nearest neighbours, it is placed along the first principal component axis of its

k-neighbourhood.

CBO: Jo and Japkowicz [214] propose an oversampling approach that simultaneously

handles the between-class imbalance (imbalance between different classes) and the within-

class imbalance, where a single class comprises sub-clusters that hinder the learning pro-

cess of algorithms. Their approach is called Cluster-Based Oversampling (CBO) and uses

k-means clustering to guide the oversampling procedure. First, k−means is applied to

each class to find the existing sub-clusters; then, the majority class is oversampled - each

sub-cluster of the majority class is inflated until it reaches the size of the largest majority

sub-cluster. Finally, the minority class is oversampled: each sub-cluster is oversampled

until it reaches the size Nmaj/Ncmin, where Nmaj is total number of majority examples

after oversampling and Ncmin is the number of minority class clusters. Different over-

sampling approaches may be coupled with CBO algorithm: this work makes use of the

random oversampling algorithm (CBO + Random), as proposed by Jo and Japkowicz in

the original paper, and SMOTE (CBO + SMOTE), as discussed by He and Garcia [185].

AHC: Cohen et al. [95] propose an oversampling approach based on Agglomerative Hi-

erarchical Clustering (AHC). In this approach, the minority examples are clustered using

AHC with both the single and complete linkage rules in succession, so that the produced

clusters may vary. Then, fine-grained clusters are retrieved from all levels of the generated

dendrograms, and their centroids (prototypes) are determined. The process of synthetic

data generation is based on introducing the computed cluster prototypes as new samples

from the minority class.
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MWMOTE: Similarly to ADASYN and Borderline-SMOTE, the Majority Weighted Mi-

nority Oversampling Technique (MWMOTE) also works on the basis of generating syn-

thetic samples in specific regions, where the minority examples are harder to learn [44].

MWMOTE starts by identifying the harder-to-learn minority examples (Simin), so that

each is given a selection weight (Sw), according to their distance to the nearest examples

belonging to the majority class. These weights are then converted into selection proba-

bilities, Sp, that will be used in the oversampling stage. To generate the new synthetic

samples, the complete set of minority class examples Smin is clustered into M groups.

Then, a minority example x from Simin is selected according to the probability Sp, and

another random minority example in Smin that belongs to the same cluster of x is used to

generate a new synthetic sample in the same way as SMOTE. This approach is performed

as many times as required, according to the necessary number N of synthetic samples to

be generated.

SPIDER: Stefanowski and Wilk [407] propose an algorithm that uses the characteris-

tics of examples to drive their oversampling: Selective Pre-Processing of Imbalance Data

(SPIDER). SPIDER comprises two stages: first, each example is categorised into “safe”

or “noisy”, according to the correct or incorrect classification result returned by its k-

neighbourhood, respectively (k = 3 in the original formulation). Then, an amplification

strategy must be specified by the user: either “weak amplification”, “weak amplification

with relabelling”, or “strong amplification”. If weak amplification is chosen, the noisy

minority examples are amplified (copied) as many times as there are safe majority exam-

ples in their k-neighbourhood (k = 3). “Weak amplification with relabelling” allies the

amplification of noisy minority examples described before with a relabelling procedure:

noisy majority examples surrounded by noisy minority examples (considering k = 3), are

relabelled to the minority class. The “strong amplification” technique processes both the

noisy and safe minority examples. It starts by amplifying the safe examples by producing

as many copies as there are safe majority examples in their 3-nearest neighbourhood and

then considers the noisy minority examples and reclassifies them according to a larger

neighbourhood (k = 5). If an example is correctly classified, it suffers a standard weak

amplification; otherwise, it is more strongly amplified, by considering a 5-nearest neigh-

bourhood. Finally, for any type of amplification, the noisy examples of the majority class

are removed (in the case of “weak amplification with relabelling”, only the un-relabelled

noisy majority examples are removed). SPIDER2 is a modification of SPIDER that per-

forms the pre-processing of minority and majority examples in two separate stages [320].

It maintains the choice to perform a weak or strong amplification for the minority exam-

ples, while for the majority examples it is possible to decide whether relabelling is required

or not. SPIDER2 starts by categorising the majority examples into “safe” or “noisy” and

if the relabelling option is chosen, the noisy majority examples are relabelled; otherwise,

they are removed. Then, the minority examples are also divided into “safe” or “noisy”

and the amplification proceeds according to the chosen technique (weak or strong).
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2.2.2 Data Complexity Measures

Ho and Basu [220] proposed several complexity measures that essentially regard three

properties of datasets: geometry/topology, class overlapping, and boundary separability.

Table 2.1 summarises the properties analysed by each of the measures.

Geometry and Topology: L3 and N4 indirectly evaluate the class separability of

datasets, by measuring the non-linearity of a linear classifier and the nearest-neighbour

classifier, respectively. To compute L3, a test set is created by linear interpolation using

random coefficients between randomly selected pairs of examples from the same class. L3

then returns the error of a Support Vector Machine (SVM) with linear kernel in that

test set. N4 constructs a test set in the same way as for L3 and returns the test error

for a nearest-neighbour classifier. Higher values of these measures indicate more complex

classification problems.

Overlapping of Individual Feature Values: Measures F1, F2, and F3 are measures of

overlapping of individual features, and they focus on the ability of a single feature (its range

and spread) to distinguish between classes (by analysing their overlapping regions). In

particular, F1 is the Fisher’s Discriminative Ratio, and measures the highest discriminative

power of all the features in the data. If a dataset has at least one feature with a high

discriminative power (high F1), then the classification problem is considered easy [220].

F2 measures the highest volume of overlap between the classes’ conditional distributions,

also considering all features. If there is at least one feature in the data for each there is no

overlap, then the F2 of the data will be zero. F3 describes the maximum feature efficiency

among all features in the data. Considering that a feature’s values are represented in

a xx axis, the fraction of points where the values spanned by each class do not overlap

is considered the efficiency of that feature. The higher that fraction of non-overlapping

points is, the easier the classification problem will be.

Table 2.1: Complexity measures description. The term “++” indicates that higher values
of the measure correspond to a higher data complexity, while “−−” indicates that lower
values correspond to a higher data complexity.

Measure Description
Higher Data
Complexity

F1 Highest value of Fisher’s Discriminative Ratio (among all features) −−
F2 Highest volume of overlap between classes (among all features) ++
F3 Maximum feature efficiency (among all features) −−

L1 Minimised error of a linear classifier (linear SVM) ++
L2 Error rate (training set) of a linear classifier (linear SVM) ++
N1 Fraction of points on boundary by MST ++
N2 Ratio of average intra-class and inter-class scatter ++
N3 Error rate of nearest neighbour classifier (kNN, k=1) ++

L3 Nonlinearity of linear classifier (linear SVM) ++
N4 Nonlinearity of a nearest neighbour classifier (kNN, k=1) ++
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Class Separability: L1, L2, N1, N2, and N3 are measures of class separability and focus

on the characteristics of the boundary between classes. L1 and L2 measure to what extent

the training data is linearly separable. In the original formulation, L1 measures the min-

imised error of a linear classifier obtained by a linear programming (LP) formulation [225],

although in our implementation a Support Vector Machine with a linear kernel trained

with the sequential minimal optimisation (SMO) algorithm is used instead, according to

the recommendation of the used software, DCoL [334], described below. It follows that, if

a classification problem is linearly separable, then L1 is zero. L2 is the error rate of such

a classifier in the training set. N1 is obtained by constructing a minimum spanning tree

(MST) connecting all points in the dataset and counting the number of points connected

to the opposite class by an edge. N1 is then computed as the fraction of these points over

all data points, and it returns higher values for a classification problem where the classes

are intertwined (higher complexity). N2 refers to the ratio between the average intra-class

distance (considering each example’s nearest neighbour) and the average inter-class dis-

tance (also considering a 1-nearest neighbourhood). It measures the compromise between

the within-class spread and the between-class spread. Ideally, in an easy classification

problem, the within-class scatter should be low and the between-class scatter should be

high. Nevertheless, the denominator (between-class scatter) greatly influences the N2 val-

ues: we therefore consider that higher values of N2 (smaller between-class scatter) traduce

more complex scenarios. Finally, N3 measures the error rate of a 1-nearest neighbour

classifier (higher N3 values are associated to a higher data complexity).

The discussed complexity measures were computed using the data complexity library

(DCol) [334], publicly available at https://github.com/nmacia/dcol. DCol is imple-

mented in C++ and allows the computation of the measures proposed by Ho and Basu [220],

in order to characterise the complexity of datasets for supervised learning experiments.

2.2.3 Performance Metrics for Imbalanced Domains

The performance evaluation of a classifier is commonly based on the analysis of a confusion

matrix (Table 2.2). A confusion matrix illustrates the true (or actual) class versus the

predicted class in classification tasks, where each row of the matrix represents the data

examples of each true class, and the columns represent the examples of each predicted

class.

Table 2.2: Confusion Matrix for a binary-classification problem.

Predicted Class
Positive Negative

True Class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

35

https://github.com/nmacia/dcol


Chapter 2

The Accuracy (ACC) is one of the most widely used metrics to evaluate the performance of

a classifier, and determines the percentage of correct predictions returned by the classifier.

It is defined according to Equation 2.1, where TP and TN are the true positives and true

negatives (correctly classified examples of the positive and negative class, respectively),

and FP and FN are the false positives (negative examples classified as positive) and false

negatives (positive examples classified as negative).

ACC =
TP + TN

TP + FN + FP + TN
(2.1)

Given that ACC does not distinguish between the correctly classified examples of each

class, it is not a suitable metric for imbalanced domains, since it is biased towards the

majority class [191]. For that reason, alternative metrics should be considered, such as

Sensitivity, Specificity, Precision, F-Measure, G-mean, and the Area Under the ROC Curve

(AUC) [185].

Sensitivity (SENS) measures the percentage of positive examples correctly classified (Equa-

tion 2.2), while Specificity (SPEC) refers to the percentage of negative examples correctly

identified (Equation 2.3):

SENS =
TP

TP + FN
(2.2)

SPEC =
TN

TN + FP
(2.3)

In turn, Precision (PREC) corresponds to the percentage of positive examples correctly

classified, considering the set of all the examples classified as positive, and can be computed

according to Equation 2.4, as follows:

PREC =
TP

TP + FP
(2.4)

F-measure, G-mean, and AUC represent the trade-off between some of the metrics de-

scribed above. F-measure (F-1) shows the balance between sensitivity and precision,

obtained through their harmonic mean (Equation 2.5), while G-mean represents the geo-

metric mean of both classes’ accuracies (Equation 2.6).

F-1 =
2× PREC × SENS
PREC + SENS

(2.5)

G-mean =
√
SENS × SPEC (2.6)
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At last, AUC makes use of the Receiver Operating Characteristics (ROC) curve to exhibit

the trade-off between the classifier’s TP and FP rates [5].

2.3 Related Work

Herein, we review a series of works aiming to show that the less the work is related to

learning from imbalanced data, the more likely the cross-validation procedure is poorly

designed. We therefore divided the related research into three main categories: Learning

from Imbalanced Data, Comparing approaches in a specific context, and Solving a classifi-

cation problem.

The Learning category includes research works focused on performing extensive experi-

ments to evaluate diverse sampling techniques [7, 8, 27, 118, 265, 274, 391]. Typically,

these works include a large number of publicly-available datasets, and a comprehensive

set of learners and sampling algorithms.

Comparison works perform a comparison of oversampling approaches in a specific context

(e.g., fault detection [179, 450], churn prediction [485], sentiment analysis [442], and sur-

vival prediction [101], among others [17, 169, 266, 357, 471]). These works normally include

a lower number of datasets and sampling strategies (frequently, random oversampling and

SMOTE-like approaches).

Finally, Classification category comprises works where the main objective is to solve a

particular classification problem (e.g., preterm deliveries [355], disease prediction [39, 72,

431], among others [18, 116]) and the imbalanced nature of data is not the focus.

Table 2.3 summarises the main properties of related work (2016-2017), divided by category.

It illustrates the implemented oversampling techniques and classifiers, evaluation metrics,

and the characteristics of the used datasets (number of features, sample size, and imbalance

ratio). The design of the cross-validation procedure is also stated: either it was performed

during the oversampling (During), or after the oversampling was complete (After). An

extended version of this table, including research works prior to 2016 and a brief description

of each work is presented in Appendix A.1.

The idea we intend to emphasise with Table 2.3 is that the less the work is related to learn-

ing from imbalanced learning, the more likely the cross-validation procedure is poorly de-

signed. All works included in the Learning category (except one) perform a well-designed

CV procedure, where the training and test partitions are determined before any oversam-

pling technique is applied. As we move towards research works whose objective is not

to provide an extensive evaluation of methods to deal with the class imbalance problem,

we find a larger number of works where the CV procedure is not correctly applied: the

complete dataset is oversampled and the partition into training and test sets is performed

afterwards. This is more evident if we consider the research works where the main objec-
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tive is to ease a classification task (Classification category), rather than studying different

approaches to overcome class imbalance (Comparison category). In Classification studies,

it is likely that researchers were not completely familiarised with imbalanced data domains

and respective approaches and thus, when faced with a specific imbalanced context, they

resorted to the state-of-the-art oversampling approach (SMOTE) to solve the issue, but

they misunderstood its application, creating biased CV procedures.

Table 2.3: Summary of related research on class imbalance.

Algorithms Datasets

Year Papers Oversampling Classifiers Metrics Features Samples IR CV

Learning from Imbalanced Data

2016
Loyola-
Gonzalez
et al. [274]

AHC; ADASYN;
SMOTE;
ADOMS; ROS;
Borderline;
SMOTE+ENN;
SMOTE+TL;
Safe-Level;
SPIDER

Contrast
Pattern-
based

ACC; AUC {3 to 34} {101 to
4174}

{1.82 to
129.44} During

2016
Alejo et al.
[27]

ADASYN;
SMOTE;
ADOMS; ROS;
Borderline;
SMOTE+ENN;
SMOTE+TL;
Safe-Level;
SPIDER

ANN AUC {4 to 38} {1470 to
10944}

{1.05 to
46.75} During

2016
Rivera et
al. [7]

SMOTE;
LNSMOTE;
Borderline;
Safe-Level;
SLOUPS; OUPS

SVM; LDA;
ANN

SEN;
SPEC;
G-Mean

{92 to
5323} {6 to 33} {7.46 to

39.15} During

2016
Saez et al.
[8]

SMOTE; Ad-
aBoost.NC+ROS

C4.5; SVM;
kNN

ACC
{87 to
1728} {4 to 34} {1.48 to

164} During

2017
Douzas et
al. [118]

ROS; SMOTE;
Borderline;
ADASYN;
CBO+SMOTE

LR; Gradient
Boost
Machine
(GBM)

AUC; F-1 ;
G-Mean

{77 to
2310} {3 to 90} {1.25 to

30} During

2017
Shilaskar
et al. [391]

Our proposed
technique for data
balancing
employs synthetic
oversampling as
well as under
sampling

Genetic
algorithm;
Modified
particle
swarm
optimization;
SVM

AUC;
ACC; F-1 ;
G-Mean;
SEN;
SPEC

{5 to 40} {124 to
1387}

{2.80 to
20.1} After

2017
Liu et al.
[265]

SMOTE SVM

SEN;
PREC
F-1 ;
G-Mean

{3 to 10} {214 to
4174}

{1.82 to
129.44} During

Comparing approaches in a specific context

2016
Gong et al.
[169]

ROS; SMOTE

ANN; SVM;
CART; RF;
AdaBoost;
Bagging;
Linear
Ensemble

WeightedACC;
G-Mean;
F-1

{18 to 22} 2149 42.58 During

To be continued on the next page. . .
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Table 2.3: Continued from previous page.

Algorithms Datasets

Year Papers Oversampling Classifiers Metrics Features Samples IR CV

2016
Liu et al.
[266]

ROS; Fuzzy
Oversampling
(FOS)

NB; SVM;
C4.5; RF;
kNN;
RUSBoost;
Ensemble

SENS;
False
Positive
Rate
(FPR);
PREC;
F-1

12 600×106 {2 to 20} During

2017
Zhu et al.
[485]

ADASYN;
SMOTE;
Borderline;
SMOTE+ENN;
SMOTE+TL;
MWMOTE

LR; SVM;
C4.5; RF

AUC {9 to 231} {2019 to
100462}

{5.90 to
54.56} During

2017
Hamill et
al. [179]

ROS; SMOTE
NB; C4.5;
ZeroR; Part

SEN;
PREC;
F-1 ; ACC

8 1153
{4.29 to

7.10} After

2017
Dag et al.
[101]

ROS; SMOTE
ANN; LR;
SVM; CART

AUC;
ACC;
SENS;
SPEC

122 15580
{1.15 to

7.48} During

2017
Vinodhini
et al. [442]

SMOTE
SVM;
Bagging;
Boosting

AUC;
G-Mean

{96 to
400}

{500 to
1025}

{2.70 to
7.20} During

2017
Prusty et
al. [357]

SMOTE;
WSMOTE

ANN
SENS;
F-1 ;

n.c.
{336 to
11183}

{8.6 to
42.01} During

Solving a classification problem

2016
Rani et al.
[431]

SMOTE
C4.5; SVM;
kNN; LR; RF

ACC 10
{198 to

699}
{1.60 to

3.21} After

2016
Sady et al.
[72]

SMOTE SVM
ACC; SEN;
SPEC;
AUC

18 150 9 During

2017
Oppedal et
al. [331]

SMOTE RF
ACC; SEN;
PREC

n.c.
{52 to
110}

{1.61 to
4.27} After

2017
Dobbins et
al. [116]

SMOTE

linear
discriminant;
quadratic
discriminant;
uncorrelated
normal
density
based;
polynomial;
logistic; kNN;
DT; parzen;
SVM; NB

AUC;
Mean
Error Rate;
ACC;
SENS

n.c. n.c. n.c. After

2017
Acharya et
al. [355]

ADASYN SVM
ACC; SEN;
SPEC

{2 to 8} 300 6.89 After

2017
Ahmad et
al. [18]

SMOTE kNN

Matthews
correlation
coefficient
(MCC);
ACC; SEN;
SPEC

n.c. 304 2.49 After

2017
Awad et
al. [39]

SMOTE
RF; DT; NB;
PART

AUC {5 to 29} {1356 to
11722}

{3.79 to
7.36} After

n.c. – not clear/ unknown
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2.4 Experimental Setup

The experimental setup used in this work comprises 3 main approaches: Baseline, Ap-

proach 1, and Approach 2 (Figure 2.2).

For the results presented as “Baseline”, the collected datasets are first divided into 5 strat-

ified folds (k = 5 folds is the maximum that allowed a proper stratification of classes) and

the classification process follows, without any type of oversampling. The data complexity

measures and performance metrics for the original training and test sets are then retrieved.

In Approach 1, the original datasets are first oversampled, and the cross-validation and

performance evaluation is performed afterwards. The data complexity measures (for over-

sampled training and test sets) are then retrieved.

In Approach 2, oversampling is performed during cross-validation: the original datasets are

first divided into 5 folds (same folds as for the Baseline), and only the training partitions

are oversampled. The classifiers are then trained with the oversampled training folds and

tested in the respective original test folds. In this case, the data complexity measures are

only determined for the oversampled training sets, since the data complexity of the test

sets is the same as obtained for the Baseline.

A detailed explanation regarding the extraction of results is detailed in Appendix A.2

(Figures A.1 to A.4).

Original 
Data

Oversampling
(complete dataset)

Cross-validation
(k = 5)

Cross-validation
(k = 5)

Data Complexity
(training partitions)

Data Complexity
(test partitions)

Performance 
Metrics

Oversampling
(training partitions)

Data Complexity
(training partitions)

Data Complexity
(original test partitions)

Performance 
Metrics

Baseline

Approach 1: CV after oversampling

Approach  2: CV during oversampling

Performance 
Metrics

Figure 2.2: Experimental setup architecture.
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With this setup we aim to perform 3 main analysis: i) compare the differences in perfor-

mance between Approaches 1 and 2, in order to explain the risk of overoptimistic error

estimates, ii) distinguish between overoptimistic and overfitting approaches in imbalanced

domains that consider oversampling, and iii) determine which oversampling approach is

the most appropriate to solve the imbalance problem, obtaining the best average results

among the different contexts (datasets) considered in this study.

Regarding the process of data collection, the 86 datasets used in this work were collected

from two online repositories, UCI Machine Learning Repository [115] and KEEL – Knowl-

edge Extraction based on Evolutionary Learning [24]. The choice criteria included the

following parameters: complete datasets, regarding binary-classification problems, with a

variable sample size, number of features, and imbalance ratio (IR). Their main character-

istics are summarised in Table 2.4.

Table 2.4: Characteristics of imbalanced datasets.

Dataset Size Features IR Dataset Size Features IR

bupa 345 6 1.38 vowel0 988 13 9.98
pageblocks-1-3vs4 472 10 1.57 ecoli-0-6-7vs5 220 7 10.00
glass1 214 9 1.82 glass-0-1-6vs2 192 9 10.29
ecoli-0vs1 220 7 1.86 ecoli-0-1-4-7vs2-3-5-6 336 7 10.59
wisconsin 683 9 1.86 led7digit-0-2-4-5-6-7-8-9vs1 443 7 10.97
pima 768 8 1.87 ecoli-0-1vs5 240 7 11.00
cmc1vs2 961 9 1.89 glass-0-6vs5 108 9 11.00
iris0 150 4 2.00 glass-0-1-4-6vs2 205 9 11.06
glass0 214 9 2.06 glass2 214 9 11.59
german 1000 20 2.33 ecoli-0-1-4-7vs5-6 332 7 12.28
yeast1 1484 8 2.46 cleveland-0vs4 173 14 12.31
haberman 306 3 2.78 ecoli-0-1-4-6vs5 280 7 13.00
vehicle2 846 18 2.88 shuttle-c0-vs-c4 1829 9 13.87
vehicle1 846 18 2.90 yeast-1vs7 459 8 14.30
vehicle3 846 18 2.99 glass4 214 9 15.46
glass-0-1-2-3vs4-5-6 214 9 3.20 ecoli4 336 7 15.8
transfusion 748 4 3.20 abalone9-18 731 8 16.4
vehicle0 846 18 3.25 dermatology-6 358 34 16.9
ecoli1 336 7 3.36 thyroid-3vs2 703 21 18.00
newthyroid1 215 5 5.14 glass-0-1-6vs5 184 9 19.44
ecoli2 336 7 5.46 pageblocks-1vs3-4-5 5144 10 21.27
balance scaleBvsR 337 4 5.88 shuttle-6vs2-3 230 9 22.00
balance scaleBvsL 337 4 5.88 yeast-1-4-5-8vs7 693 8 22.10
segment0 2308 19 6.02 pageblocks-1-2vs3-4-5 5473 10 22.69
glass6 214 9 6.38 glass5 214 9 22.78
yeast3 1484 8 8.10 yeast-2vs8 482 8 23.10
ecoli3 336 7 8.60 letter-U 20000 16 23.60
pageblocks0 5472 10 8.79 flare-F 1066 11 23.79
ecoli-0-3-4vs5 200 7 9.00 car-good 1728 6 24.04
yeast-2vs4 514 8 9.08 pageblocks-1vs4-5 5116 10 24.20
ecoli-0-6-7vs3-5 222 7 9.09 car-vgood 1728 6 25.58
ecoli-0-2-3-4vs5 202 7 9.10 letter-Z 20000 16 26.25
glass-0-1-5vs2 172 9 9.12 kr-vs-k-zero-onevsdraw 2901 6 26.63
yeast-0-3-5-9vs7-8 506 8 9.12 yeast4 1484 8 28.10
yeast-0-2-5-6vs3-7-8-9 1004 8 9.14 winequality-red-4 1599 11 29.17
yeast-0-2-5-7-9vs3-6-8 1004 8 9.14 poker-9vs7 244 10 29.50
ecoli-0-4-6vs5 203 7 9.15 yeast-1-2-8-9vs7 947 8 30.57
ecoli-0-1vs2-3-5 244 7 9.17 abalone-3vs11 502 8 32.47
ecoli-0-2-6-7vs3-5 224 7 9.18 yeast5 1484 8 32.73
glass-0-4vs5 92 9 9.22 kr-vs-k-threevseleven 2935 6 35.23
ecoli-0-3-4-6vs5 205 7 9.25 winequality-red-8vs6 656 11 35.44
ecoli-0-3-4-7vs5-6 257 7 9.28 abalone-17vs7-8-9-10 2338 8 39.31
yeast-0-5-6-7-9vs4 528 8 9.35 abalone-21vs8 581 8 40.50
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KEEL repository contains several datasets specifically designed for imbalanced data exper-

iments, and therefore the great majority of datasets was selected from this source. Given

that these datasets are given as a benchmark for imbalanced learning, researchers can find

the original data already prepared for binary classification, appropriately cleaned (with-

out missing or inconsistent values), and formatted in a similar format to .arff files (as in

WEKA). When selecting datasets from UCI repository, some issues had to be surpassed:

datasets with a small amount of missing data were preprocessed in order to remove the

missing instances or features, whereas datasets with a large amount of missing data, incon-

sistent data, or lack of information (e.g., details on the class target) were discarded. Also,

as we focus solely on binary-classification problems, some multi-class datasets were mod-

ified in order to create binary versions (e.g., balance scaleBvsL and balance scaleRvsL,

cm1 vs 2). Some datasets had to be discarded due to specific combinations of IR and

sample size: for some datasets, it was not possible to perform a stratified 5-fold cross-

validation, that is, given the rarity of the minority class, not all folds could have the same

number of minority instances, without replacement. Given that we aimed to maintain the

IR for all folds (for consistency), those datasets were removed from the study.

Finally, one of the initial objectives of this work was to determined whether IR influenced

the creation of overoptimistic/overfitting approaches, and therefore we have chosen an

equal number of datasets with IR < 10 (43 datasets) and IR > 10 (43 datasets). Given

that vowel0 has an IR very close to 10 (9.98), we have included it as part of the “IR >

10” group. These considerations lead to the final collection of the 86 datasets used in this

research, that comprise varying imbalance ratios, sample sizes, and number of features

(Table 2.4).

2.5 Results and Discussion

In this section, we refer to the experimental results produced using the setup presented

above. We start by comparing Approaches 1 and 2 in what concerns their risk of producing

overoptimistic results and overfitting the data. Then, we move to the analysis of data

complexity and its relationship with the obtained classification results. Finally, we focus

on Approach 2 and thoroughly compare the inner characteristics of each oversampling

method, discussing their main advantages and disadvantages.

2.5.1 Evaluating the risk of overoptimism and overfitting: Approach 1

versus Approach 2

To evaluate the issues of overoptimism and overfitting regarding the joint-use of cross-

validation and oversampling approaches, we start by comparing the performance results

of Approach 1 (CV after oversampling) and Approach 2 (CV during oversampling), as
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shown in Figure 2.3. The results confirm that the performance obtained with Approach

1 is more optimistic: the mean test values of the various performance metrics (AUC, G-

mean, F-1, and SENS) are always higher in Approach 1 (Figure 2.3). Since the behaviour

observed for both Approaches is consistent for all performance metrics, we will refer only

to the AUC values in the following analyses, in order to provide a base of comparison with

previous works, which largely use AUC (Table 2.3).
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Figure 2.3: Performance metrics (average) achieved for the original datasets (Baseline)
and for the oversampled datasets, considering both Approaches 1 and 2.

Figure 2.4 shows the AUC values (training and test partitions) obtained for the original

datasets (Baseline) and for the oversampled datasets, considering both Approaches 1 and

2. Furthermore, Table 2.5 presents the absolute differences between AUC values of training

and test partitions, for both approaches. The p-values derived from a Mann-Whitney test

are also included and confirm that i) the train-test differences between Approaches 1 and 2

are significantly different, and ii) the AUC results obtained for the test sets are the source

of this difference. Additional information may be found in Table A.2 (Appendix A.2),

that shows the AUC values (training and test partitions) for each approach, oversampling
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Figure 2.4: AUC values (training and test partitions) obtained for the original datasets
(Baseline) and for the oversampled datasets, considering both Approaches 1 and 2.

algorithm, and classifier. As shown by Figure 2.4, the training results are similar, which

suggests that the major difference between both approaches relies on the characteristics

of the test sets.

Table 2.5: Differences in classification performance (AUC) between training and test par-
titions for all oversampling algorithms, considering both Approaches 1 and 2 (listed in
descending order of differences in Approach 2).

Train-Test Man-Whitney p-value

Algorithm A1 A2 Train Test Train-Test

CBO+Random 0.011 0.112 0.803 1.70E-12 9.26E-23
Borderline-SMOTE2 0.019 0.104 0.938 7.25E-11 8.34E-18
Borderline-SMOTE1 0.020 0.104 0.932 5.44E-11 1.31E-17
CBO+SMOTE 0.016 0.099 0.754 3.90E-10 1.18E-17
ROS 0.018 0.097 0.659 4.98E-09 2.17E-17
SMOTE+ENN 0.019 0.096 0.831 2.56E-08 6.07E-16
Safe-Level-SMOTE 0.019 0.095 0.673 1.26E-08 2.54E-16
SMOTE+TL 0.020 0.091 0.765 1.41E-07 1.32E-14
AHC 0.023 0.089 0.663 8.66E-07 1.36E-12
SPIDER 0.022 0.088 0.634 1.23E-09 3.18E-17
SMOTE 0.023 0.087 0.579 5.00E-20 2.83E-41
ADASYN 0.024 0.086 0.725 1.01E-06 4.53E-12
ADOMS 0.024 0.085 0.582 4.93E-06 7.92E-12
SPIDER2 0.025 0.084 0.779 4.12E-05 6.93E-08
MWMOTE 0.025 0.084 0.875 7.24E-06 2.69E-12
Baseline 0.069 0.069 1.000 9.94E-01 9.94E-01

A1 and A2 are equivalent to Approach 1 and Approach 2, respectively.

In Approach 1, it is the overoptimism problem (rather than the overfitting) that is identi-

fied, given that the difference between training and test results is not considerable (Table

2.5). In this scenario, the test sets have similar characteristics to the training sets (are

balanced and may contain exact replicas or similar patterns to the training points). From

Table 2.5, it can be observed that for Approach 1, the best methods often include CBO

and ROS. CBO+Random and ROS create exact replicas of existing data points, and since

the division (cross-validation) is performed after the oversampling procedure is applied

over the entire dataset, the probability that exact replicas exist in both the training and

test sets increases, thus producing better results. In the case of CBO+SMOTE, although
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SMOTE creates synthetic examples, it does so by inflating the clusters defined by k-means

algorithm, which may reduce the data variability introduced in the dataset. Therefore,

patterns in the test sets may also be similar to the ones comprised in the training sets.

In Approach 2, the difference between the results of the training and test sets is more

accentuated: in this scenario, the test sets follow the same class imbalance as the original

dataset, and its patterns are never considered in the oversampling or training phases. As

a result, overoptimism does not appear in this scenario. However, some overfitting effects

may occur. Considering the presence of overfitting as a difference around 0.1 between the

training and test AUCs [278], it can be observed that the great majority of oversampling

methods cannot be responsible for overfitting effects. However, some methods seem to be

introducing overfitting (Table 2.5). CBO+Random, which obtains the worst results, seems

to be the method responsible for the highest amount of overfitting, followed by Borderline-

SMOTE and CBO+SMOTE. ROS, SMOTE+ENN, and Safe-Level-SMOTE, although in

a lighter scale, also seem to have some generalisation issues, where the difference between

training and test AUCs also comes close to 0.1. The same cannot be observed for Ap-

proach 1 given that the overoptimism problem highly dominates the results, preventing

the identification of these overfitting effects.

The tendency of CBO+Random, CBO+SMOTE, and ROS to overfit the data is some-

what intuitive: as they create exact replicas (CBO+Random and ROS) or very similar

replicas (CBO+SMOTE by creating synthetic examples in defined clusters) to the existing

training patterns, the models tend to overfit these training patterns and fail to generalise

to different ones. Further on, Section 2.5.3 performs a detailed analysis of Approach 2,

reviewing the advantages and disadvantages of each oversampling algorithm, allowing the

understanding of why Borderline-SMOTE and Safe-Level-SMOTE may present generalisa-

tion issues (which also explains their poor performance). The major issue of these methods

is that the definition of danger/borderline examples (Borderline-SMOTE) and safe exam-

ples (Safe-Level-SMOTE) may fail in certain scenarios and harm the classification task

(complicating the generalisation ability of classifiers).

Finally, SMOTE+ENN shows a training/test difference of 0.096, which is considerable

when compared to its analogous SMOTE+TL (0.091) and precursor SMOTE (0.087).

Both methods (SMOTE+ENN and SMOTE+TL) were developed to surpass the issues of

overgeneralisation of SMOTE. However, as will be discussed in Section 2.5.3, the ability

of SMOTE to create larger decision boundaries seems to be a major strength, whereas its

successor approaches seem to create a higher risk of overfitting the training data. This

may be due to excessive cleaning applied after SMOTE. In the case of SMOTE+TL, the

issue is not critical (0.091), as only the Tomek Links are removed. For SMOTE+ENN,

the issue is aggravated (0.096) due to its deeper data-cleaning procedure. Such cleaning

aims to simplify the training data and ease the definition of class boundaries, although the

results suggest that this may not be advantageous for all scenarios: such simplification may
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jeopardize generalization. Focusing on the test AUC results, MWMOTE and SMOTE+TL

seem to be the best oversampling methods (Figure 2.4).

In Table 2.6, we present a set of 10 representative datasets in order to discuss the obtained

results in higher detail. The table shows the performance results obtained by C4.5, divided

into training and test partitions, and regarding both Approaches 1 and 2. The classification

performance differences between training and test partitions are also included.

Table 2.6: AUC results (training and test partitions) for C4.5 regarding Approach 1 and
2.

Approach 1 Approach 2 Approach 1 Approach 2

Method Dataset Train Test Train-Test Train Test Train-Test Dataset Train Test Train-Test Train Test Train-Test

Baseline

ec
o
li
1

0.930 0.856 0.074 0.930 0.856 0.074

w
is

co
n
si

n

0.985 0.945 0.040 0.985 0.945 0.040
ADASYN 0.955 0.890 0.065 0.962 0.876 0.086 0.983 0.968 0.015 0.983 0.965 0.018
ADOMS 0.958 0.911 0.047 0.954 0.887 0.067 0.989 0.961 0.028 0.983 0.954 0.029
AHC 0.950 0.903 0.047 0.954 0.903 0.051 0.981 0.962 0.019 0.985 0.951 0.034
B-SMOTE1 0.964 0.927 0.037 0.958 0.900 0.058 0.984 0.972 0.012 0.983 0.967 0.016
B-SMOTE2 0.955 0.932 0.023 0.958 0.900 0.058 0.982 0.976 0.006 0.983 0.967 0.016
CBO+Random 0.989 0.961 0.028 0.996 0.857 0.139 0.986 0.970 0.016 0.997 0.941 0.056
CBO+SMOTE 0.984 0.944 0.040 0.986 0.860 0.126 0.993 0.972 0.021 0.992 0.943 0.049
MWMOTE 0.957 0.919 0.038 0.953 0.891 0.062 0.983 0.963 0.020 0.984 0.948 0.036
ROS 0.972 0.940 0.032 0.980 0.871 0.109 0.985 0.966 0.019 0.987 0.949 0.038
SL-SMOTE 0.971 0.940 0.031 0.981 0.878 0.103 0.984 0.958 0.026 0.988 0.954 0.034
SMOTE 0.958 0.934 0.024 0.970 0.895 0.075 0.983 0.962 0.021 0.986 0.950 0.036
SMOTE+ENN 0.980 0.928 0.052 0.974 0.881 0.093 0.994 0.973 0.021 0.993 0.946 0.047
SMOTE+TL 0.987 0.957 0.030 0.992 0.894 0.098 0.994 0.977 0.017 0.994 0.962 0.032
SPIDER 0.981 0.936 0.045 0.980 0.900 0.080 0.991 0.973 0.018 0.992 0.969 0.023
SPIDER2 0.970 0.918 0.052 0.979 0.908 0.071 0.994 0.971 0.023 0.992 0.967 0.025

Baseline

v
eh

ic
le

2

0.989 0.948 0.041 0.989 0.948 0.041

y
ea

st
3

0.931 0.888 0.043 0.931 0.888 0.043
ADASYN 0.991 0.968 0.023 0.995 0.948 0.047 0.977 0.959 0.018 0.979 0.907 0.072
ADOMS 0.993 0.971 0.022 0.993 0.952 0.041 0.975 0.956 0.019 0.981 0.909 0.072
AHC 0.992 0.969 0.023 0.994 0.957 0.037 0.981 0.957 0.024 0.979 0.909 0.070
B-SMOTE1 0.993 0.975 0.018 0.994 0.953 0.041 0.983 0.971 0.012 0.982 0.915 0.067
B-SMOTE2 0.993 0.979 0.014 0.994 0.953 0.041 0.981 0.971 0.010 0.982 0.915 0.067
CBO+Random 0.996 0.983 0.013 0.997 0.899 0.098 0.996 0.994 0.002 0.995 0.890 0.105
CBO+SMOTE 0.993 0.977 0.016 0.994 0.940 0.054 0.987 0.976 0.011 0.991 0.888 0.103
MWMOTE 0.992 0.964 0.028 0.991 0.940 0.051 0.983 0.967 0.016 0.978 0.917 0.061
ROS 0.994 0.977 0.017 0.996 0.954 0.042 0.986 0.970 0.016 0.989 0.870 0.119
SL-SMOTE 0.996 0.971 0.025 0.996 0.938 0.058 0.987 0.973 0.014 0.988 0.881 0.107
SMOTE 0.993 0.975 0.018 0.992 0.944 0.048 0.982 0.964 0.018 0.980 0.903 0.077
SMOTE+ENN 0.995 0.982 0.013 0.995 0.952 0.043 0.994 0.975 0.019 0.992 0.911 0.081
SMOTE+TL 0.995 0.976 0.019 0.996 0.959 0.037 0.989 0.970 0.019 0.989 0.907 0.082
SPIDER 0.993 0.967 0.026 0.994 0.953 0.041 0.993 0.979 0.014 0.993 0.903 0.090
SPIDER2 0.991 0.957 0.034 0.987 0.942 0.045 0.992 0.981 0.011 0.991 0.899 0.092

Baseline

p
a
g
eb

lo
ck

s0

0.958 0.921 0.037 0.958 0.921 0.037

v
ow

el
0

0.994 0.934 0.060 0.994 0.934 0.060
ADASYN 0.990 0.975 0.015 0.990 0.948 0.042 0.998 0.993 0.005 0.999 0.960 0.039
ADOMS 0.991 0.978 0.013 0.991 0.947 0.044 0.998 0.988 0.010 0.999 0.966 0.033
AHC 0.991 0.976 0.015 0.991 0.940 0.051 0.996 0.987 0.009 0.997 0.964 0.033
B-SMOTE1 0.990 0.978 0.012 0.991 0.942 0.049 0.998 0.993 0.005 0.999 0.967 0.032
B-SMOTE2 0.991 0.979 0.012 0.991 0.942 0.049 0.998 0.993 0.005 0.999 0.967 0.032
CBO+Random 0.997 0.993 0.004 0.997 0.926 0.071 1.000 1.000 0.000 0.999 0.951 0.048
CBO+SMOTE 0.994 0.982 0.012 0.995 0.931 0.064 0.999 0.993 0.006 0.999 0.962 0.037
MWMOTE 0.986 0.960 0.026 0.986 0.940 0.046 0.997 0.984 0.013 0.997 0.950 0.047
ROS 0.994 0.987 0.007 0.995 0.932 0.063 0.999 0.994 0.005 1.000 0.959 0.041
SL-SMOTE 0.994 0.987 0.007 0.995 0.946 0.049 0.999 0.994 0.005 1.000 0.942 0.058
SMOTE 0.992 0.976 0.016 0.991 0.941 0.050 0.999 0.990 0.009 0.999 0.949 0.050
SMOTE+ENN 0.994 0.977 0.017 0.995 0.947 0.048 0.998 0.989 0.009 0.999 0.968 0.031
SMOTE+TL 0.994 0.980 0.014 0.995 0.952 0.043 0.999 0.995 0.004 0.999 0.966 0.033
SPIDER 0.995 0.979 0.016 0.996 0.944 0.052 0.994 0.961 0.033 0.996 0.947 0.049
SPIDER2 0.993 0.976 0.017 0.993 0.934 0.059 0.991 0.962 0.029 0.994 0.958 0.036

Baseline

le
tt

er
-U

0.980 0.947 0.033 0.980 0.947 0.033

a
b
a
lo

n
e-

3
v
s1

1

1.000 0.966 0.034 1.000 0.966 0.034
ADASYN 0.998 0.996 0.002 0.998 0.950 0.048 1.000 0.995 0.005 1.000 0.966 0.034
ADOMS 0.998 0.994 0.004 0.998 0.953 0.045 1.000 0.998 0.002 1.000 0.966 0.034
AHC 0.998 0.996 0.002 0.998 0.945 0.053 0.994 0.987 0.007 0.993 0.992 0.001
B-SMOTE1 0.998 0.995 0.003 0.998 0.941 0.057 1.000 0.998 0.002 1.000 0.966 0.034
B-SMOTE2 0.998 0.995 0.003 0.998 0.941 0.057 1.000 0.998 0.002 1.000 0.966 0.034
CBO+Random 0.999 0.997 0.002 0.999 0.906 0.093 1.000 0.999 0.001 1.000 0.966 0.034
CBO+SMOTE 0.999 0.996 0.003 0.999 0.959 0.040 1.000 0.999 0.001 1.000 0.966 0.034
MWMOTE 0.998 0.995 0.003 0.998 0.959 0.039 1.000 0.999 0.001 1.000 0.966 0.034
ROS 0.999 0.997 0.002 0.999 0.957 0.042 1.000 0.999 0.001 1.000 0.966 0.034
SL-SMOTE 0.999 0.997 0.002 0.999 0.958 0.041 1.000 0.999 0.001 1.000 0.966 0.034
SMOTE 0.999 0.996 0.003 0.999 0.949 0.050 1.000 0.997 0.003 1.000 0.966 0.034
SMOTE+ENN 0.999 0.996 0.003 0.999 0.950 0.049 1.000 0.998 0.002 1.000 0.966 0.034
SMOTE+TL 0.999 0.996 0.003 0.998 0.951 0.047 1.000 0.998 0.002 1.000 0.966 0.034
SPIDER 0.984 0.966 0.018 0.985 0.944 0.041 1.000 0.932 0.068 1.000 0.966 0.034
SPIDER2 0.982 0.957 0.025 0.985 0.953 0.032 1.000 0.932 0.068 1.000 0.966 0.034

Baseline

p
a
g
eb

lo
ck

s-
1
-2

v
s3

-4
-5

0.924 0.855 0.069 0.924 0.855 0.069

ca
r-

v
g
o
o
d

0.998 0.967 0.031 0.998 0.967 0.031
ADASYN 0.991 0.982 0.009 0.993 0.925 0.068 0.995 0.992 0.003 0.996 0.954 0.042
ADOMS 0.994 0.983 0.011 0.994 0.909 0.085 0.988 0.986 0.002 0.984 0.982 0.002
AHC 0.994 0.983 0.011 0.994 0.902 0.092 0.992 0.989 0.003 0.991 0.984 0.007
B-SMOTE1 0.994 0.987 0.007 0.994 0.879 0.115 0.995 0.994 0.001 0.996 0.977 0.019
B-SMOTE2 0.994 0.985 0.009 0.994 0.879 0.115 0.995 0.991 0.004 0.996 0.977 0.019
CBO+Random 0.998 0.994 0.004 0.999 0.868 0.131 0.995 0.992 0.003 0.995 0.992 0.003
CBO+SMOTE 0.997 0.993 0.004 0.997 0.912 0.085 0.996 0.992 0.004 0.995 0.995 0.000
MWMOTE 0.990 0.970 0.020 0.990 0.926 0.064 0.998 0.997 0.001 0.997 0.995 0.002
ROS 0.997 0.992 0.005 0.997 0.896 0.101 0.995 0.991 0.004 0.995 0.992 0.003
SL-SMOTE 0.996 0.992 0.004 0.997 0.892 0.105 0.995 0.993 0.002 0.995 0.992 0.003
SMOTE 0.993 0.984 0.009 0.993 0.915 0.078 0.996 0.993 0.003 0.995 0.991 0.004
SMOTE+ENN 0.995 0.985 0.010 0.995 0.906 0.089 0.997 0.997 0.000 0.998 0.946 0.052
SMOTE+TL 0.995 0.986 0.009 0.995 0.921 0.074 0.997 0.995 0.002 0.996 0.976 0.020
SPIDER 0.995 0.986 0.009 0.995 0.902 0.093 0.996 0.983 0.013 1.000 0.981 0.019
SPIDER2 0.992 0.978 0.014 0.990 0.905 0.085 0.998 0.992 0.006 0.994 0.981 0.013
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As determined in the previous analyses, Approach 1 shows an overoptimistic behaviour,

where the Train-Test differences are smaller for all datasets when compared to Approach 2,

ranging between 0.01 (car-vgood) and 0.078 (pageblocks-1-2vs3-4-5 ). Regarding Approach

2, the overfitting effects can be observed for some datasets (ecoli1, yeast3, and pageblocks-

1-2vs3-4-5 ). For ecoli1, the top 3 methods that cause overfitting are CBO+Random,

CBO+SMOTE, and ROS. Considering yeast3, the top 3 overfitting approaches include

ROS, Safe-Level-SMOTE, and CBO+Random. Finally, for pageblocks-1-2vs3-4-5, the

3 approaches most prone to overfitting are CBO+Random, Borderline-SMOTE2, and

Borderline-SMOTE1. These are typically the methods most frequently responsible for

overfitting effects, according to the overall analysis (Table 2.5). In turn, MWMOTE and

SMOTE+TL are frequently found among the best oversampling methods (vehicle2, yeast3,

pageblocks0, letterU, pageblocks-1-2vs3-4-5 and car-vgood), achieving the highest test AUC

values (marked in bold). These observations regarding Approach 2 will be further discussed

in Section 2.5.3, providing further details on the properties of each oversampling algorithm.

2.5.2 Data Complexity Analysis

In order to better support the existence of overoptimism in Approach 1 (CV after over-

sampling), we have investigated the complexity of the training and test partitions for all

datasets, considering both Approaches 1 and 2. We hypothesise that the overoptimism is

related to the difference between training and test partitions as explained in what follows.

When oversampling is applied before cross-validation, the test and training partitions will

be similar, and therefore their complexity is similar – the classification is more straight-

forward, given that the algorithm learns from similar contexts. When oversampling is

performed during cross-validation, the test and training partitions are different, as previ-

ously explained, and therefore the classification task is generally more difficult.

Figure 2.5 shows the difference (in module) between the complexity of the training and

test partitions, in average, for each approach. This is performed for all oversampling

algorithms, and the differences in complexity are also linked to the mean test AUC for

each algorithm. For the original (Baseline) partitions, the AUC values and differences in

complexity are the same for both approaches.

From Figure 2.5, it can be observed that the results are consistent with our reasoning:

the difference in complexity in Approach 2 is higher than for Approach 1. In some cases,

algorithms SPIDER and SPIDER2 show an antagonistic behaviour to the other methods,

which may be due to their process of generating new data (that differs from the remaining

algorithms). In the implementation used in this work, SPIDER uses a weak amplification

strategy, where the minority class examples are replicated according to the existence of

majority data points marked as “safe” among their k nearest neighbours. Given a complex

dataset, where there are only a few “safe” examples, the minority examples are never

oversampled.
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Figure 2.5: Differences (in module) between the complexity measures of the training and
test partitions, for all oversampling techniques, considering both Approaches 1 and 2.
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For SPIDER2, we have used a strong amplification strategy with relabelling, where the

considered neighbourhood is extended to k + 2, and the class of the original majority

examples marked as “noisy” is directly changed. Additionally, SPIDER and SPIDER2 are

the only methods that do not guarantee an equal class distribution, i.e, it is not guaranteed

that the resulting dataset, after oversampling, is balanced. These differences from the other

methods could be on the origin of their erratic behaviour regarding both the results of the

classification performance and complexity measures. The intrinsic characteristics of each

oversampling algorithm will be further discussed in Section 2.5.3.

We continue this section by addressing the questions raised by Blagus and Lusa [55] that

were not fully answered in their experimental setup (please check Section 2.1). Thus, we

analysed the mean test AUC results for ROS and SMOTE methods (the two oversampling

methods used by Blagus and Lusa [55]), for all datasets, ordered by their sample size

and imbalance ratio. From the simulation results, no relation was found with either

one. Therefore, the analysis regarding these two factors (sample size and IR) will not be

included herein, but it is fully detailed in Appendix A.3.
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Figure 2.6: Differences between test AUCs of Approach 1 and Approach 2: datasets are
ordered by their original F1 complexity measure. Only the datasets with highest F1
values are represented. The F1 results considering all datasets are included in Appendix
A.3 (Figure A.7).

In terms of data complexity, we have chosen to present the F1 metric (Figure 2.6). The

results using other complexity measures followed the same tendency, yet F1 seems the most

straightforward to understand: it measures the highest discriminative power considering

all the features in the dataset – if at least one feature has a high discriminative capability
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(its values allow to distinguish between classes), then the classification task is “easy”.

Figure 2.6 shows that the complexity of the classification task is what most influences the

overoptimistic behaviour of poorly designed cross-validation procedures: the less complex

the classification task is, the smaller is the difference between the cross-validation setups

(Approach 1 and Approach 2). Indeed, when the classification task is easier, the decision

boundary is more clear and Approach 2 achieves higher classification results. Thus the

difference between both approaches is not so discrepant.

We conclude this section by focusing on Approach 2 and performing a regression and

clustering analysis based on all of the complexity measures obtained from the training data.

As concluded from the previous section, the complexity generated by each oversampling

technique relates to the obtained test AUC results. Therefore, for the regression analysis,

our aim was to develop a regression model that could accurately predict the test AUC

based solely on the complexity measures of the corresponding training partitions. For

the clustering analysis, the main objective was to cluster all of the training datasets,

considering only their complexity measures, and determine if they mapped onto groups

with different test AUCs.

The regression model obtained is described by Equation 2.7 and the coefficient of deter-

mination (R2) obtained for each oversampling technique (according to Equation 2.7) is

shown in Figure 2.7.

Predicted AUC = 0.8593− 0.01077× F1− 0.006369× F2

+0.03737× F3 + 0.02194× L1− 0.05654× L2

+0.0004768× L3− 0.01037×N1− 0.0008070×N2

+0.0004026×N3− 0.01931×N4

(2.7)

Overall, considering all oversampling techniques, the regression described by Equation 2.7

obtained a R2 of 0.72 and a RMSE of 0.05, showing that the model is overall capable of

accurately predicting the test AUC values from the training complexity measures. Regard-

ing each algorithm in particular, the highest R2 values were obtained for SMOTE+TL,

MWMOTE, and SMOTE+ENN (Figure 2.7) with RMSE values of 0.04, 0.05, and 0.05,

respectively.

The clustering analysis (using k-means clustering and Silhouette criterion to find the op-

timal k [228]) produced a solution where the top 70 datasets with the best test AUC

results are grouped (orange cluster in Figure 2.8). Thus, the relation between the com-

plexity produced by the oversampling algorithms can be associated with the classification

results. Among the 70 training datasets, the majority are produced with MWMOTE,

SMOTE+TL, and SMOTE+ENN, which is in line with the previous analysis.
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2.5.3 Analysis of oversampling algorithms: Approach 2

After determining the most suitable CV scheme in imbalanced domains (i.e., CV during

oversampling - Approach 2), we focus on analysing the most appropriate oversampling
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methods for imbalanced contexts. To that end, three different strategies were consid-

ered. In the first strategy, we analyse the average test AUC values including all classifiers

(Strategy 1). In the second strategy, we rank the AUC values by oversampling technique,

for each classifier. Then, the average rank is computed for each oversampling technique

(Strategy 2). Finally, the third strategy considers the ranking of AUC values by oversam-

pling technique, for each classifier and dataset. Then, the average rank is computed for

each oversampling technique (Strategy 3). The results of each strategy are summarised in

Table 2.7.

Table 2.7: Oversampling methods (plus Baseline) ordered by classification performance
(AUC), according to each tested strategy.

Strategy

Rank 1 2 3

1st SMOTE+TL (0.871±0.052) SMOTE (3.000±1.265) SMOTE+TL (6.535±4.094)
2nd MWMOTE (0.871±0.053) SMOTE+TL (3.167±1.941) MWMOTE (7.199±4.332)
3rd SMOTE (0.868±0.054) MWMOTE (4.333±4.844) SMOTE+ENN (7.201±4.072)
4th SMOTE+ENN (0.867±0.054) SMOTE+ENN (5.000±2.828) SMOTE (7.222±3.460)
5th AHC (0.865±0.055) AHC (6.000±2.280) ADOMS (7.606±4.195)
6th ADOMS (0.864±0.057) ADOMS (7.000±2.000) AHC (8.088±3.817)
7th ADASYN (0.862±0.059) ADASYN (8.000±2.098) ADASYN (8.215±4.223)
8th CBO+SMOTE (0.860±0.058) SL-SMOTE (8.000±6.753) SL-SMOTE (8.411±4.075)
9th B-SMOTE1 (0.858±0.060) CBO+SMOTE (9.333±5.317) B-SMOTE1 (8.743±4.119)
10th B-SMOTE2 (0.858±0.060) ROS (9.833±5.076) B-SMOTE2 (8.743±4.119)
11th SL-SMOTE (0.857±0.061) B-SMOTE1 (10.667±1.966) CBO+SMOTE (8.745±4.475)
12th SPIDER (0.856±0.059) B-SMOTE2 (10.667±1.966) ROS (9.019±4.034)
13th ROS (0.855±0.063) SPIDER (11.000±1.673) SPIDER (9.412±4.665)
14th SPIDER2 (0.855±0.059) SPIDER2 (11.833±2.137) SPIDER2 (9.569±4.764)
15th CBO+Random (0.849±0.063) CBO+Random (13.500±2.811) CBO+Random (9.821±4.419)
16th Baseline (0.848±0.066) Baseline (13.667±3.830) Baseline (11.471±4.981)

B and SL are equivalent to Borderline and Safe-Level, respectively.

Table 2.7 shows that all the implemented techniques are better than using the original

dataset without any type of oversampling (Baseline). Also, all considered strategies out-

put the same set of winners (SMOTE+TL, SMOTE+ENN, MWMOTE, and SMOTE),

although their ranks may vary. SMOTE+TL, followed by MWMOTE, are considered

the best oversampling methods. The same is true for the worst oversampling techniques,

where CBO+Random, SPIDER, SPIDER2, and ROS are found on the bottom positions.

In light of these results, we herein provide a detailed discussion on the intrinsic characteris-

tics and behaviour of the different oversampling methods used. We compare each method

in what concerns their inner procedure and how they are able to address the datasets’

complexity and improve the classification results, also highlighting their main advantages

and disadvantages. Table 2.8 summarises the main characteristics of the oversampling al-

gorithms implemented in this work. We have summarised the key factors that distinguish

algorithms from each other, presenting their greatest advantages and disadvantages in the

last two rows. These factors are presented in a very synthesised way, which we further

explain in what follows.
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Table 2.8: Intrinsic characteristics of oversampling methods. The sign “•” indicates the presence of a specific property, while “◦” indicates
its absence.

Properties ROS SMOTE SMOTE+TL SMOTE+ENN CBO+Random
Borderline-
SMOTE1

Borderline-
SMOTE-2 AHC

Replication/
Synthesization of
examples

Replication Synthesization Synthesization Synthesization Replication Synthesization Synthesization Synthesization

Takes into ac-
count the ma-
jority examples
neighbourhood

◦ ◦ • •
Not directly, but

through
clustering

• •
Not directly, but

through
clustering

Considers a tax-
onomy of minor-
ity data

◦ ◦ ◦ ◦ ◦ Noise, Danger,
Safe

Noise, Danger,
Safe ◦

Overlapping is
performed in
specific area(s)

◦ ◦ ◦ ◦ ◦ Borderline
Regions

Borderline
Regions ◦

Cluster-based
Oversampling ◦ ◦ ◦ ◦ • ◦ ◦ •
Oversampling of
minority class • • • • • • • •
Oversampling of
majority class ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Minority exam-
ples are assigned
different weights

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

Neighbourhood-
based oversam-
pling

◦ • • • • • • •

Includes a
cleaning-based
procedure

◦ ◦ • • ◦ ◦ ◦ ◦

SMOTE-based
synthesization ◦ • • • ◦ •

SMOTE-like, but
also considering

the nearest
majority

neighbour

◦

Performs a filter-
ing procedure ◦ ◦ ◦ ◦ ◦

Noise and Safe
examples are not

oversampled

Noise and Safe
examples are not

oversampled
◦

Provides perfect
balancing

• • • • • • • •

Advantages
Simplest of

oversampling
techniques

Allows
generation of

synthetic
examples,

creating larger
and less specific
decision regions

Alleviates
SMOTE’s

problem of over-
generalization

Alleviates
SMOTE’s problem

of
overgeneralization.
Provides a deeper

cleaning than
SMOTE+TL.

Eases the
problem of small

disjuncts

Strengthens the borderline minority
examples

Considers the
structure of data
(both minority
and majority
examples),

through
clustering.

Disadvantages

Prone to
overfitting, due
to replication of
a random subset

of minority
examples.

Overgeneralization.
May generate
instances in

overlapping and
noise regions.
Definition of

k-neighbourhood

May augment unnecessary safe
examples while also enlarging noisy

regions.

Prone to
overfitting, due

to ROS.
Definition of the

number of
clusters

May generate instances in
overlapping and noise regions. The

criterion to identify borderline
examples may fail in some scenarios.

Definition of k-neighbourhood

Computationally
expensive
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Table 2.8: Continued from previous page.

Properties ADASYN SPIDER1 SPIDER2 ADOMS Safe-Level-
SMOTE CBO+SMOTE MWMOTE

Replication/
Synthesization of
examples

Synthesization Replication Replication Synthesization Synthesization Synthesization Synthesization

Takes into ac-
count the ma-
jority examples
neighbourhood

• • • ◦ • Not directly, but
through clustering

•

Considers a tax-
onomy of minor-
ity data

◦
Both minority and

majority examples are
flagged as Noise or Safe

Both minority and
majority examples

are flagged as Noise
or Safe

◦ Safe and Noise ◦ Noise, Borderline, Sparse
and Dense clusters

Overlapping is
performed in
specific area(s)

◦ ◦ ◦ ◦ Safe Regions ◦ •

Cluster-based
Oversampling ◦ ◦ ◦ ◦ ◦ • •
Oversampling of
minority class • • • • • • •
Oversampling of
majority class

◦ ◦ ◦ ◦ ◦ • ◦
Minority exam-
ples are assigned
different weights

wi ◦ ◦ ◦ slratio ◦ Sw

Neighbourhood-
based oversam-
pling

• • •
Computes

PCA of local
data

distribution

• • •

Includes a
cleaning-based
procedure

◦ • • ◦ ◦ ◦ ◦

SMOTE-based
synthesization • ◦ ◦ • • • SMOTE-like, in clusters

Performs a filter-
ing procedure ◦ ◦ ◦ ◦ ◦ ◦ Noise examples are not

oversampled
Provides perfect
balancing

• ◦ ◦ • • • •

Advantages

Minority examples
surrounded by majority

examples are oversampled
more often: decision

boundary is more focused
on these difficult examples

When relabelling is used,
the oversampling

procedure is similar to
SMOTE, without the

problem of
overgeneralization

Addresses the
deterioration of

majority class found
in SPIDER

Considers the
k-

neighbourhood
of minority
data more
properly.

Strengthens the
safe minority

examples, easing
the problem of
small disjuncts.

Avoids the
augmentation of

noise regions.

Eases the problem
of small disjuncts.
Eases the problem
of overgeneraliza-

tion.

Weights of minority
examples depend on
their importance for

classification. Alleviates
the problem of small
disjuncts. Avoids the

problem of
SMOTE-based

sintetization of samples

Disadvantages

Parameter used to define
weights for minority class
could be inappropriate.

Definition of
k-neighbourhood

Choice of amplification
type: may augment

noisy regions or cause a
deterioration in the

majority class.
Replication of existing

minority examples.
Re-labelling examples

might not be acceptable
in some domains.

Replication of
existing minority

examples.
Re-labelling

examples might not
be acceptable in

some domains. May
replicate undesired

noise.

Same issues of
SMOTE by

not
considering

the
distribution of

majority
examples

Definition of
k-neighbourhood

May generate
inconsistent

data.

Definition of the
number of clusters

Need to specify a
threshold for clustering
procedure. Definition of

k-neighbourhood
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ROS and SMOTE

As shown in Table 2.8, Random Oversampling (ROS) is the simplest of the oversampling

techniques: a random subset of minority examples is replicated until the desired balance

is reached. Nevertheless, this technique is subjected to overfitting due to the replication

(creation of exact copies) of minority examples. The fact that ROS creates exact copies

of existing examples leads to a generation of very similar partitions in Approach 1 (and

consequent overoptimism), while in Approach 2, as explained in Figure 2.3, ROS is mostly

subjected to overfitting. This is also supported by Figure 2.5, where ROS is among the

best methods in Approach 1 (between 0.938 and 0.952), while for Approach 2 it provides

the worst AUC results (between 0.848 and 0.857).

SMOTE overcomes the problem of creating exact copies of existing minority examples by

creating synthetic minority instances using their k-nearest minority neighbours. However,

the minority class is augmented without considering the structure of data: all minority

examples have the same probability of being oversampled, regardless of the characteristics

of their neighbourhood, which leads to the following issues [44, 272, 296]:

• By considering a neighbourhood composed only of minority examples, the new syn-

thetic examples may be generated in overlapping areas (problem of overgeneraliza-

tion);

• Since no distinction between minority examples is performed (e.g., by evaluating

their majority neighbourhood), SMOTE-like methods can also augment noise re-

gions, by oversampling noisy examples (i.e., minority examples surrounded by ma-

jority examples, that are most likely noise).

Nevertheless, it seems that the ability of SMOTE to generate larger decision boundaries is

still a major strength, even with its susceptibilities. In fact, SMOTE is found among the

best oversampling methods, as shown in Figure 2.5, which explains why it is a renowned

oversampling method, widely used across several research areas [272, 378].

SMOTE+TL and SMOTE+ENN

SMOTE+TL and SMOTE+ENN combine oversampling with a cleaning procedure that

alleviates SMOTE’s problem of overgeneralisation: they are able to remove examples that

lie on overlapping regions (as detailed in Section 2.2.1). However, since SMOTE is applied

prior to the cleaning procedure, some of the same issues from SMOTE remain:

• All minority examples have the same probability of being oversampled, causing some

unnecessary (“safe”) examples to be oversampled;
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• Noisy minority regions could be augmented and remain after the cleaning procedure:

after oversampling, they may not be identified by Tomek Links or ENN as examples

to remove, since their neighbourhood has changed.

Nevertheless, what is true for noisy regions is also true for small disjuncts. SMOTE+TL

and SMOTE+ENN, by applying SMOTE as a first step, may be inflating unnecessary

noisy regions, but may also be inflating important, underrepresented minority points.

Overall, our results show that combining SMOTE with these cleaning methods turns out

to be a superior approach than most (Table 2.7): SMOTE creates larger and less specific

decision boundaries, that are afterwards simplified by Tomek Links or ENN by removing

several overlapping examples, while also potentially alleviating the issue of small disjuncts.

However, some caution must be taken regarding the cleaning procedure: as discussed from

Table 2.5, for some datasets an excessive cleaning may be the cause of overfitting.

CBO+Random and CBO+SMOTE

CBO was first thought as a way of handling both the between-class imbalance as well as

the within-class imbalance (small disjuncts). CBO is able to attend to the structure of

data by performing clustering on both classes individually (both minority and majority

examples are oversampled). Nevertheless, CBO requires the definition of a procedure for

the generation of new examples, and each has its hitches:

• CBO+Random is more prone to overfitting: since random oversampling is performed

within clusters, the probability that similar instances are oversampled more often is

even greater than for ROS, as discussed in Figure 2.4 and Table 2.5;

• CBO+SMOTE eases the problem of overgeneralisation given that SMOTE is per-

formed within clusters; however, it no longer takes advantage of SMOTE’s ability

to create larger decision regions, which explains why its performance is considerably

lower than SMOTE’s (Table 2.7): applying SMOTE within clusters increases the

probability that similar instances are generated, which can also result in overfitting,

as discussed from Table 2.5.

Finally, for both techniques, the definition of the most appropriate number of clusters

is a problem. In this work, to find the optimal k number of clusters for each class, we

have used three evaluation criteria: Calinski-Harabasz [73], Davies-Bouldin [247], and

Silhouette [228], and a range of k = 2, ..., 20. Our CBO algorithm performs 5 runs of the

clustering solution for each criterion and extracts the mode of these 5 runs to define the

best value of k according to each criterion. Finally, the mode is computed again to obtain

the final optimal k for a given class.
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Borderline-SMOTE and ADASYN

Defining a typology of minority examples (noise, safe, and danger) allows Borderline-

SMOTE to operate only on the examples of interest: the synthetic minority examples will

be created in a SMOTE-like fashion, along the line that joins each danger example to its k

nearest minority neighbours, thus strengthening the representation of borderline examples.

Nevertheless, as Borderline-SMOTE uses the same procedure as SMOTE to oversample

minority examples, it may suffer from the same issues mentioned above. Additionally,

another problem with Borderline-SMOTE technique is in the way that danger/borderline

examples are identified (see Section 2.2.1). In some domains, the k > m′ ≥ k
2 criterion may

fail, and in those cases there is no oversampling in important regions near the decision

boundary, which will harm the classification task [44], as discussed in Table 2.5. We

assume that this issue may affect some of the datasets in our study since that, although

Borderline-SMOTE aims to provide a more clear decision boundary, it does not figure

among the best approaches (Table 2.7).

ADASYN considers the majority neighbourhood of the minority examples to guide the

oversampling procedure: the minority examples are assigned different weights according

to the number of majority examples in their neighbourhood. Adaptively assigning weights

to the minority examples is a way to surpass the discussed issues of Borderline-SMOTE.

However, the definition of parameters for weight assignment may be inappropriate to

correctly distinguish the importance of minority examples for classification. As mentioned

in Section 2.2.1, the weight of each minority example is proportional to the number of

majority examples in its k-neighbourhood, which raises two main issues [44]:

• ADASYN may oversample unnecessary noisy examples: noisy examples are typically

surrounded by the majority class, and therefore their weight will be high;

• ADASYN may fail to oversample important minority examples close to the decision

boundary, which is an important concept to learn, if all of their k-nearest neighbours

are from the minority class.

Implementing weighting strategies is a way of increasing the representation of minority

class concepts that are harder to learn. However, if the criterion to define weights fails

for some datasets, ADASYN loses its main advantage. This is consistent with the results

provided in Table 2.7, where ADASYN is found in the 7th position, slightly above the

middle of the table, although far from the top winners.

Safe-Level-SMOTE and ADOMS

Safe-Level-SMOTE also considers a weighting scheme to oversample the minority examples

in safe regions. The weight assignment is more sophisticated than ADASYN’s, since that
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rather than looking only to the majority neighbourhood of each minority example, Safe-

Level-SMOTE also considers the distribution of minority data points: the weights defined

by slratio allow Safe-Level-SMOTE to place new instances near those considered “safer”,

easing the problem of small disjuncts while avoiding the augmentation of noisy regions.

However, for specific scenarios, Safe-Level-SMOTE may generate inconsistent examples

[296]: if a minority example is an outlier, inside a well-defined majority cluster, than

its slratio will be 0, causing the gap for SMOTE synthetisation to be 1, thus creating a

new minority instance in the exact location of a majority point. This may explain its

susceptibility to overfitting (Table 2.5) and its poor classification performance (Table 2.7).

Rather than placing synthetic examples along the line between a minority example and

one of its k minority neighbours (as SMOTE), ADOMS considers the local minority class

distribution along the example to oversample, through the computation of the first princi-

pal component of the defined k-neighbourhood (Section 2.2.1). Therefore, ADOMS takes

advantage of SMOTE’s ability to define larger decision regions, while considering the lo-

cal minority class structure. However, ADOMS seems to fall behind SMOTE in the 3

considered strategies from Table 2.7: we hypothesise that some of the examples generated

by ADOMS create more class overlap than SMOTE’s: SMOTE generates new examples

along the line joining two minority examples, yet ADOMS may place its new examples in

sparser projections [412]. Since, as in SMOTE, the distribution of majority examples is

not considered, this generation procedure might not be appropriate for all scenarios.

SPIDER and SPIDER2

SPIDER combines the local oversampling of noisy and difficult minority examples with

a cleaning procedure that removes (or relabels) noisy majority examples. The original

SPIDER algorithm processes both minority and majority examples at the same time,

sometimes severely modifying the majority class. To address this issue, a new version was

proposed, SPIDER2, that alleviates the degradation of the minority class by processing

minority and majority examples separately. The major issues of these methods are as

follows:

• The process that leads to the amplification of minority examples does not distinguish

between borderline and noisy examples (if they are “not-safe”, they are all consid-

ered “noise”). Therefore, these “unsafe” minority examples are all given the same

importance to classification: SPIDER and SPIDER2 may oversample difficult exam-

ples so that they are not misclassified, although they may also augment undesired

noisy regions;

• Both methods perform replication of examples rather than synthetisation, which

adds no new information;
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• When “relabelling” is chosen, SPIDER and SPIDER2 perform an oversampling pro-

cedure similar to SMOTE, except that instead of generating new instances in the

neighbourhood of minority examples, they relabel the majority class neighbours.

However, relabelling examples might not be a suitable approach in some domains.

Although SPIDER and SPIDER2 aim to define a typology of minority examples, they do

not distinguish between two important minority class concepts, “borderline” and “noisy”

examples, addressing them as equals. Also, the fact that these methods consider the repli-

cation of existing examples (rather than the synthetisation of new ones) is possibly the

cause of their lower positions on Table 2.7, along similar methods with the same inner

procedure (CBO+Random and ROS). Finally, they are the only methods for which it

is not possible to set the amount of oversampling, which in this work has been estab-

lished to produce a perfect balance in the training sets (a 50%-50% distribution). Since

the remaining methods were optimised to achieve perfect balance, it was expected that

SPIDER/SPIDER2 might provide somewhat erratic results, as discussed in Section 2.5.2.

AHC and MWMOTE

Through clustering, AHC is able to consider the structure/distribution of both minority

and majority classes, which is a great advantage over oversampling algorithms that focus

mostly on local properties, rather than the whole data structure. Also, specifying the num-

ber of clusters is not an issue, since all levels of the resulting dendrograms are considered.

However, this originates its major disadvantage: the process becomes very computation-

ally expensive. AHC’s ability to take into account the structure of data seems to be one of

the reasons why it figures among the best approaches (Table 2.7), which is also confirmed

with similar approaches, such as MWMOTE.

As shown in Table 2.8, MWMOTE is the most complete method, and its inner procedure

is able to surpass most of the issues explained above. MWMOTE aims to provide i) an

improved way of selecting the minority examples to oversample (by being more meticulous

on the way it defines the importance of minority examples for classification), and ii) an

improved way of generating new synthetic examples, avoiding the issues of SMOTE-based

synthesisation. To that end, MWMOTE considers filtering, a weighting scheme based

on the typology of minority examples, and a SMOTE-like cluster-based synthesisation of

examples:

• MWMOTE starts by filtering the initial minority set to find the examples that are

surrounded by the majority class, thus avoiding that noisy points are oversampled;

• Then, MWMOTE defines the importance of each minority example for classification,

taking into account three main factors: i) minority examples closer to the decision
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boundary should have a higher weight than those that are far from it, ii) minority

examples within sparse minority clusters should have a higher weight than those on

dense minority clusters (which alleviates the problem of small disjuncts), and iii)

minority examples closer to a dense majority cluster should have a higher weight

than those closer to a sparse majority cluster;

• Finally, MWMOTE overcomes the issues of SMOTE-like synthesisation by consider-

ing a cluster-based oversampling approach: the generation of new minority examples

is performed using only minority neighbours of the same clusters.

By combining strong features of other algorithms (filtering, clustering, adaptive weight-

ing), MWMOTE performs a more guided oversampling procedure, that considers not only

the distribution of majority examples around minority examples to define their impor-

tance, but also the structure of minority and majority classes (through clustering). This

behaviour is what makes MWMOTE one of the top approaches, and outstanding in dealing

with several difficulty factors that arise in real-world datasets [406], namely class overlap

(through filtering), noisy data (through a weighting scheme), and small disjuncts (through

clustering).

Taking into account the characteristics of the inner procedure of each method, and in

light of the performance results discussed in the previous sections, it seems that the best

oversampling methods are those that combine three main characteristics:

• Cluster-based oversampling, so that the structure/distribution of both the minority

and majority classes is considered. This approach seems to be superior to considering

only the majority neighbourhood of individual minority examples, or filtering out

some minority/majority examples;

• Adaptive weighting of minority examples. Defining a proper typology of minority

examples (borderline, safe, noisy, and rare/small disjuncts) is crucial so that more

important examples for classification are oversampled more often;

• Cleaning procedures, to overcome certain issues that arise naturally during oversam-

pling, namely the generation of synthetic examples in overlapping areas.

2.6 Conclusions and Future Work

The goal of this work was essentially threefold: i) to emphasise the risk of overoptimism

related to the joint-use of cross-validation and oversampling, extending the work of Bla-

gus and Lusa [55], ii) to distinguish the problem of overoptimism from the overfitting

problem and establish the influence of the data complexity produced by oversampling
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algorithms on the classification tasks, and iii) to compare the performance of the state-

of-the-art oversampling strategies, in order to provide some insights on which reveal the

best behaviour.

Attending to these sub-objectives, there are three main conclusions to be derived:

• The cross-validation procedure after the oversampling (Approach 1) is inappropriate

and leads to overoptimistic results. Approach 2 – performing oversampling in the

training sets at each iteration of a cross-validation procedure – is the correct way

of validating results in imbalanced scenarios. The overoptimism is not related with

the sample size or imbalance ratio of data, but rather with the complexity of the

prediction task, where the maximum discriminative power of all features (complexity

measure F1) seems to be a good predictor of this effect;

• While overoptimism is greatly associated with inappropriate validation setups, over-

fitting (significant differences in classification performance between training and test

sets) is mostly related to the oversampling algorithm used, where algorithms that cre-

ate exact replicas of existing patterns are the most prejudicial (e.g., CBO+Random).

The difference in complexity between the training and test sets is lower in Approach

1, and this is the rational behind its overoptimistic behaviour: the training and test

sets are similar, i.e., they are balanced and might contain exact replicas or similar

data points to the training data;

• Among the implemented oversampling methods, SMOTE+TL and MWMOTE achieve

the best results, with average test AUC values of 0.871 (considering all classifiers).

These techniques reduce the class overlap in data, improving class discrimination.

Overall, the best oversampling techniques possess three key characteristics: use of

cleaning procedures, cluster-based synthetisation of examples, and adaptive weight-

ing of minority examples.

Furthermore, we have performed a regression and clustering analysis based on all of the

complexity measures obtained from the training data. For the regression analysis, we

obtained a regression model that could accurately predict the test AUC based solely on

the complexity measures of the corresponding training partitions (R2 of 0.72), where the

highest values of the coefficient of determination were obtained for SMOTE+TL (0.807),

MWMOTE (0.798), and SMOTE+ENN (0.795). The clustering analysis (using k-means

clustering) produced a solution where the top 70 datasets with the best test AUC re-

sults are grouped: the majority of datasets are produced with MWMOTE, SMOTE+TL,

and SMOTE+ENN. Both analysis have confirmed that the complexity produced by the

oversampling algorithms is related to the classification results, in a quasi-linear way.
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As concluding remarks, we would like to emphasise some lessons learned which could be

beneficial to new researchers in the field:

• Oversampling algorithms have distinctive inner behaviours that are better suited to

particular characteristics of data (e.g., CBO inflates small disjuncts, SMOTE-TL and

SMOTE-ENN deal with class overlap, Safe-Level-SMOTE and Borderline-SMOTE

prioritise safe and borderline concepts in data). Thus, analysing data complexity

measures may provide useful insights to guide the choice of appropriate oversampling

methods;

• Stratified cross-validation is the state-of-art validation approach for performance

evaluation and should be carefully designed in imbalanced domains. Nevertheless,

even a correct CV may cause partition-induced covariate shift during the learning

stage [272], which can be lead to loss in performance or under-estimation of results.

A promising approach to surpass the issues of dataset shift is the Distribution Op-

timally Balanced stratified cross-validation (DOB-SCV) [312], which is worthy of

investigation in future works in the field.

As additional future work, several undersampling and other new oversampling techniques

could be included in the analysis, in order to determine the complexity changes they make

in the original datasets. Also, one could focus on specific sub-problems of imbalanced

data (e.g., small disjuncts, class overlap, lack of data) and study their identification in

data domains and/or ways to surpass these issues using preprocessing techniques.
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A new cluster-based oversampling

method to improve the survival

prediction of hepatocellular

carcinoma patients

Liver cancer is the sixth most frequently diagnosed cancer worldwide and Hepatocellular

Carcinoma (HCC) represents more than 90% of primary liver cancers. Clinicians assess

each patient’s treatment on the basis of evidence-based medicine, which may not always

apply to a specific patient, given the biological variability among individuals. For that

reason, HCC research has been developing machine learning strategies to assist clinicians

in decision-making. However, these studies have some limitations that have not yet been

addressed: some do not focus entirely on HCC patients, others have strict application

boundaries, and none considers the heterogeneity between patients nor the presence of

missing data, a common drawback in healthcare contexts. In this work, a real complex

HCC dataset comprising heterogeneous clinical features is studied. We propose a new

cluster-based oversampling approach that handles small and imbalanced datasets, and

accounts for patient heterogeneity. First, we perform data imputation with appropriate

distance functions for both heterogeneous and missing data. Then, the final approach is

applied in order to diminish the impact of underlying patient profiles with reduced sizes

on survival prediction. It is based on k-means clustering and the Synthetic Minority Over-

sampling Technique (SMOTE) algorithm to build a representative training set which will

be used in the learning stage of logistic regression and neural networks classifiers. Our

proposed methodology coupled with neural networks outperformed the current existing ap-

proaches that do not consider clustering and/or oversampling, suggesting an improvement

over the classical techniques used in the development of HCC prediction models.
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3.1 Introduction

For the past few years, we have been witnessing an exponential growth of cancer incidence

and related deaths worldwide. Solely in 2012, the World Health Organization reported

about 14.1 millions of new cancer cases and 8.2 millions of deaths [332]. Liver cancer was

the sixth most frequently diagnosed cancer and the second cause of cancer-related deaths

worldwide, accounting for 9.1% of all deaths [333]. Hepatocellular Carcinoma (HCC)

represents more than 90% of primary liver cancers and it is a major global health prob-

lem [130]. In Portugal, liver cancer did not figure among the most frequently diagnosed

cancers. Nevertheless, it was the seventh leading cause of cancer mortality, being respon-

sible for 3.8% of cancer deaths [332]. Some studies regarding this pathology have emerged,

attempting to define its dimension in Portugal. According to the work of Tato Marinho

et al. [415], HCC hospital admissions tripled from 1993 to 2005, with the overall costs of

admission rising proportionally. In 2010, the Portuguese Society of Hepatology predicted

an increasing number of liver cases by approximately 70% by the end of 2015, seeking a

greater national awareness regarding liver diseases [75].

Data-driven research has become an attractive complement to clinical research, where

survival prediction is one of the most challenging tasks addressed by the medical research

community [40, 128, 189, 190, 417]. It consists of analysing a substantial amount of clinical

data, drawing patterns and conclusions from that data, and using them to determine the

survivability of a particular patient suffering from a given disease over a certain period of

time. However, modelling and predicting disease outcomes may turn into a difficult task

due to two main reasons: one relates to the dataset’s size, while the other concerns its

complexity.

Regarding the first topic, several authors consider that small datasets limit the scope of

data mining techniques, since they may not provide enough information to accomplish the

learning task of some algorithms [31, 249]. Nevertheless, in real-life problems, specially in

healthcare contexts, relatively small datasets are normal, namely for less common diseases.

Dataset complexity can be materialized with the characteristics of the data that composes

the dataset. For datasets with heterogeneous data, the assumptions of some machine

learning algorithms may not be verified, and thus they might not be applicable [124]. For

datasets with Missing Data (MD), i.e., with features containing a percentage of absent

values and/or with records where several features are incomplete, machine learning al-

gorithms may produce biased models and estimates, which decreases their classification

performance [203].

Additionally, patient heterogeneity is also an important subject to consider. In HCC

guidelines, as in general cancer research, patient survival and prognosis is related to tu-

mour stage [130]. However, growing studies regarding other diseases have pointed out the

need to expand staging systems in order to predict the outcome of cancer patients more
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accurately [350]. A more robust approach to study heterogeneous groups is cluster anal-

ysis. The main advantage of this type of approaches is that they generate homogeneous

groups, with similar prognostic features, that map onto similar survival patterns, thus

outputting more accurate predictions.

The aim of this work is to start from the previously published literature on the application

of computational techniques for HCC disease and assess to what extent they could be

generalized for a HCC dataset with more complex characteristics. These characteristics

consist of a relatively small sample size (165 patients), a heterogeneous set of predictive

features (49 prognostic factors, including continuous and categorical features), a high

percentage of missing values (an overall missing rate of 10.22%, with only eight patients

having complete information), and an expected heterogeneity between patients, due to

both the range of values of the considered features and the class imbalance of the HCC

dataset (as will be detailed in Section 3.3.1). The majority of works on HCC are based on

Neural Networks (NN) and Logistic Regression (LR) models (please refer to Section 3.2.2).

However, all of these works ignore patient heterogeneity and the presence of missing data.

In this work, both NN and LR are applied to a real incomplete HCC dataset, addressing the

limitations found in previous research. These algorithms are combined with four different

approaches. In the first approach, the prediction models directly use the obtained dataset

after a data imputation phase, while in the second approach the dataset obtained after

imputation is oversampled using Synthetic Minority Over-sampling Technique (SMOTE)

algorithm [433]. The other two approaches are based on a new methodology proposed

in this work, which consists of using a dataset produced by a cluster-based oversampling

method. Accordingly, the third approach generates R different datasets and properly

merges them into a unique representative dataset, M, which is then used to build the

prediction models. Finally, the fourth approach constructs an ensemble using each of

the R previously oversampled datasets and the representative dataset M. This approach

constructs a survival prediction model for each combination of the R datasets with the

representative dataset M, and achieves the final classification results through majority

voting. These four approaches are tested for both NN and LR using a Leave-One-Out

Cross Validation (LOO-CV) approach, which is appropriate for small datasets (please

refer to Section 3.4). The obtained results for our cluster-based oversampling approaches

revealed statistical improvements on the performance of the NN algorithm, proving that

our methodology is generally feasible to design survival prediction models for HCC disease.

This chapter may be navigated as follows: Section 3.2 presents a brief description about

HCC disease, and illustrates some related work in the field. Section 3.3 outlines the

methodological steps used in this work concerning four main phases: Data collection, Data

imputation, Cluster-based Oversampling, and Survival Prediction. Section 3.4 reports on

the obtained results and, finally, Section 3.5 presents our conclusions and interesting lines

for further studies.
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3.2 Computational Approaches for HCC

Along this section we provide a brief overview of important notions of HCC disease (Sec-

tion 3.2.1) and related work on HCC survival prediction (Section 3.2.2).

3.2.1 Notions of HCC disease

A carcinoma is a type of cancer that arises when an epithelial cell undergoes a malignant

transformation. In particular, when the source of cancer is an epithelial cell cancer of the

liver, known as hepatocyte, the cancer is called Hepatocellular Carcinoma (HCC) [130,

143]. HCC may have different growth patterns. Some malignant tumours begin as a single

tumour that grows larger and only spreads to other parts of the liver in later stages. A

second pattern is described by the appearance of several small cancerous nodules scattered

throughout the liver. This pattern is particularly common in patients with cirrhosis, and

the most frequently detected in Portugal.

Approximately 90% of HCCs are associated with a known underlying risk factor [130, 143].

The most common risk factors include chronic viral hepatitis (types B and/or C), and

cirrhosis. Regarding both hepatitis viruses, their corresponding main markers involve the

measurements of specific antigens and antibodies, while cirrhosis is usually assessed via the

Child-Pugh (CP) score [122], which employs five clinical measures of liver disease (total

bilirubin, albumin, encephalopathy, ascites, and prothrombin time). Cirrhosis is present

in over 80% of HCC cases, clearly identified as the main precursor lesion of this pathology.

3.2.2 Related Work

Machine learning algorithms are computational techniques particularly well-suited to can-

cer research [3]. They are frequently used to analyse the available data regarding the dis-

ease under study (e.g., from existing clinical trials), and produce new insights on disease

indicators (e.g., diagnosis, prognosis, risk factors, staging, among others). With respect to

the HCC disease, several research works have been previously performed [11, 65, 192, 390],

as we detail in what follows.

Wasyluk et al. [11] introduced a regression model to diagnose liver disorders, having a

case base of 200 cirrhotic patients. Each clinical trial was composed by different types of

clinical features, including laboratory tests and histopathological data. However, and due

to the fact that the number of HCC patients was not significant (only 5% of the cirrhotic

patients), the results were preliminary and insufficient to validate the learning system.

Additionally, authors did not consider any treatment of missing values. Ho et al. [192]

attempted to establish a model to describe free-disease survival after hepatic resection, re-

garding a particular temporal line (1, 3, and 5 years). Authors reviewed a study population
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of 482 HCC patients, in order to collect each patient’s demographics, risk factors, and sev-

eral other features related to laboratory tests, tumour stage, and the resection procedure

itself. Three prediction models were tested: Neural Networks (NN), Logistic Regression

(LR), and Decision Trees (DT), where NN obtained the best performance results. Despite

proving good results, this work only considered HCC patients who have received hep-

atic resection, discarding patients in other stages of HCC disease. Accordingly, it neglects

patient heterogeneity, which is an added factor of complexity, considered in our work. Fur-

thermore, Ho et al. [192] also completely ignore the missing data perspective, which does

not accurately tackle the reality of healthcare contexts. Following the previous research

line, Chiu et al. [65] compared the performance of NN and LR models to predict mortality

of HCC patients who underwent liver resection. The main difference in comparison to the

previous work relies on the classification output. Whereas Ho et al. [192] aim to predict

disease-free survival, Chiu et al. [65] seek to predict if the patients are alive or dead in

the considered periods (regardless of whether they are disease-free). Similarly to previous

studies, Chiu et al. [65] neglect patient heterogeneity and missing data. Finally, Shi et

al. [390] evaluated the use of NN and LR models for predicting in-hospital mortality of

HCC surgery patients. The analysis was limited to patients who underwent HCC surgery

(patient heterogeneity is somewhat neglected), and clinical records with missing data were

directly discarded.

Table 3.1 summarises related research in HCC, showing that despite the growing interest

and recent advances in the study of this disease, none of the previous works have considered

such a focused and complete approach to HCC data as the one proposed in this work. We

conduct a study of patients’ survivability only for HCC disease, prior to any therapeutic

constraint, considering a real context with heterogeneous and missing data, and taking into

account the patients’ heterogeneity, which illustrates the reality of most clinical contexts.

Table 3.1: Related work on HCC. Despite the fact that the first work illustrated in Sec-
tion 3.2.2 is one of the pioneer works in HCC, it is not comprised in the table since the
performance metrics are not provided. (N.A. – Not Applicable).

Ho et al. [192] Chiu et al. [65] Shi et al. [390]

Objective
Disease-free survival after
hepatic resection (1st year)

Mortality after hepatic
resection (1st year)

Mortality after
HCC surgery

Sample Size 427 434 22.926
MD No No No

NN

Accuracy N.A. N.A. 96%
AUROC 0.777 0.991 0.82

Sensitivity 0.787 0.997 0.784
Specificity 0.542 0.962 0.946

LR

Accuracy N.A. N.A. 84%
AUROC 0.772 0.89 0.73

Sensitivity 0.754 0.986 0.626
Specificity 0.583 0.346 0.919
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3.3 Methodology

This section describes the four stages encompassed in the proposed methodology (Fig-

ure 3.1): Data collection, Data imputation, Cluster-based Oversampling, and Survival

Prediction. The main details of each stage are analysed below.
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Figure 3.1: Proposed methodology.

3.3.1 Data Collection

The first stage has been performed by the Service of Internal Medicine A of the Coimbra’s

Hospital and Universitary Centre (CHUC). It concerns the analysis of demographic, risk

factor, laboratory, and overall survival features from a set of N = 165 patients diagnosed

with HCC.

The resulting dataset comprises n = 49 features, which have been selected according to

the European Association for the Study of the Liver/European Organisation for Research

and Treatment of Cancer (EASL/EORTC) clinical practice guidelines [130], the state-of-

the-art guidelines on the management of HCC disease. This dataset includes the clinical

features considered to be the most significant to the clinicians’ decision process when

choosing the most suitable therapeutic strategies and predicting their outcomes for each

patient.

A detailed description of the HCC dataset is presented in Table 3.2, which shows each

feature type/scale, range, basic statistics (mean/mode), and missing rate. This is a het-

erogeneous dataset, with 23 continuous features and 26 categorical features. Overall, the

missing data represents 10.22% of the whole dataset and only 8 patients have complete

information in all features (4.85%).

Since this work is focused on the 1-year survivability prediction for HCC and, the target

feature (survival) is encoded as a binary feature with values 0 and 1, which respectively

illustrate whether a patient did not survive (0) or survived (1). Accordingly, there are 63

cases labelled as 0 (dead), whereas the remaining 102 cases are labelled as 1 (alive).

3.3.2 Data Imputation

In our methodology, this stage entails the process of ensuring that there are not incon-

sistencies in the collected data, i.e., missing values. In particular, this stage provides a

clean, complete dataset, aiming to minimise both the loss of clinical records and the dis-
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Table 3.2: Characterization of CHUC’s hepatocellular carcinoma data. The dataset con-
tains N = 165 records of n = 49 clinical features considered important to the clinicians
decision process.

Prognostic Factors Type/Scale Range Mean or Mode Missingness (%)

Gender Categorical/Binary 0/1 1 0
Symptoms Categorical/Binary 0/1 1 10.91
Alcohol Categorical/Binary 0/1 1 0
HBsAg Categorical/Binary 0/1 0 10.3
HBeAg Categorical/Binary 0/1 0 23.64
HBcAb Categorical/Binary 0/1 0 14.55
HCVAb Categorical/Binary 0/1 0 5.45
Cirrhosis Categorical/Binary 0/1 1 0
Endemic Countries Categorical/Binary 0/1 0 23.64
Smoking Categorical/Binary 0/1 1 24.85
Diabetes Categorical/Binary 0/1 0 1.82
Obesity Categorical/Binary 0/1 0 6.06
Hemochromatosis Categorical/Binary 0/1 0 13.94
AHT Categorical/Binary 0/1 0 1.82
CRI Categorical/Binary 0/1 0 1.21
HIV Categorical/Binary 0/1 0 8.48
NASH Categorical/Binary 0/1 0 13.33
Esophageal Varices Categorical/Binary 0/1 1 31.52
Splenomegaly Categorical/Binary 0/1 1 9.09
Portal Hypertension Categorical/Binary 0/1 1 6.67
Portal Vein Thrombosis Categorical/Binary 0/1 0 1.82
Liver Metastasis Categorical/Binary 0/1 0 2.42
Radiological Hallmark Categorical/Binary 0/1 1 1.21
Age at diagnosis Continuous 20-93 64.69 0
Grams/day Continuous 0-500 71.01 29.09
Packs/year Continuous 0-510 20.46 32.12
Performance Status Categorical/Ordinal 0,1,2,3,4 0 0
Encefalopathy Categorical/Ordinal 1,2,3 1 0.61
Ascites Categorical/Ordinal 1,2,3 1 1.21
INR Continuous 0.84-4.82 1.42 2.42
AFP Continuous 1.2-1810346 19299.95 4.85
Hemoglobin Continuous 5-18.7 12.88 1.82
MCV Continuous 69.5-119.6 95.12 1.82
Leukocytes Continuous 2.2-13000 1473.96 1.82
Platelets Continuous 1.71-459000 113206.44 1.82
Albumin Continuous 1.9-4.9 3.45 3.64
Total Bil Continuous 0.3-40.5 3.09 3.03
ALT Continuous 11-420 67.09 2.42
AST Continuous 17-553 69.38 1.82
GGT Continuous 23-1575 268.03 1.82
ALP Continuous 1.28-980 212.21 1.82
TP Continuous 3.9-102 8.96 6.67
Creatinine Continuous 0.2-7.6 1.13 4.24
Number of Nodules Continuous 0-5 2.74 1.21
Major Dimension Continuous 1.5-22 6.85 12.12
Dir. Bil Continuous 0.1-29.3 1.93 26.67
Iron Continuous 0-224 85.6 47.88
Sat Continuous 0-126 37.03 48.48
Ferritin Continuous 0-2230 439 48.48

tortion of the results of the prediction stage. According to the literature, the two most

conventional approaches used to handle missing data are to delete or to impute absent val-

ues [94, 203, 263]. Case elimination has been ruled out from the beginning of this study,
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since 157 of 165 patients have incomplete information. In alternative, an imputation-

based approach had to be considered. Imputation is the process of replacing a missing

value with a substitute estimate, which is obtained using the available information in the

dataset [263]. This is an advantage compared to discarding incomplete cases, since im-

puting missing values provides additional information that can ease the later prediction

stages and thus enhance the obtained results [189, 190, 204, 205].

From the different imputation methods considered in the literature [204], we have chosen a

k-Nearest Neighbour (kNN, k = 1) approach, which has shown its usefulness in many other

clinical studies with missing values [200, 212, 424]. Initially, other simple statistical data

imputation methods were tested, namely mean/mode imputation, and median imputation,

which were found to add a distortion to the input data distribution. Whereas these two

methods ignore the relation between feature to perform imputation, kNN follows a local

approximation to imputation and it is able to maintain the original input data distribution

with a proper selection of k.

In kNN imputation, for each incomplete case x, its closest neighbour v is chosen from the

training samples with available information in the features to be imputed. This requires

the computation of distances between each incomplete pattern and the remaining samples,

according to a distance function. We used the Heterogeneous Euclidean-Overlap Metric

(HEOM) distance [47], which efficiently handles both continuous and categorical features

in a missing data framework. Considering two input vectors, xA and xB, the HEOM

distance can be calculated as follows from Equation 3.1, where dj(xAj , xBj) is the distance

between the two patterns A and B on the j-th feature (Equation 3.2).

d(xA,xB) =

√√√√ n∑
j=1

dj(xAj , xBj)2 (3.1)

dj(xAj , xBj) =


1, if xj is missing in xA or xB

dO(xAj , xBj), if xj is a categorical feature

dN (xAj , xBj), if xj is a continuous feature

(3.2)

In Equation 3.2, it is considered that the dj distance varies from 0 to 1 (the maximal

distance value). If either one of the input values is missing in the j-th feature, the distance

between patterns is 1. If both input values are available, HEOM uses the overlap metric

(dO) for categorical features (Equation 3.3), and the normalized euclidean distance (dN )

for continuous features (Equation 3.4).

dO(xAj , xBj) =

0, if xAj = xBj

1, otherwise
(3.3)
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dN (xAj , xBj) =
|xAj − xBj |

max(xj)−min(xj)
(3.4)

Once the closest neighbour is found (v), each unknown value in x is replaced by the

corresponding available feature value in v. At this point, it should be noted that i) the

closest neighbour imputation approach has been applied in order to maintain the variability

of the dataset, and ii) there is not any previous research work about imputation for HCC

datasets with missing values. Finally, at the end of the data imputation stage, all features

are standardized using the well-known z-score transformation [287].

3.3.3 Cluster-based Oversampling

Once the data is clean, we try to find naturally occurring clusters within our HCC

database. Accordingly, each cluster will be composed of patient samples with similar

feature values. As explained in what follows, this work uses k-means clustering algorithm,

where the optimal number of clusters K is chosen according to the GAP statistic [419].

Clustering patients using K-means

The k-means algorithm was chosen to cluster the HCC dataset due its efficiency and

success across several fields of pattern recognition [221], particularly in clustering cancer

data [83, 293], and its application potential in what concerns cluster-based resampling

algorithms [184]. k-means is a well-known unsupervised learning algorithm used for data

clustering [54, 221], and works as follows. For a given number of groups (K), this method

finds K centroids, {ck}Kk=1, that map onto clusters with different characteristics. Data

examples with the same nearest centroid are included in the same cluster Ck. Then, K-

means iteratively minimizes the sum of distances from each example to its centroid, over

all clusters, minimising the error function described in Equation 3.5 [221], where d(xi, ck)

denotes the distance from the i-th data example to the k-th centroid.

J =
K∑
k=1

∑
xi∈Ck

d(xi, ck), (3.5)

In the k-means algorithm, it is necessary to perform an appropriate initialisation of cen-

troids [221]. A poor initialization leads to suboptimal solutions with poor results. In

order to avoid this drawback, our methodology uses the k-means++ procedure [38], which

provides a robust initialization that leads to a competitive solution for the data partition.

Another user-specified parameter is the number of clusters (K), which is a critical choice

for the resulting clustering solution [221]. Although there is not a theoretical criterion

for selecting this parameter, the GAP statistic allows to find the proper K for k-means
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clustering [419]. It is a commonly used approach in practice which automatically provides

very competitive results. According to Tibshirani et al. [419], and given that the sum of

distances between the Nk points in Ck is Dk =
∑

xA,xB∈Ck d(xA,xB), the intra-cluster vari-

ance, WK =
∑K

k=1
1

2Nk
Dk, gives a measure of the compactness of our clustering solution.

Then, WK can be used to heuristically determine the optimal K: considering a range of

possible values for K, the evolution of WK with respect to the number of clusters is plotted

and the most dramatic decrease (“elbow”) in the plot is found for the optimal value of

K. The GAP statistic formalizes this heuristic procedure and automatically provides the

optimal K [419]. To assess the optimal number of clusters for the HCC dataset, the GAP

statistic was calculated for a range of 2 to 30 clusters. The optimal number of clusters was

found for K = 10 clusters. Another important issue is that different runs (initialisations of

K centroids) give different partitions. To overcome this inconvenient in practice, multiple

different initialisations are often performed and, considering all of the obtained k-means

solutions, the partition with the smallest error is selected as final [221]. In contrast, several

works have implemented ensemble methods by combining multiple partitions to obtain an

integrated final partition using a consensus function [121, 440, 469, 473]. Nevertheless, in

our approach, the aim is not to achieve a unique clustering solution. As it is explained

next, our proposed methodology exploits the diversity of the multiple obtained partitions

to construct an augmented dataset in a two-phase sampling procedure.

First sampling phase: balancing groups with synthetic samples

In this first stage, oversampling is applied in order to diminish the impact of underlying

patient groups/profiles with reduced sizes on survival prediction. In most clinical datasets,

several patient profiles with different sizes can be found, due to patient and disease het-

erogeneity (concept heterogeneity). Concept heterogeneity can be thought of as a form

of class imbalance, considering that the underlying clusters in data are not approximately

equally represented. As it is shown in our experiments, a high imbalance in the sizes of

the patient profiles hinders the design of survival prediction models.

To avoid this drawback, this work takes advantage of the SMOTE algorithm [433]. In

particular, we have implemented a cluster-based approach which follows the same princi-

ples of SMOTE. In its original version, SMOTE is used to oversample the minority class,

which means that the class of the newly generated synthetic samples is already previously

established. In our implemented approach, SMOTE has been adapted to oversample clus-

ters with reduced sizes, where some clusters may contain different class labels. Thus, the

assessment of the class label for each new synthetic sample is performed according to a

random number between 0 and 1, call it ϕ, used in the original SMOTE implementation

to create each new synthetic sample.
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In brief, this first sampling phase is comprises the following steps:

1. Selection of clusters with reduced sizes. Instead of balancing all groups to the largest

one, the size reference is established to the second largest cluster (this criteria was

chosen after performing some preliminary experiments). Then, oversampling is per-

formed in clusters with sizes lower than this reference;

2. Generation of synthetic samples. Within each cluster Ck of reduced size:

(a) Consider each sample x in the cluster. Note that if amount of oversampling

does not require the oversampling of all the existing samples, the samples to

oversample are chosen randomly;

(b) Choose one of its V nearest neighbours, v. In this work, several different values

of V were tested, from 1 to 5 nearest neighbours, where V = 3 has provided

the best results;

(c) Create a new synthetic sample s according to s = x + ϕ(x − v), following

SMOTE’s formulation, where ϕ is random number between 0 and 1;

(d) The class label of s is assigned according to ϕ. If ϕ is greater than 0.5, the class

label of s is the same as v. On the contrary, if ϕ is smaller or equal to 0.5, the

class label of s is the same as x;

(e) The previous steps are repeated until the desired amount of oversampling is

achieved.

It should be noted that the above procedure is repeated for each obtained partition from

the K-means clustering. Figure 3.2 depicts a scheme of this first sampling phase, where

the previous stages of the data imputation and clustering of the dataset D are also shown.

Let us assume that R runs of k-means have been performed, where the value of K has

been previously determined using the GAP statistic. For the r-th run, with r = 1, 2, ..., R,

its obtained partition is defined by K different clusters, {Cr,k}Kk=1. Then, clusters with

reduced sizes are oversampled, as follows from Equation 3.6, where Sr,k is the subset of

generated synthetic samples for the k-th group in the r-th partition. Accordingly, at the

end of this first sampling phase, we have R different synthetic datasets, {D∗r}Rr=1, where

D∗r = ∪kSr,k.

{
C∗r,k
}K
k=1

= {Cr,k ∪ Sr,k}Kk=1 (3.6)

Second sampling phase: construction of a representative set

In the second sampling phase, the goal is to exploit the diversity of the different gener-

ated sets, D∗1,D∗2, . . . ,D∗R, to obtain an augmented dataset, M, which provides a better
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Figure 3.2: First sampling phase: balancing groups with synthetic samples, D∗r .

representation of the survival prediction problem. This work considers and evaluates two

sampling schemes for merging the information from the multiple synthetic datasets. In

the second sampling scheme, M is defined by merging R data portions which have been

sampled from {D∗r}Rr=1. The resulting dataset,M, is used to model survival prediction for

HCC disease. In this work, each data portion is composed of 20% of samples from D∗r , fol-

lowing the principles of the stratified random sampling method [149]. This ratio provides

a representative contribution of each synthetic dataset and it has been chosen according

to preliminary experiments over the HCC dataset. This sampling scheme is illustrated

in Figure 3.3. Based on this second sampling scheme, and instead of providing a single

representative datasetM, we also implement another combination approach which finally

produces R augmented datasets, {Mr}Rr=1. In particular,Mr is composed of D∗r and R−1

portions of samples from the remaining synthetic datasets. Here, the same percentage of

sampling is considered, 20% of each portion. With respect to survival prediction, in this

second sampling scheme, R different models have to be designed using each representative

dataset and, as it is explained next, their resulting R predictions are combined through

majority voting. This scheme is shown in Figure 3.4.
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Figure 3.3: Second sampling phase: construction of a representative set, M.
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3.3.4 Survival Prediction

In this work, two well-known classification methods are applied [54]: Neural Networks

(NN) and Logistic Regression (LR). These classifiers have shown their usefulness for sur-

vival prediction in previous research works with HCC data [65, 192, 390]. For each of these

classifiers, this work studies the impact of using the different generated datasets obtained

with our cluster-based oversampling method on the survival prediction of HCC patients.

3.4 Experiments

The proposed methodology has been experimentally evaluated using the HCC dataset

previously described. The experiments were performed in order to show that our proposed

methodology is generally feasible to design survival prediction models for HCC disease,

and that it outperforms other classical approaches used in HCC research.

Accordingly, we have carried out a series of simulations, considering four different ap-

proaches. In the first approach, survival prediction models (considering NN and LR) are

developed using directly the dataset obtained from the data imputation stage, D (Without

Cluster, No-Oversampling approach). For the second approach, the minority class in D
is first oversampled using the SMOTE algorithm, and NN and LR are applied (Without

Cluster, Oversampling approach). Note that in this second approach, we analyse the

impact of overcoming the class imbalance in D on classification performance.

In the third and fourth approaches, our methodology is applied. The third approach ob-

tains a unique representative dataset M using the proposed cluster-based oversampling

method (With Cluster, Representative Set Approach). After that, M is used for con-

structing a survival prediction model using each classification algorithm. Finally, instead

of providing a unique dataset M, the fourth approach obtains R augmented datasets,

M1,M2, ...,MR (With Cluster, Augmented Sets Approach). For each one of them, and

for each classification algorithm, a survival prediction model is constructed. Then, the clas-

sification results obtained from the R models trained with the same classification method

are combined through a majority voting scheme.

Experiments have been conducted using a Leave-One-Out Cross Validation (LOO-CV)

process for performance evaluation [54], which is appropriate given the small amount of

available data. Specifically, for the N total number of samples involved in the study, one is

left out for testing, and the remaining N −1 are used for designing the survival prediction

models. For each iteration of the LOO-CV procedure, 30 runs of the cluster-oversampling

approaches were performed (R = 30).
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To perform the evaluation of each classifier (NN and LR), three different measures were

used: Accuracy, Area Under the ROC Curve (AUC), and F-Measure. For each of these

performance measures, three indicators were used: mean (µ), standard deviation (σ),

and rank. The first two indicators, µ and σ, are computed from the experimental results

obtained with the different configurations/hyperparameters considered for the chosen clas-

sifiers (i.e., different hidden layer sizes for the NN classifier, and different thresholds for the

LR classifier). The third indicator is the rank of each approach, which will be used to per-

form a Friedman rank test [112] in order to compare the approaches across all performance

measures and classifiers. Tables 3.3 and 3.4 show the obtained experimental results of the

four approaches for each classifier, NN and LR, respectively. The first two indicators, µ

and σ, correspond to the best results obtained considering all classifier configurations (i.e.,

hyperparameters), whereas the third indicator (rank) corresponds to the final ranking of

approaches, averaged across the used configurations.

As concerns the NN classifier, 11 distinct network configurations were used in the exper-

iments (5 to 55 hidden neurons, increasing in a step of 5), and 30 runs were performed

for each configuration. The obtained results (Table 3.3) indicate that, regardless of the

evaluation measure considered (Accuracy, AUC, or F-Measure), the Augmented Sets Ap-

Table 3.3: Neural Networks (NN) performance evaluation using Accuracy, AUC, and F-
Measure. For each measure, three indicators were used: mean (µ) and standard deviation
(σ) for the best configuration in each approach, and the average rank of each approach,
considering all configurations.

Approach Accuracy AUC F-Measure
µ σ Rank µ σ Rank µ σ Rank

Without
Cluster

No-oversampling 0.687 0.043 4 0.650 0.068 3.8 0.550 0.075 4
Oversampling 0.717 0.038 2.91 0.661 0.034 3.2 0.645 0.027 2.73

With
Cluster

Representative
Set Approach

0.737 0.023 2.09 0.689 0.021 2 0.640 0.034 2.27

Augmented
Sets Approach

0.752 0.011 1 0.700 0.015 1 0.665 0.018 1

Table 3.4: Logistic Regression (LR) performance evaluation using Accuracy, AUC, and F-
Measure. For each measure, three indicators were used: mean (µ) and standard deviation
(σ) for the best configuration in each approach, and the average rank of each approach,
considering all configurations. For the Without Cluster, No-Oversampling approach, σ
values are not applicable (N.A.).

Approach Accuracy AUC F-Measure
µ σ Rank µ σ Rank µ σ Rank

Without
Cluster

No-oversampling 0.721 N.A. 2.4 0.659 N.A. 2 0.652 N.A. 2.6
Oversampling 0.706 0.010 3 0.649 0.007 3 0.639 0.012 3.2

With
Cluster

Representative
Set Approach

0.725 0.016 2.6 0.668 0.014 3 0.648 0.020 2.4

Augmented
Sets Approach

0.730 0.014 2 0.673 0.012 2 0.652 0.015 1.8
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proach outperforms the remaining. Following the Friedman Rank test [112], we have

computed the FF = 7.691 statistic at a α = 0.5 significance level, and compared it to the

F distribution, F (3, 30) = 2.92. In light of the obtained statistics, the null hypothesis of

equivalence between the four approaches is rejected. Then, comparing approaches with

each other at a 5% significance level using the Nemenyi test [112], it was possible to obtain

CDn = 1.4142 (the critical value determined for the difference between ranks). Accord-

ingly, for all of the considered performance measures, the Augmented Sets Approach has

proved to be statistically superior to the approaches that did not use any clustering strat-

egy (No-Oversampling and Oversampling). Additionally, the Representative Set Approach

performed significantly better than the No-Oversampling approach, for all measures. No

statistical differences were found among the remaining approaches.

Regarding the LR classifier, 5 different thresholds were considered (0.5 to 0.9) and the

same analysis was performed (Table 3.4). Similarly, µ and σ represent the best results

obtained by each approach, related to a specific threshold. Overall, the Augmented Sets

Approach has also presented better results than the remaining approaches. It should

be noted that for the first approach (Without Cluster, No-Oversampling), the LR model

always produces the same results, since there are not any random factors considered in this

method. Thus, only one run was performed for each threshold, and µ represents the best

obtained performance, whereas σ is not applicable (N.A.). The other three approaches

consider stochastic processes, either due to the data oversampling or clustering procedures.

Thus, similarly to what was performed for the NN classifier, 30 runs were performed. For

this scenario, the FF = 7.800 statistic was calculated and compared to the F distribution,

F (3, 12) = 3.4903, at a α = 0.5 significance level. Consequently, the null hypothesis of

equivalence between the four approaches was also rejected. However, comparing the four

approaches at a 5% significance level using the Nemenyi test [112], CDn = 2.0976, none

of the approaches proved to be better than the remaining, regardless of the considered

performance measure.

3.5 Conclusions and Future Work

In this work, a new methodology capable of predicting the 1-year survival of patients with

HCC has been presented. To that end, a HCC dataset consisting of 165 patients receiving

treatment in an university hospital centre was used. Overall, this dataset presented three

main challenges: feature heterogeneity (49 features comprising continuous and categorical

types), missing values (missing data constitutes 10.22% of the total dataset with only 8

patients having complete information), and class/concept imbalance, which made it more

difficult to create a suitable methodology to predict the 1-year survival of heterogeneous

patients.
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The proposed methodology relied on a cluster-based oversampling approach where two

classifiers (NN and LR) were separately coupled with two novel approaches, referred to

as Representative Set Approach and Augmented Sets Approach, and compared with two

widely-used, baseline approaches (No-Oversampling and Oversampling). The main differ-

ence between these two sets of approaches consists of using a new cluster-based method-

ology that addresses the challenges previously detected in the beginning of the study.

The obtained results were assessed using three performance measures: Accuracy, AUC,

and F-measure. To compare approaches against each other, the Friedman Rank and Ne-

menyi tests were used. The proposed methodology coupled with the NN classifier presented

better results than the other two widely-used approaches regarding all of the performance

measures previously defined, proving that our methodology provides an appropriate so-

lution to the design of survival prediction models in a HCC context with the discussed

characteristics.

To our knowledge, this methodology has never been proposed or applied to HCC disease

in particular, or other diseases or contexts in general. Thus, the issue of reproducibility

and generalisation has not yet been addressed. This could be a possibility for future

work: extending this methodology to other contexts beyond HCC disease, whether they

are healthcare-related or not.
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Chapter 4

A Density-Based Clustering

Fine-Tuning Approach for the

Identification of Small Disjuncts

The current line of research on imbalanced data acknowledges that the disproportion be-

tween classes is not the sole factor that affects classification performance. There is a set

of sub-problems – known as data difficulty factors – that highly influence the behaviour

of classifiers, namely class overlap, dataset shift, noisy data, lack of data, and small dis-

juncts. Regarding small disjuncts, current research is focused on developing specialized

methods to handle this problem, although the identification of proper conditions for their

efficient use remains an open challenge. In this chapter, following the recommendation of

related literature, we explore a density-based clustering algorithm to identify sub-concepts

in data, corresponding to small disjuncts. We focus particularly on defining appropriate

evaluation criteria to tune the parameters of the clustering algorithm and searching for

the optimal solution that determines existing underrepresented sub-concepts, which con-

stitutes a contribution to research. Our approach is validated across several synthetic

datasets with different characteristics and is further evaluated on a real-world dataset,

where the representation of concepts and appropriate set of optimal parameters is un-

known. The obtained results show that the proposed approach is a feasible strategy for

the identification of small disjuncts, although some aspects need to be improved, especially

the adjustment of the algorithm to changes in cluster densities.

81



Chapter 4

4.1 Introduction

Imbalanced data is characterized by a considerable disproportion in the number of ex-

amples belonging to each class of a dataset and is known to bias classifiers towards the

most represented concepts, thus deteriorating classification performance [272]. However,

imbalanced data per se is not the sole factor that hinders the behaviour of classifiers: as

growing research has brought to light, there are several other factors that, combined with

class imbalance, create a rather chaotic setting [320]. These are referred to as data diffi-

culty factors and include class overlap, lack of data, noisy data, dataset shift, and small

disjuncts [272, 406, 462].

Initially, research works have focused on studying the combination of class imbalance and

specific difficulty factors, proving that these issues severely aggravate the deterioration of

classification performance in imbalanced domains [70, 157, 210, 320]. Motivated by these

findings, the research community has then invested in developing specialized methods

to handle them (individually or in combination) [44, 123, 214, 407]. However, although

several methods have been proposed in the past decade, the identification of conditions for

their efficient application in real-world domains remains an open problem, i.e., developing

methods that are able to accurately identify the difficulty factors in real-world data still

poses a difficult challenge [406].

The core of this work relies on addressing the identification of small disjuncts. As will be

further detailed in Section 4.2, small disjuncts correspond to a situation of within-class

imbalance, where there are underrepresented concepts within a given class. As standard

classifiers are biased towards learning well-represented concepts, small disjuncts increase

the complexity of the classification problem, and detecting them would allow a proper

treatment of these regions, easing the definition of appropriate decision boundaries. In

the context of rule-based classification, small disjuncts are identified by rules with low

coverage; yet, aside from rule-based learning literature, small disjuncts are defined as

sub-clusters within classes that may not have an obvious representation, especially for

real-world data. We therefore underwent this work trying to answer the following research

question: How to identify small disjuncts within a dataset when the used classifier is not

rule-based?

Stefanowski [406] suggests moving towards density-based algorithms as a possible solution

to this problem, although some critical details would have to be solved simultaneously

(e.g., determining the number and structure of sub-concepts and parameter tuning). In

this work, we focus on the idea proposed by Stefanowski and explore the usage of density-

based clustering in the identification of small disjuncts. The obtained results show that our

approach presents a good behaviour for several of the tested domains (the main concepts

and small disjuncts are properly detected in most scenarios), although it presents some

limitations for specific data structures, especially when changes in cluster densities occur.
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The reader should navigate this chapter starting with Section 4.2, which thoroughly de-

scribes the problem of small disjuncts and establishes the related work on the subject.

Then, Section 4.3 elaborates on the research questions addressed in this work. Our pro-

posed approach for the identification of small disjuncts is presented in Section 4.4, while

its validation over synthetic datasets and evaluation over a real-world dataset is performed

in Section 4.5. Finally, Section 4.6 concludes the work and draws promising directions for

future research.

4.2 The problem of Small Disjuncts

The problem of small disjuncts was first introduced in 1989 by Holte et al. [66]. In a simple

manner, small disjuncts are rules that cover a small set of examples: since classifiers learn

by generating rules that cover broad, well-represented concepts (i.e., larger disjuncts), they

are very susceptible to overfit examples represented by small disjuncts, which in turn, leads

to a poor classification performance for new examples. Aside from the rule-based learning

literature, Japkowicz [210] associated the appearance of small disjuncts with a phenomenon

called within-class imbalance, where a single class may yield several underrepresented sub-

concepts, understood as small clusters, that are responsible for performance degradation

(Figure 4.1). Over the years, previous works have mainly focused on studying the impact

of small disjuncts on classification performance, or on proposing methods to reduce their

impact, as briefly detailed in what follows.

4.2.1 Impact of small disjuncts in classification performance

Holte et al. [66] and Gary Weiss [289, 291] showed that learning systems perform poorly

in the presence of small disjuncts, and suggested some strategies to alleviate this issue,

namely the use of different biases for small and larger disjuncts, or disabled pruning in

the case of decision trees. Prati et al. [71] investigated whether the choice of not pruning

decision trees is truly a valid option when data is known to suffer both from small disjuncts

and class imbalance, showing that there is a trade-off between improving the classifica-

tion performance and avoiding that the errors are concentrated towards small disjuncts.

Furthermore, the authors evaluated the appropriateness of sampling strategies (oversam-

pling with data cleaning methods) to improve the representation of smaller sub-concepts.

Although sampling strategies have produced reasonable results in some cases, the overall

results were not conclusive, possibly due to the fact that the considered resampling strate-

gies were more appropriate to solve the problem of class overlap than the problem of small

disjuncts (given that they considered data cleaning strategies).

Japkowicz and her collaborators [210, 211] focused on the study of class decomposition

(decomposition of existing classes into several sub-concepts) and class imbalance, show-
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Figure 4.1: Example of small disjuncts for the minority class (blue crosses): clusters A
and B are well-represented concepts, whereas C and D are underrepresented sub-concepts
(small disjuncts).

ing that the increase of the degree of class decomposition aggravated the performance

deterioration more than the increase of class imbalance. Stefanowski [405] followed this

line of research, extending the findings for more complex decision boundaries. Class de-

composition relates to the problem of small disjuncts in the sense that, if the generated

sub-concepts comprise a small number of examples, they may constitute a small disjunct.

Therefore, although the works of Japkowicz [210, 211] and Stefanowski [405] focus more on

class decomposition and imbalance rather than the problem of small disjuncts in partic-

ular, they were the stepping stone for the development of specialized methods to address

the issue.

4.2.2 Specialized methods to handle small disjuncts

Regarding the design of specialized method for handling small disjuncts, the most well-

known strategy is the Cluster-Based Oversampling (CBO) algorithm proposed by Jo and

Japkowicz[214], described in Chapter 2. As the name implies, CBO considers the defini-

tion of small disjuncts as sub-concepts/sub-clusters in data and makes use of a clustering

algorithm – k-means clustering – to find sub-clusters in the existing classes (separately)

and inflates the smaller clusters to counteract both the between and within class imbal-

ance. Another proposal to reduce the impact of small disjuncts includes the research of

Gumkowski and Stefanowski [173], where k-means is combined with Voronoi diagrams

to learn different decision trees for each defined sub-region. There are also a few re-

84



A Density-Based Clustering Fine-Tuning Approach for the Identification of Small
Disjuncts

sampling approaches that help ease the problem, such as Safe-Level-SMOTE, AHC, and

MWMOTE [44, 62, 95], although they have not been especially developed for that purpose.

Despite the efforts on developing specialized algorithms, the identification of proper condi-

tions for their efficient application in real-world domains remains an open challenge. The

above-mentioned works make use of synthetic data with particular characteristics, where

the distribution of examples and the number and structure of sub-concepts is defined by

the researchers, which is not a reality for real-world domains, where the number and/or

structure of sub-concepts is not trivial to determine. Identifying these sub-concepts be-

forehand (prior to learning classifiers) would be instrumental to improve the classification

performance. By determining the regions in data that are potentially problematic, it is

possible to choose adequate methods to increase the generalization abilities of the classifier

(e.g., apply resampling methods in those specific regions).

Using clustering algorithms, in particular k-means clustering, has been a popular solution

for the definition of clusters in data [210]. However, although k-means-based solutions

have obtained encouraging results for specific synthetic data, some shortcomings would

prevent its success in real-world data [406]:

• Defining the appropriate number of clusters comprised in data (tuning of k value);

• Coping with complex, non-spherical cluster shapes;

• Dealing with the influence of noisy or outlier examples.

Given the limitations of k-means, related work suggests that density-based clustering

algorithms may be a potential alternative, as they are able to find an arbitrary number of

clusters in data and can adapt to complex shapes and noisy examples [406]. In this work,

we will explore a popular density-based algorithm – Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [129] – to address the identification of small disjuncts.

4.3 Research Questions

DBSCAN is a well-established density-based algorithm that has proven to provide good

results in different contexts [232], and therefore seems to be an adequate approach to

address the main research question of this work – How to identify small disjuncts within

a dataset when the used classifier is not rule-based? Nevertheless, in order to define a

solution for the identification of small disjuncts in real-world data, there are some aspects

that need to be considered:

• How to adjust the parametrization of DBSCAN to the identification of small dis-

juncts? Although not requiring a pre-determined number of clusters, DBSCAN still
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needs to be parametrized. It requires the definition of two main parameters, ε and

minPts, as further explained in Section 4.4;

• Which clusters represent valid concepts, which correspond to underrepresented con-

cepts (small disjuncts) and which may be considered noisy examples? Depending

on the parameters defined, DBSCAN finds different solutions, from which the most

representative of the problem at state must be selected.

In the following section, we present our proposed approach to the identification of small

disjuncts through the application of DBSCAN, thoroughly describing how the above ques-

tions were addressed.

4.4 Proposed approach

Our approach uses the DBSCAN algorithm to find clusters that represent either main

concepts or small disjuncts in a given class (often the minority class). In order to find the

ideal solution, an iterative maximization approach is used to adjust DBSCAN parameter

ε over each iteration. A pre-selection criterion and two new measures are then applied to

obtain the final optimal solution.

Given a set of points (each data example is treated as a point in the input space), DBSCAN

starts by labelling each of them into one of three categories [129]:

• Core point, meaning that it has at least a minimum number of points (minPts) in

its neighbourhood defined by a given distance ε. The Euclidean distance is the most

commonly used and is also chosen in our approach, although any distance function

is supported;

• Border point, meaning that it did not meet the criteria for becoming a core point

but is in the neighbourhood of at least one;

• Noise point, meaning that it did not meet the criteria for becoming neither a core

or border point.

Then, DBSCAN algorithm chooses a random core point, creates a cluster containing all

the core and border points in its neighbourhood and, for each of the core points in its

neighbourhood, it expands the cluster by doing the same process described in a recursive

way. A core point can only be “expanded” once and the algorithm stops when all were

“expanded”, returning the discovered clusters.

In our approach, DBSCAN is applied to the examples of a given class, i.e., classes are

individually clustered, and the desired class to cluster is a user-defined input parameter.
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Now that we have defined the working basis of our approach, we detail the procedures

used to address the specific questions defined in Section 4.3.

How to adjust the parametrization of DBSCAN to the identification of small

disjuncts?

DBSCAN has the advantage of not requiring the number of clusters to be passed as a

parameter, but the required parameters (ε and minPts) are sensitive, and minor variations

of these values can generate quite different results.

In our approach, we consider that a small disjunct must have at least 3 points, and

therefore the minPts parameter has the constant value of 3. This value was chosen based

on the typology of minority class examples by Napierala and Stefanowski [319], which

considers that an example is an outlier if its has no neighbours from the same class in a

neighbourhood of 5 examples, and a rare example if it has only one neighbour from the

same class (and that neighbour is either also a rare point, or an outlier). To distinguish

small disjuncts from the concepts of rare and outlier examples, we established that a small

disjunct must have at least 3 examples.

In turn, the ε parameter is increased in an iterative process, following a dynamic step.

This process ends when the ε is large enough for DBSCAN to include all the points in a

single cluster. The dynamic step includes a fixed term (ft) and a distance factor (df), as

shown in Equation 4.1.

ε = ε+ df ∗ ft (4.1)

The ft term is calculated using a heuristic from Chu et al. [93], and uses the number of

dimensions d and observations n from the dataset (considering only the selected class) and

the parameter minPts (defined as 3), as shown in Equation 4.2. The relation between the

dimensionality and cardinality of the data given by the heuristic defined an adequate base

step that is iteratively adjusted through the distance factor. This value is also used as the

initial step.

ft =
d

√
minPts

n
(4.2)

The df term works as a regulator (factor) for the fixed step, being adjusted at each iteration

with the current status of the clusters retrieved by the DBSCAN. The value is calculated

by combining the intra- and inter-distances of the clusters defined by the current clustering

solution (nC clusters), 2 by 2, according to Equation 4.3. In such a way, when clusters are

very dense and well-separated (i.e., far from each other) the factor is low, so that clusters

borders are only sensitive to nearby examples. Otherwise, the factor increases. The key

idea is to privilege scenarios with dense and well-defined clusters that may only require
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small ε adjustments to eventually add examples that are very close to them. However, as

ε increases and the optimal solution for defining representative clusters has been achieved,

a larger df factor will reduce the number of iterations required for the process to end (until

all examples are assigned to the same cluster). If an iteration does not have any clusters,

the factor is considered neutral, being defined with the value of 1.

df =
1(
nC
2

) (nC2 )∑
i={k,j}

intraDistancek + intraDistancej
interDistancekj

(4.3)

Which clusters represent valid concepts, which correspond to underrepresented

concepts (small disjuncts) and which may be considered noisy examples?

At each iteration a new measure called Concept Representativity (CR) is calculated for

each solution, using the silhouette coefficient (s) and cardinality (c) of the retrieved clus-

ters, as follows from Equation 4.4. The silhouette coefficient [206] estimates the cohesion

of a point to its cluster by measuring how well it fits in its own cluster versus how well it

would fit in its closest cluster. The resulting value varies between [ − 1, 1], where 1 indi-

cates that the point fits perfectly into its cluster and −1 indicates the opposite. Several

distance functions are supported, where the Euclidean distance is used most often and

chosen for our approach. To evaluate an entire cluster, the average silhouette coefficient

is taken, considering all points comprised in that cluster. This average value is used in

our approach since it gives a measure of cluster cohesion, which is helpful to identify how

well-defined the clusters are. Moreover, the silhouette is also weighted by the square value

of the cardinality of each cluster, since clusters containing more points are more represen-

tative of the class concept, and should therefore have a higher impact. This CR value is

later used to choose the optimal solution, after a pre-selection criterion is applied, based

on the stability of solutions found in consecutive iterations of the algorithm.

CR =
1

nC

nC∑
i=1

si ∗ c2
i (4.4)

In order to defined the optimal solution, an initial filtering (pre-selection) strategy is

applied to all the iterations of DBSCAN, so that the longest sequence with the same

number of clusters is chosen. The purpose of this pre-selection is to find the most stable

solution identified by the algorithm. As previously described, the distance factor df ensures

that ε increases slowly in scenarios with well-defined desired clusters, which leads to the

existence of more iterations for these scenarios, as shown in Figure 4.2. In this example,

the number of clusters is presented for each ε value, and the sequence of iterations with

4 clusters was clearly the most stable (this scenario corresponds to Dataset 3 discussed in

the following section). Therefore, selecting the largest sequence ensures that the optimal

solution is the most stable, rather than a peak of the CR value.
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Figure 4.2: Variations of the number of clusters according to the ε values for an exam-
ple dataset. The largest sequence of iterations corresponds to the solution comprising 4
clusters, indicating that it is the most stable.

The final solution is chosen from the filtered sequence of iterations by finding the maximum

CR value that was previously calculated for each iteration. This solution contains one or

more clusters, and each cluster is labelled as a main concept or a small disjunct. To

do this, a new measure called Relative Importance (RI) is calculated for each cluster

by dividing its cardinality (c) by the maximum cardinality from all clusters (Equation

4.5). The resulting values are ratios between 0 and 1, and clusters with an RI below a

certain threshold (defined as 0.3 by default) are labelled as small disjuncts. This indicates

that clusters that have a representation lower than 30% of the representation of the main

concept are considered sub-concepts. The remaining clusters are defined as further class

concepts.

RIi =
ci

max(c1, c2, ..., cn)
(4.5)

Figure 4.3 illustrates the sequence flow of the described approach, detailing each phase of

the algorithm.

4.5 Experiments and Results

We start by validating the proposed approach through an exploratory analysis of 4 syn-

thetic datasets created using a multidimensional synthetic data generator [462]. All

datasets are binary and two-dimensional, but present different characteristics, regarding

the existence of small disjuncts and noise, range of input features, number of observations,

and cluster shapes, densities and representativeness. Furthermore, we consider the exis-

tence of small disjuncts solely on the minority class, similarly to previous works on class

decomposition, as discussed in Section 4.2. In particular, we analyse the behaviour of the
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Calculate 
ft term Ɛ0 = ft

Run 
DBSCAN

Calculate 
Silhouette Coefficient

Calculate 
CR

Calculate 
df term Update Ɛ

Find Longest 
Sequence of Iterations 

(for the same number of clusters) 
Find Iteration 

with Max. CR Value 
Calculate RI 

for each Cluster 

Run 
Algorithm 

Label Clusters 
(using the RI threshold) 
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Figure 4.3: Sequence flow of the proposed approach.

proposed approach in 4 distinct scenarios: lack of main concept, well-defined concepts and

sub-concepts, complex shapes with high density and well-defined structures with varying

densities. Moreover, we further explore the proposed approach using a public dataset

from UCI Repository, blood-transfusion, as a preliminary evaluation of its behaviour over

real-world data.

We start with the synthetic datasets presented in Figure 4.4, for which detailed experi-

mental results are depicted in Table 4.1. The visualisation results show the small disjuncts

identified with different colours, the minority class with a dark grey, the majority class

with a light grey, and the noisy points as black five-pointed stars. Table 4.1 includes the

values of each measure (CR, RI) and step (ε) previously described in Section 4.4, where the

number of observations (minority class versus entire dataset) and the size of the longest

sequence found are also included.

Lack of main concept: Dataset 1 (Figure 4.4a) illustrates a scenario where there is not

a main concept. In more complex scenarios (as in the remaining 3 datasets), the existing

clusters of the minority class would most likely be considered small disjuncts. However,

given the characteristics of the data, they are considered class concepts, since there is not

a large, well-represented “main concept”. The 2 points isolated from the remaining are

not considered part of the class concepts, and are not small disjuncts as well (a minimum

of 3 points is required). Accordingly, they are labelled as noise.

Well-defined concepts and sub-concepts: Dataset 2 (Figure 4.4b) is a standard sce-

nario where the concepts are well defined: two very dense and cohesive clusters and three

sub-clusters with lower densities and reduced cardinalities. The algorithm performs the

labelling process accurately, and the RI values reveal that two clusters are above the 0.3

threshold (the class concepts) whereas the remaining three are below 0.1 (Table 4.1), being

labelled as small disjuncts.
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Complex shapes with high density: Dataset 3 (Figure 4.4c) is a more complex example

for several reasons: the range of the features is wider, the concepts do not have the same

density characteristics, nor similar shapes, the small disjuncts are more cohesive, and the

data contains some noise. The algorithm was able to find four clusters and label them

correctly (Figure 4.2), through the RI values presented in Table 4.1. Although the four

clusters present similar silhouette values, the cardinality impact on the CR value ensures

that the algorithm chooses the optimal solution.

Well-defined structures with varying densities: Dataset 4 (Figure 4.4d) presents

a subclus [272] structure with five clusters that contain different data densities. The

algorithm was able to select each cluster correctly and labelled the two that are less

represented as small disjuncts. This example shows how the RI measure adjusts to different

cluster solutions, providing proportional estimates, and that defining the RI threshold as

a parameter of the algorithm gives the user the ability to reduce or increase its sensitivity.

Majority Classes
Minority Class
Noise

(a) Dataset 1

Majority Classes
Minority Class
SD #1
SD #2
SD #3

(b) Dataset 2

Majority Classes
Minority Class
Noise
SD #1
SD #2

(c) Dataset 3

Majority Classes
Minority Class
SD #1
SD #2

(d) Dataset 4

Figure 4.4: Small disjuncts detected with 4 synthetic 2D datasets.
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Table 4.1: Experimental results with 4 synthetic 2D datasets.

Dataset
# Min.

(Total)
# Clusters

Max.

Sequence
CR RI = {C1, ..., Cn}

1 16 (83) 3 214 14.04 {1, 1, 0.8}
2 200 (1000) 5 132 3085.21 {1, 0.05, 0.05, 0.08, 0.50}
3 300 (1500) 4 3512 6934.94 {0.04, 0.43, 0.03, 1}
4 300 (1500) 5 970 3526.87 {0.1, 0.33, 0.17, 0.66, 1}

Moving from synthetic datasets to real-world data domains, we further evaluate our pro-

posed approach over the blood transfusion UCI dataset.

Real-world dataset - blood transfusion: To determine the appropriateness of our

approach to the identification small disjuncts in real-world data, we have considered blood-

transfusion dataset from UCI Machine Learning Repository. It is a standard binary-

classification dataset with 748 instances and 4 features, all numeric.

To evaluate the efficiency of our approach, we have compared the model generated by

a Classification And Regression Tree (CART decision tree) with the solution found by

applying the density-based approach. Since the minPts was previously defined as 3, we

control the depth of the decision tree by specifying a minimum leaf size of 3 examples

as well. Then, the model generated by CART is inspected to determine which leaves

comprise a small number of examples of each class with classification errors above 30%

(the maximum error concentration in defined nodes was 50%, and therefore we have chosen

an error threshold higher than half of the maximum error).

According to the defined strategy, CART model returned 8 small disjuncts with {4, 4, 4,

4, 4, 6, 6, 7} examples for the minority class and 6 small disjuncts with {4, 4, 4, 5, 5, 11}
examples for the majority class. In turn, our density-based approach also found 8 small

disjuncts for the minority class and 12 for the majority class, with respective number of

examples of {3, 4, 4, 5, 6, 6, 6, 16} and {3, 4, 5, 8, 8, 9, 9, 11, 16, 18, 18, 31, 35}.

As expected, our approach may consider a higher number of disjuncts in some cases,

since it does not take into account the error concentration towards small disjuncts, as

we have included for the CART model. It is possible that some of the found disjuncts,

despite being underrepresented concepts, are not responsible for performance degradation.

Another observation is that our proposed solution finds disjuncts with similar number of

examples to the ones defined by the CART model. However, it may include larger disjuncts

(e.g., with 31, 35 examples), which are not returned by the tree model. This is mostly due

to the definition of a small disjunct as a concept that does not reach the minimum relative

importance (RI = 0.3). In fact, although disjuncts {31, 35} are considerably larger than

the ones found by CART models, they present RI values of 0.22 and 0.23, respectively.

A representation of some disjuncts found for the minority class are depicted in Figure 4.5.
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Since this is a 4-dimensional dataset, we have performed a Principal Component Analysis

(PCA) for dimensionality reduction in order to enable data representation.

Majority Classes
Minority Class
Noise
SD #1
SD #2
SD #3
SD #4
SD #5
SD #6
SD #7

Figure 4.5: Small disjuncts found for the minority concept of real-world dataset blood
transfusion. The visualisation is enabled by PCA, although the identified sub-concepts
were determined over the original input space.

4.6 Conclusions and Future Work

Density-based clustering algorithms appear as interesting alternatives to the use of parti-

tioning clustering algorithms (e.g., k-means) given that they are capable of dealing with

more complex concept structures, likely to arise in real-world domains. Nevertheless, as

illustrated throughout this work, there are several issues that density-based algorithms,

namely DBSCAN, cannot yet surpass, even with optimized parameters adjusted to the

identification of small disjuncts.

One of the most significant shortcomings found during this work relies on the inability of

DBSCAN to adapt to changes in data density. As long as there are connection examples

(core points) between clusters with different densities, DBSCAN will aggregate them into

one larger cluster. As an example, consider Figure 4.6, where two scenarios are solved

differently by our approach. In scenario (a) there are two small sub-concepts of the

minority class that are considerably far from the major minority concepts (and from each

other). Thus, our approach will find a stable solution for increasing values of ε. In scenario

(b) – that resembles a flower – although there are sub-concepts with considerably lower

densities, all the petals will be clustered as belonging to one larger concept. This is due to

the existence of the above-mentioned connection examples (examples agglomerated near

the flower centre), which are identified as core points and therefore expanded, creating a

single large cluster. This issue is aggravated by the fact that the clustering is applied to

93



Chapter 4

each class separately, in a completely unsupervised way. Since each class is individually

clustered, we cannot avoid that neighbour sub-concepts are aggregated in larger concepts,

since there is no information that examples belonging to a different class may exist between

them (and that, consequently, a different boundary should be defined). Therefore, the

most promising direction for future work consists on the modification to the proposed

algorithm to include a semi-supervised strategy that adjusts the definition of core points

by considering the labels of examples within the radius defined by ε. Exploring other

clustering alternatives, rather than only density-based approaches, could also be a topic

for further research.

Majority Classes
Minority Class
SD #1
SD #2

(a)

Majority Classes
Minority Class
Noise

(b)

Figure 4.6: Examples of (a) good and (b) poor behaviour of the proposed approach.

Finally, as a note worth mentioning, the clustering algorithm (either DBSCAN or algo-

rithms of other clustering families) should be able to deal with mixed data types (both

numerical and categorical). In real-world scenarios, datasets are hardly characterized

solely by numerical features, and therefore the computation of distances for the clustering

approach should by defined accordingly. Possible heterogeneous distance metrics for eval-

uation are the Heterogeneous Euclidean-Overlap Metric (HEOM) and the Heterogeneous

Value Difference Metric (HVDM) proposed by Wilson and Martinez [356]. These metrics

further consider the existence of missing data, which is also a frequent problem found in

data generated in real-life domains.
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On the joint-effect of Class

Imbalance and Overlap:

A Critical Review

Current research on imbalanced data recognises that class imbalance is aggravated by

other data intrinsic characteristics, among which class overlap stands out as one of the

most harmful. The combination of these two problems creates a new and difficult scenario

for classification tasks and has been discussed in several research works over the past two

decades. Throughout this chapter, we argue that despite some insightful information can

be derived from related research, the joint-effect of class overlap and imbalance is still not

fully understood, and advocate for the need to move towards a unified view of the class

overlap problem in imbalanced domains. To that end, we start by performing a thorough

analysis of existing literature on the joint-effect of class imbalance and overlap, elaborat-

ing on important details left undiscussed on the original papers, namely the impact of

data domains with different characteristics and the behaviour of classifiers with distinct

learning biases. This leads to the hypothesis that class overlap comprises multiple repre-

sentations, which are important to accurately measure and analyse in order to provide a

full characterisation of the problem. Accordingly, we devise two novel taxonomies, one for

class overlap measures and the other for class overlap-based approaches, both resonating

with the distinct representations of class overlap identified. This work therefore presents

a global and unique view of the joint-effect of class imbalance and overlap, from precur-

sor work to recent developments in the field. It meticulously discusses some concepts

taken as implicit in previous research, explores new perspectives in light of the limitations

found, and presents new ideas that will hopefully inspire researchers to move towards a

unified view of the problem and the development of suitable strategies for imbalanced and

overlapped domains.
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5.1 Introduction

Class imbalance refers to a disproportion in the number of examples belonging to each class

of a dataset and is known to bias classifiers towards the most represented concepts [136].

This situation is especially critical when minority class concepts are associated with higher

misclassification costs, such as the diagnosis of rare diseases [378, 391]. Although this is

an important problem in isolation, its combination with other factors creates a much

more difficult setting for classifiers, as growing research has brought to light [272, 320,

406]. These are referred to as data intrinsic characteristics [136, 272], data difficulty

factors [406, 462] or data irregularities [107], and among others, include the problem of

class overlap.

Class overlap has received much attention in the past two decades, since it is a source of

complexity for traditional classification paradigms (e.g., max-margin classifiers, Bayesian

classifiers, decision trees) [107, 178] and has been observed in several application domains

(e.g., character recognition [264], software defect prediction [85] and protein and drug

discovery [108, 383]). Indeed, among all data intrinsic characteristics, class overlap has

been recognised as the most harmful issue for pattern classification [139, 157, 353] and

remains one of the most studied topics nowadays [147, 393, 446]. Class overlap occurs when

regions of the data space are populated by training examples of different classes [114, 246,

272]: as classes are simultaneously represented in the same regions, their discrimination

becomes more complicated. This problem naturally hinders any standard (even balanced)

domain, but in imbalanced domains the problem is aggravated since the few minority

examples that exist may be mostly located in regions populated by the other class(es) as

well.

Over the years, several research works have focused on characterising the combined effects

of class imbalance and overlap. To that end, researchers created several synthetic data

domains with different imbalance ratios and overlap degrees. Then, one or several clas-

sifiers were tested and classification results were evaluated, showing that class imbalance

alone cannot be responsible for the deterioration of classification performance, and that

class overlap plays an important role as well. Therefore, the focus of related work was,

essentially, to establish class overlap as a difficulty factor for classification tasks, espe-

cially in the presence of class imbalance. That caused the analysis of other important

aspects to be neglected to some extent, such as the learning biases of used classifiers and

the peculiarities of the considered data domains. In fact, some authors consider only a

single classifier [70, 114, 156] or similar learning paradigms (e.g., tree and rule-based clas-

sifiers) [320], while the data domains are also considerably different among research works.

By cross-referencing the obtained results across related work, important aspects that re-

mained vague or understudied in previous research can now be brought to discussion on

a deeper level.
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In this work, we review the existing literature on the joint-effect of class imbalance and

overlap, summarising their main conclusions and performing a thorough cross-referencing

of results in order to analyse some details left undiscussed in the original papers. In

particular, we focus on analysing the effect of the characteristics of studied data domains

(e.g., data decomposition, structure, dimensionality, and data typology) and the behaviour

of classifiers with distinct biases (instance-based, rule and tree-based, Bayesian classifiers,

neural networks, support vector machines, and linear discriminants). A cross-reference of

research results allows the evaluation of classifiers under several conditions (data domains,

dimensionality, class imbalance, and overlap), and effects on classification performance

are explained from a theoretical (considering the known biases of classifiers) and empirical

(considering the used data domains and obtained experimental results) perspective. In

sum, we extend the current body of knowledge on the combination of class imbalance and

overlap by focusing on the following research topics:

• What is the influence of intrinsic data characteristics (data decomposition, data

structure, data dimensionality, data typology) on the classification performance for

imbalanced and overlapped domains?

• How do classifiers with different nature (distinct learning biases) handle imbalanced

and overlapped domains?

The analysis conducted over seminal work yielded important insights regarding the joint-

effect of class imbalance and overlap. First, it allowed to derive some important lessons

learned regarding the characteristics of the domains and nature of classifiers, two un-

derstudied topics that remained mostly hidden in related research. Then, it allowed to

identify important limitations regarding the characterisation of class overlap in imbalanced

domains and ultimately, to the idea that class overlap comprises several representations,

which need to be quantified and analysed accordingly. On that note, a discussion on the

identifiability and quantification of class overlap, especially in real-world domains, arises

naturally. We therefore provide a comprehensive review of class overlap measures and

establish a novel taxonomy that defines distinct groups of measures according to the class

overlap representations they are able to characterise. We conclude this work by analysing

emergent class overlap-based approaches applied to real-world imbalanced domains. It is

our intent to show that, despite recent work suffers from the same limitations found in

seminal work in what concerns the characterisation and quantification of class overlap,

it is possible to associate the underlying behaviour of approaches to the class overlap

representations they are attentive to. Establishing this association is a step towards the

choice and development of specialised approaches depending on the characteristics of the

domains. We therefore devise a taxonomy of class overlap-based approaches aligned with

the taxonomy proposed for class overlap measures.
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In sum, the contributions of this work are as follows: i) a revision of related work on

the joint-effect of class imbalance and overlap; ii) a discussion of the impact of intrinsic

data characteristics in synergy with class imbalance and overlap; iii) an overview of the

joint-effect of class overlap and imbalance on the performance of classifiers with different

learning biases; iv) a motivation for the characterisation of class overlap according to

different perspectives and a discussion of distinct class overlap representations; v) a review

of measures of class overlap and a taxonomy aligned with its different representations; vi)

a review of the state-of-the-art approaches for imbalanced and overlapped domains and

a taxonomy that resonates with the identified class overlap representations; and vii) the

identification of limitations of previous and current research and a motivation for a unified

view of the class overlap problem in imbalanced domains.

Existing surveys mostly provide a bird’s eye view on handling imbalanced data classifi-

cation, presenting the state-of-the-art methods, applications, and current trends in the

field [178, 229, 241], although setting aside the study of other difficulty factors embedded

in the nature of data. Some also touch upon the definition of data characteristics and

their impact on classification tasks [107, 138]; however, without a specific focus on the

joint-effect of class imbalance and overlap and its synergy with other characteristics of the

data domains, or on different learning biases, quantification, or contemporary approaches.

Related research in the field of classification complexity provides an overview of data com-

plexity measures and their use across several application areas [80]. However, there is no

established set of complexity measures for class overlap, as measures are grouped according

to their underlying quantification mechanisms (e.g., feature-based, neighbourhood-based),

rather than the insight they provide on the domain (e.g., feature overlap, instance overlap,

structural overlap). Several recent measures linked to the class overlap problem are also

comprised in an extra-category instead of thoroughly reviewed, as the main complexity

measures discussed refer to those proposed by Ho and Basu [220] on their pioneer work

on the topic. There is also no discussion in what concerns the adaptation of existing mea-

sures to imbalanced domains. The most related research is perhaps the recent review by

Pattaramon et al. [446], which also discusses some emergent class overlap-based methods

in imbalanced domains. However, no considerations regarding a taxonomy of methods or

representations of class overlap are given. Of note is that authors also agree with the need

of a well-established definition and measurement of class overlap and a standard measure

for the class overlap degree in real-world domains, meeting our line of thought. What we

put forward with this research is precisely a first step towards a consensus of the research

community on this matter. To our knowledge, this work provides the most comprehensive

review on the subject, from seminal work to emergent research. More importantly, this is

the first work to put forward that class overlap observes a multitude of representations and

systematises both class overlap measures and approaches towards that characterisation.

The reader should navigate this chapter as follows. Section 5.2 reviews seminal work on

class imbalance and overlap, describing the experiments and data domains in detail and
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elaborating on their main conclusions. Then, Sections 5.3 and 5.4 discuss the lessons

learned with respect to the impact of the characteristics of the data domains and the

learning biases of distinct classifiers, respectively. While Section 5.3 hints at distinct rep-

resentations of class overlap, Section 5.4 reinforces the idea that linking the behaviour of

classifiers to the characterisation of domains would prove transformative to future research

in the field. In Section 5.5, we detail the limitations found in seminal work on synthetic

data and discuss why they prevent a full understanding of the joint-effect of class overlap

and imbalance, while also motivating the need to revise existing solutions for real-world

domains. Hence, Sections 5.6 and 5.7 are focused on revising class overlap measures and

class overlap-based approaches applied to real-world domains. We start both sections by

presenting a global view on the topic and introducing our proposed taxonomies with sup-

porting schemas. Then, class overlap measures are described, formalised, and illustrated

in detail, and class overlap-based approaches are presented, respectively, both divided by

category. At the end of each section we present our summarising comments, discussing

the most important limitations and open challenges for research. Finally, Section 5.8 sum-

marises future directions that the research community should debate for a renewed view

on the joint-effect of class overlap and imbalance, hopefully leading to new breakthroughs

in the field, whereas Section 5.9 ends this chapter, providing a summary of the main topics

discussed throughout this work.

5.2 On the joint-effect of Class Imbalance and Overlap

In this section, we review the existing literature on the joint-effect of class imbalance and

overlap. To help the reader navigate this section, Table 5.1 presents the related work

in chronological order, focusing on their objectives, characterisation of data domains,

experimental design (controlled parameters and studied classifiers), and main conclusions.

In what follows, we discuss the related research, showing how the co-occurrence of class

imbalance and overlap poses a more difficult problem that solving each issue independently.

We focus on the global insights regarding the joint-effect of class imbalance and overlap

rather than the details of each research work. In Sections 5.3 and 5.4, we will elaborate

on the lessons learned in what concerns the characteristics of the studied domains and

classifiers.

Prati et al. [70] experimented with several variations of class imbalance and overlap by

studying two Gaussian clusters where the distribution of minority and majority examples,

as well as the distance between cluster centroids, could be changed (Figure 5.1). Authors

showed that when the distance between class centroids was zero, the classification was

extremely difficult, independently of the considered class imbalance. Conversely, as the

distance between class centroids increased, the class overlap problem ceased to exist and

the classification results were high, independently of the percentage of minority examples.
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Figure 5.1: Artificial domains considered in related work. The red circles represent the
majority class examples (MAJ) while the blue crosses represent the minority class exam-
ples (MIN). Prati et al. [70] defined class overlap as the distance between cluster centroids
of different classes. Garćıa et al. [156, 157, 158, 161] considered both typical and atypical
configurations where class examples were distributed over squares of the same size. In
typical domains, class overlap may either be determined as a fraction of the area that is
overlapped over the total minority area, or over the total majority area. For atypical do-
mains, class overlap was not quantified numerically. Denil and Trappenberg [114] divided
the domains into four equal regions with alternating class memberships. Class overlap
was captured by the extent to which adjacent regions intertwined. Napierala et al. [320],
Stefanowski [405, 406], and Wojciechowski and Wilk [462] defined paw, clover/flower and
subclus domains with increasing amounts of borderline minority examples (BORDER),
represented by the black stars. Mercier et al. [309] reproduced several artificial data do-
mains considered in previous works.
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Table 5.1: Summary of existing literature on the joint-effect of class imbalance and overlap. For each related work are identified the objectives
of the study, the used domains and controlled parameters, used classifiers, and major conclusions.

Study Objective Domains Controlled Parameters Classifiers Major Conclusions

Prati et al.

2004 [70]

Study the combined effects of class

imbalance and overlap.

Two artificial Gaussian clusters

(majority and minority) with uni-

tary standard deviation (10.000 ex-

amples, 5 dimensions).

Distance between cluster centroids

(1 to 9 standard deviations). Per-

centage of minority class examples

(1% to 50%).

C4.5

Imbalance ratio is not the sole factor that affects clas-

sifiers: increasing amounts of class overlap signifi-

cantly hinder performance results.

Garćıa et al.

2006 [156]

Study the effects of class imbalance

and overlap on instance-based clas-

sification.

Two uniform squares of size 50 ×
100 (majority and minority) with

an IR of 4:1 (500 examples, 2D).

Phoneme, Satimage, Glass and Ve-

hicle datasets from UCI Repository.

Distance between square centres (6

different configurations). IR fixed

at 4:1 and 500 examples.

1NN
The combination of imbalance and overlap causes a

deterioration of classification performance.

Garćıa et al.

2007 [158]

Determine whether performance

measures are able to distinguish

between typical and atypical

situations.

2-dimensional uniform squares cre-

ating typical and atypical situa-

tions.

Distance between square centres

(Typical Situation). Density of ex-

amples (Atypical Situation). IR

fixed at 4:1 and 500 examples.

1NN, MLP,

NB, RBF,

C4.5

Specificity and Sensitivity results seem to be good de-

scriptors of the data complexity.

Garćıa et al.

2007 [161]

Study the behaviour of several clas-

sifiers on imbalanced and over-

lapped domains.

2-dimensional uniform squares cre-

ating typical and atypical situa-

tions.

Distance between square centres

(Typical Situation). Density of ex-

amples (Atypical Situation). IR

fixed at 4:1 and 500 examples.

1NN, MLP,

NB, RBF,

C4.5, SVM

Performance of classifiers is influenced by the type of

situation (typical versus atypical).

Garćıa et al.

2008 [157]

Study the behaviour of kNN ver-

sus other classifiers, in typical and

atypical situations.

2-dimensional uniform squares cre-

ating typical and atypical situa-

tions.

Distance between square centres

(Typical Situation, IR 4:1). Density

of examples (Atypical Situation, IR

4:1 and 50:1). 500 examples.

kNN, MLP,

NB, RBF,

C4.5

The class more represented in the overlap region is

more easily recognised by global learning classifiers,

while the class less represented in that same region

benefits the most from more local classifiers.

Denil and

Trappenberg

2010 [114]

Study the effects of class imbal-

ance and overlap individually and

in combination, with varying train-

ing set sizes.

Examples generated in 4 regions

with alternating class memberships,

inside a square of length 1.

Overlap between classes (µ). Imbal-

ance between classes (α). Size of

training sets.

SVM

The combination of imbalance and overlap is more

severe for classification performance than each factor

taken individually. However, class overlap seems more

prejudicial for classification than class imbalance. In-

creasing the training set size improves the classifica-

tion performance when class imbalance is evaluated in

isolation, yet degrading such performance when there

is also class overlap.

Napierala et al.

2010 [320]

Study the impact of disturbing the

borders of subregions of the minor-

ity class.

2-dimensional domains (paw,

clover/flower and subclus) with 800

examples.

Percentage of borderline minority

examples (0, 30, 50, and 70%). IR

7:1 and 800 examples.

C4.5,

MODLEM

Increasing the percentage of borderline examples

strongly deteriorates the performance of classifiers.

Stefanowski

2013 [405]

Study the influence of overlapping

in the boundary between classes

(overlap was expressed as a percent-

age of borderline examples in the

minority class).

2-dimensional domain (subclus)

with 800 examples.

Percentage of borderline minority

examples (0, 10, 20%). IR 5:1 and

9:1 and 800 examples.

C4.5,

Jrip,

kNN

Besides the decomposition of the minority class, over-

lap is a critical factor that affects classification. Pres-

ence of class decomposition and overlap causes a

larger performance deterioration than class imbal-

ance.

To be continued on the next page. . .
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Table 5.1: Continued from previous page.

Study Objective Domains Controlled Parameters Classifiers Major Conclusions

Wojciechowski

and Wilk

2017 [462]

Analyse the impact of class imbal-

ance, data typology, and dimension-

ality in classification performance.

Artificial domains with varying

shapes (paw, clover/flower) and di-

mensionality (2, 3, 5, and 7 dimen-

sions).

IR (5:1, 7:1, 9:1, 13:1). Number of

examples fixed to 1200 for paw and

1500 for clover/flower. Number of

minority borderline examples (0%

and 30%).

kNN, C4.5,

PART, NB,

RBF, SVM

Data typology is more critical than class imbalance

and data dimensionality. kNN and SVM-RBF out-

performed the remaining classifiers.

Mercier et al.

2018 [309]

Analyse the performance degrada-

tion of several classifiers in over-

lapped and imbalanced domains.

Artificial domains with vary-

ing shapes (clusters, garcia,

clover/flower, paw, and subclus)

and dimensionality (2 to 40 dimen-

sions).

IR (1:1, 2:1, 4:1, 6:1, 8:1, and

10:1). Percentage of minority safe

and borderline examples (100/0 to

0/100) for clover/flower, paw, and

subclus. Distance between cluster

centroids (clusters) and square cen-

tres (garcia). 1500 examples.

CART, kNN,

FLD, NB,

MLP, SVM

MLP and CART seem more robust to class overlap.

kNN and linear SVM are the most aligned with de-

gOver. Data dimensionality and structure/shape play

an important role in explaining performance results.
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Garćıa et al. [156] studied the combined effects of these two problems on instance-based

classification algorithms (1-nearest neighbour classifier). Authors used artificial domains

composed of two squares, each having a uniform distribution of examples from the majority

and minority classes, respectively (Figure 5.1). Whereas the class imbalance was fixed,

the class overlap was manipulated through the distance between square centres, i.e., the

majority class was moved towards the minority class in a stepwise manner (as per the

original paper, we will refer to this configuration as a “typical situation”). While the

classification results were maximal when there was no class overlap, the performance

degraded as the overlap increased.

In addition to typical situations, Garćıa et al. [158, 161] focused on a particular imbalanced

scenario where the minority class was more represented than the majority class in the

overlap region (considered an “atypical situation”, as shown in Figure 5.1). In this case, the

local class imbalance (in the overlap region) was different from the global class imbalance

(in the entire domain). Authors considered several classification paradigms (please refer

to Table 5.1) and showed that in typical situations, the classification performance of all

classifiers on the minority class degraded with increasing class overlap. However, local

classifiers were more suited to the recognition of the minority class, while global classifiers

performed better on the majority class. In atypical situations, classifiers with a global

nature benefited the recognition of the minority class, while local classifiers were better

for the majority class.

Garćıa et al. [157] have also focused on the performance of kNN classifier (varying the

value of k) versus the performance of other classifiers (Table 5.1) in typical and atypical

situations, aiming to explain the influence of overall imbalance, local imbalance, and the

size of the overlap region on the behaviour of kNN classifier. In typical situations, smaller

values of k were more suited to the recognition of the minority class, whereas higher values

benefited the recognition of majority class examples. In turn, for atypical situations,

the increase of k benefited the minority class and no significant changes occurred in the

performance of the majority class, showing that kNN was more dependent on the local

imbalance than on the global imbalance. When the overlap region was not balanced, the

local imbalance ratio was more important than the size of the overlap region for kNN

performance. Finally, for similar configurations of class imbalance and overlap, authors

found that the complexity of the boundary decision was yet another difficulty factor for

classifiers [157].

Denil and Trappenberg [114] studied the joint-effect of class imbalance and overlap on

the performance of Support Vector Machines (SVM) by varying factors individually and

simultaneously for different training set sizes (Figure 5.1). For small training set sizes, as

well as for small amounts of overlap and imbalance, the performance of SVM assuming that

these factors were independent was similar to the one obtained from their combination.

As the training set size increased, the influence of class imbalance was negligible and class
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overlap was the main responsible for the performance degradation. Thus, assuming that

both factors were independent, the performance results obtained for large training sets

in the presence of overlap alone should have been similar to the performance when both

factors were present in data. However, the performance was even lower, indicating that

the issues were far more serious in combination that in isolation [114].

Related work on the joint-impact of class overlap and imbalance also includes the research

of Napierala et al. [320], Stefanowski [405], and Wojciechowski and Wilk [462]. Rather

than considering overlap regions or areas, the focus shifted to the data typology of the

minority class (i.e., considering different types of data examples) to approximate cer-

tain difficulty factors, such as class overlap. Class overlap was approximated by focusing

on borderline examples, as they are highly related to the problem of class overlap (i.e.,

they appear in the borderline between classes). Overall, authors studied the influence of

disturbing the minority class boundaries by adding an increasing number of borderline

examples to domains with different characteristics – paw, clover/flower and subclus do-

mains (Figure 5.1). Napierala et al. [320] showed that increasing the number of borderline

examples highly degraded the performance of classifiers. Stefanowski [405, 406] focused on

the subclus dataset and studied the impact of changing the number of subclusters (class

decomposition), changing the percentage of borderline minority examples (class overlap)

and changing the imbalance ratio (class imbalance). Experiments showed that the combi-

nation of class decomposition and overlap seemed to affect classification performance more

than the increase of the imbalance ratio, and that for non-linear shapes the performance

degradation was more accentuated. Wojciechowski and Wilk [462] further showed that

data typology significantly affected the classification results more than class imbalance or

data dimensionality.

Finally, Mercier et al. [309] reproduced several artificial data domains considered in previ-

ous works and analysed the performance degradation of classifiers with different learning

biases (please refer to Table 5.1). Classifiers that learn on the basis of data space frag-

mentation were less affected by class overlap than linear classifiers (further details will be

given throughout Section 5.4).

According to the key insights of the discussed research, the following conclusions can be

established:

• Class overlap acts as a difficulty factor for classification, more than class imbalance.

Indeed, although the class imbalance generally deteriorates the performance of clas-

sifiers, if there are no other complex data characteristics, then the class imbalance

itself does not affect classification, regardless of the imbalance ratio [70, 156];

• These two problems do not have independent effects and the degradation caused by

their combination is not equivalent to the aggregation of the degradation caused by

each one individually [114]. Class overlap and imbalance have hidden dependencies
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that are not noticeable by analysing them separately;

• The joint-effect of class imbalance and overlap strongly depends on the nature of

classifiers, the general characteristics of the domain (class decomposition, data di-

mensionality, complexity of the decision boundaries) and on the local characteristics

of the overlap region (local imbalance and data typology) [157, 309, 462].

In the following sections, we will detail the lessons learned in what concerns the char-

acteristics of the studied domains and classifiers. The provided analysis is supported by

a thorough examination of experimental results obtained in related research, which were

aggregated by data domain and classifier. The reader may find supporting information in

the supplementary material (Appendix B).

5.3 Lessons learned on the characteristics of the data do-

mains

From the analysis of related research, three main factors seem influential in synergy with

class imbalance and overlap: local data characteristics, data structure and data dimen-

sionality. We tackle each component independently to provide a summary of the most

relevant findings and stress their significance.

5.3.1 Local Data Characteristics: Local Imbalance and Data Typology

In related work, the combination of class imbalance and overlap has different effects on

the performance of classifiers, depending on the characteristics of the overlap region. In

particular, the local imbalance in the overlap region is one of the most impactful fac-

tors [157, 158, 161]:

• When the class imbalance in the overlap region is the same as the global imbalance,

classifiers with a more global nature tend to misclassify the minority examples as

classes overlap, thus prioritising the majority class. Conversely, classifiers with a

local nature make a decision regarding the class of examples based on their local

neighbourhood, thus avoiding the bias towards majority concepts;

• When the minority class is dominant in the region of overlap, classifiers based on

a more global learning obtain better results on the minority examples while more

local classifiers work better for the majority class.

In sum, more global classifiers are able to better recognise the class more represented in the

overlap region, whereas local classifiers perform better on the less represented class [157].
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Note, however, that the dominance of a given class in the region of overlap illustrates a

type of distribution skew [107]. In these situations, the results can be quite different from

what is expected in standard imbalanced domains, such as the minority class obtaining

better performance than the majority class (in the case of binary-classification problems),

if the minority class is more represented in the overlap region. In the scenarios discussed

in related work (atypical situations), the distribution skew is due to the local imbalance

in the overlap region. However, distribution skews may arise irrespective of the class

imbalance in the domain, e.g., they can be due to the data distribution/sparsity in the

overlap region. They are, however, intrinsically related to the overlap between classes, and

may give rise to particular representations of the problem, where the local characterisation

of data is fundamental to fully understand the type of degradation created.

Data typology is also identified as one of the most important factors affecting classifi-

cation performance in imbalanced and overlapped domains. The term “data typology”

corresponds to a neighbourhood-based categorisation of examples into different types.

Currently, four main categories are established and followed in recent works: safe, bor-

derline, rare, and outlier examples [319]. It should be noted that although related work

emphasises the number of minority borderline examples as relating to the problem of class

overlap, other types of examples can also contribute to the whole overlap (e.g., non-safe

examples, such as rare examples or outliers). With respect to data typology, the following

insights may be derived:

• Data typology assumes a more influential role on the difficulty of classification tasks

than class imbalance or data dimensionality [462];

• Increasing the number of borderline minority examples has shown to severely jeop-

ardise the classification performance [405, 462], especially exacerbating the deterio-

ration of tree and rule-based classifiers [320].

Overall, related research has systematically demonstrated that it is important to take the

internal characteristics of the domains into consideration when studying the joint-effect

of class imbalance and overlap. Herein, we highlight the importance of the local data

characteristics in what concerns the existence of class distribution skews and different types

of examples comprised in data. In fact, we acknowledge them as vortices of class overlap,

i.e., existing representations of class overlap, as will be further discussed in Section 5.6.

5.3.2 Data Structure: Non-linear Class Boundaries and Class Decom-

position

Let us first define the overall understanding of “data structure” taken in this work. We

treat the concepts of data structure, data shape, and data morphology interchangeably.

106



On the joint-effect of Class Imbalance and Overlap:
A Critical Review

With these terms we refer to the structural properties of the data that comprise their form,

the complexity of decision boundaries, and existing class decomposition. As an example,

artificial domains in related work such as clusters [70], squares [157], paw, clover/flower,

and subclus all possess different data structures, i.e., different morphologies, shapes, class

decomposition, and class boundaries of different difficulty (Figure 5.1). To this regard,

the following observations should be highlighted:

• More complex shapes are harder to learn, independently of the class imbalance and

overlap characteristics. Under the same configuration of class overlap and imbalance,

the classification performance has shown to be affected by the characteristics of the

decision boundaries (e.g., squares versus concentric circles [157]);

• Domains presenting a complicated class decomposition are more difficult to handle:

subclus domains are generally easier to learn than paw, which in turn are easier to

learn than clover/flower domains;

• Tree and rule-based classifiers are especially affected by non-linear decision bound-

aries, whereas classifiers with other learning paradigms – kNN and SVM with a

Radial Basis Function (RBF) kernel – do not seem as critically affected. Linear

classifiers – Fisher Linear Discriminant (FLD) and SVM with linear kernel – are

strongly affected by the data structure, with FLD often misclassifying all minority

examples, irrespective of other factors (class imbalance, class decomposition, and

dimensionality);

• The combination of complicated class decomposition and class overlap is more im-

pactful for classification performance than the class imbalance for tree and rule-based

classifiers, as well as kNN [405]. However, the effect of class overlap seems stronger

than increasing class decomposition. This effect is especially critical for smaller

datasets or non-linear class boundaries [405].

Complex data structures pose difficult challenges for classifiers, irrespective of other factors

such as class overlap and imbalance. However, when occurring together with class over-

lap and imbalance, data structure acts as an exacerbator of a complex problem in itself,

amplifying the deterioration of classification performance. Non-linear decision boundaries

require classifiers with a more local-based learning or kernel adaptations. In turn, class

decomposition further relates to the problem of small disjuncts and the ability of classifiers

to derive general or specialised rules [210]. It is therefore important to take these internal

data characteristics into consideration when defining appropriate solutions for the identi-

fication and quantification of class overlap. This is especially true for real-world domains,

where the underlying class distributions and the number and structure of class concepts

are unknown and difficult to discover or approximate.
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5.3.3 Data Dimensionality

Although some research has focused on developing appropriate methods for dimensionality

reduction in imbalanced domains [137], the combination of data dimensionality with other

data characteristics has received very little attention in the literature. With respect to class

overlap, since the majority of related work focuses on 2-dimensional domains, conclusions

regarding data dimensionality are based on the research of Wojciechowski and Wilk [462],

and Mercier et al. [309]:

• Overall, performance results improve with higher dimensionality. Additionally, in-

creasing the class imbalance and class overlap seems to have a limited impact on the

classification results;

• For domains with more complex data typology (i.e., not just increasing borderline

examples but also rare and outlier examples), increasing the data dimensionality

benefited the recognition of the minority class [462].

Class overlap seems to disappear as the dimensionality grows, which to some extent is

related to changes in the data density for higher dimensions. If the total number of

data examples is fixed, there will be a decrease of the data density as the dimensionality

increases. For the domains studied in [309, 462] (subclus, paw and clover/flower domains),

the majority class is especially affected, as it becomes sparser very rapidly. Consider for

instance the paw domains, depicted in Figure 5.1. There are 3 well-defined minority class

clusters (ellipsis) surrounded by an integumental space of the majority examples scattered

across the remaining space. For higher dimensions, the minority clusters turn into hyper-

ellipsis that become denser in comparison to the volume of the majority hyper-rectangle,

thus improving class separability [462].

To this point, there is not much research on the effect of data dimensionality on imbal-

anced and overlapped domains. As an example, it remains unclear what would be the

effect of dimensionality reduction techniques on the neighbourhood of data examples, and

consequently on their data typology and classification performance. These topics currently

constitute open challenges for research.

5.4 Lessons learned on the nature of classifiers

Throughout related research, few works analyse the behaviour of classifiers beyond a

comparison of classification performance results:

• In [157], authors distinguish between local (kNN) and global classifiers (MLP, NB,

RBF, C4.5) and conclude that the performance of classifiers is related with the
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local imbalance of data in the overlap region, showing that a more local behaviour

benefits the underrepresented concepts. Such behaviour is usually portrayed by

instance-based classifiers, such as 1NN;

• In [462], classifiers are divided into symbolic (C4.5 and PART) and non-symbolic

(kNN, NB, RBF, SVM). Symbolic classifiers lagged behind non-symbolic classi-

fiers, although this may be due to the more extensive parametrisation of some non-

symbolic classifiers (kNN and SVM performing the best);

• In [309], the performance degradation is associated with the learning paradigm of

each classifier. Classifiers that work on the basis of data space fragmentation (CART,

MLP, and kNN) seem less affected by class overlap, whereas linear classifiers (FLD

and SVM-linear) perform the worst.

Understanding how the joint-effect of class overlap and imbalance (as well as data char-

acteristics) affects the performance of each classifier is a step towards the definition of

adequate strategies to handle the problems simultaneously. Overall, related work has

shown that major differences between the performance of classifiers rely on their ability

to provide specialised decisions, where local learning paradigms have shown to be better

suited to several sources of complexity, such as distributions skews, difficult data typolo-

gies, and complex data structures:

• Among all families of classifiers, instance-based classifiers (kNN) have shown to be

the most resilient to changes in class imbalance and overlap. Throughout related

research, kNN was able to achieve good results even for difficult situations char-

acterised by class distributions skews [157], and complex data typology [462]. Its

sensitivity to changes in local imbalance, and flexibility for complex data structures,

turn it into a simple, yet efficient, approach to study the combination of class im-

balance and overlap;

• Other classifiers have also shown to be adequate choices to handle issues simultane-

ously. RBF networks and SVM with RBF kernel have shown to be robust to distri-

butions skews and difficult data types, as well as more complex shapes. Conversely,

NB, although showing a high tolerance to class overlap and performing successfully

in distribution skews and complex domains, is somewhat affected by class imbalance

and difficult data types [157, 309, 462];

• Linear classifiers and rule and tree-based classifiers obtained lower performance re-

sults, presenting some limitations under several sources of complexity.

In what follows, we will focus on distinct families of classifiers and their learning paradigms,

aiming to provide an overview of their behaviour under imbalanced and overlapped do-

mains. In that sense, we consider four main families [107, 117]: Instance-Based Classifiers,
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Rule and Tree-Based Classifiers, Bayesian Classifiers, Neural Networks, and Support Vec-

tor Machines and Linear Discriminants. For each family of classifiers we highlight the

most important findings from related work. Detailed information on the performance of

each classifier is provided in Appendix B.

Instance-Based Classifiers (kNN)

• As kNN presents a local nature, it effectively addresses regions with different

local data densities, i.e., it does not present the general bias towards the most

represented class as most global classifiers;

• Smaller values of k guarantee its local nature and allow a more successful recog-

nition of less represented concepts in the overlap region. In turn, for larger

values of k, kNN approaches the behaviour of more global classifiers, which

benefits the more represented concepts in that region [157];

• Considering higher values k has also proven beneficial for the recognition of the

minority class when the number of borderline minority examples in the overlap

region increases [462];

• The local behaviour of kNN is also advantageous for more complex data struc-

tures (non-linear shapes), where kNN is among the top performers, irrespective

of the class imbalance and class decomposition [309, 405, 462].

Rule and Tree Classifiers (C4.5, CART, PART, MODLEM)

• Class overlap highly degrades the performance of rule and tree-based classifiers,

more than class decomposition [320, 405]. Additionally, a faster performance

deterioration is observed for more complex non-linear shapes;

• MODLEM outperforms C4.5 when compared under the same conditions (bor-

derline minority examples, class decomposition and imbalance ratio) [320].

Also, Classification and Regression Trees (CART) models outperform C4.5

even for higher percentages of minority borderline examples and imbalance ra-

tios [309, 320]. We hypothesise that this difference may be due to the splitting

criteria;

• Both pruned and unpruned versions of C4.5 and PART obtain nearly the same

results for the same amount of class overlap (borderline examples), although for

more difficult types of examples (rare and outlier examples), unpruned versions

generally perform better [462].
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Bayesian Classifiers (NB)

• Naive Bayes (NB) performed successfully for both typical and atypical do-

mains [157] and more complex data shapes [309, 462];

• In [462], although NB is successful in classifying datasets with increasing amounts

of borderline minority examples, it performs poorly for more difficult types (rare

and outlier examples).

Neural Networks (RBF, MLP)

• For typical and atypical domains [157], RBF and MLP obtain similar results.

However, for more complex shapes (atypical concentric circles), MLP fails to

recognise all minority examples whereas, RBF network provides similar results

to standard, atypical domains (square domains). This difference may reside on

the activation function of each network. MLP uses a sigmoid activation func-

tion, whereas RBF uses a Gaussian activation function, which makes neurons

more locally sensitive [222];

• RBF also shows a good performance for paw and clover/flower domains, being

among the top performers [462]. MLP handles clover/flower domains bet-

ter than subclus domains, although the former shape is considered more com-

plex [309]. We hypothesise that this could be due to the fact that clover/flower

is a unified shape, where the subregions are connected and have similar densi-

ties. In turn, subclus has 5 disconnected subregions with different densities. For

MLP, learning five decision boundaries with different densities seems more dif-

ficult than to learn a single (although complex) decision boundary with an even

representation of examples among subregions. For subclus domains, class over-

lap seems to affect MLP classification performance more than class imbalance,

whereas for clover/flower, class imbalance seems the most prejudicial [309].

Support Vector Machines and Linear Discriminants (SVM and FLD)

• SVM is more deeply affected by class overlap than class imbalance, although the

combination of both problems is even more costly [114]. SVM further exhibits a

breaking point occurring when nearly half of the domain is overlapped and the

imbalance ratio in the overlap region approaches a balanced scenario [114, 157];

• In [309, 462], SVM shows a competitive performance for increasing amounts of

borderline minority examples, although this good behaviour may be associated

with the tuning of hyperparameters performed;

• Both linear SVM and FLD are extremely affected by the structure of data.

In particular, FLD fails to classify any minority examples for domains with

non-linear decision boundaries, although it performs reasonably well for more
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simple shapes (typical square or cluster domains) [309]. FLD aims to find a

projection onto a line (one-dimensional space) where classes are well separated,

which for non-linear class boundaries is extremely difficult;

• On contrary to the remaining classifiers, the increase of data dimensionality

does not seem to improve FLD in the classification of non-linear decision bound-

aries. Although the generation of overlap in higher dimensions increases concept

separability [462], the projections performed by FLD remain compromised.

With respect to the top performing classifiers, note how hyperparametrisation plays a vital

role, especially with the use of Gaussian kernels. Although kNN, SVM-RBF and RBF

networks are based on different learning paradigms, by using Gaussian kernels, SVM-

RBF and RBF can approximate the local behaviour of kNN, depending on the chosen

hyperparameters. Hyperparametrisation can help solving issues simultaneously by defining

appropriate parameters depending on the characteristics of data. As an example, different

parametrisations of kNN could be used to successfully solve domains with distribution

skews for all classes, by choosing smaller values of k in regions where a given class is

sparse or less represented and larger values when a class is dense or well-represented in

overlapping regions. The same can be derived for kernel parameters.

This remains an understudied topic in imbalanced and overlapped domains and is cur-

rently an open direction for future research. The main idea is that attending to the

bias of classifiers and the representation of class overlap in the domain, one can estab-

lish appropriate strategies to improve classifiers individually (as is the case of improving

parametrisation for different regions) or combining local and global classifiers to achieve

improved performance (e.g., via ensemble learning, where the choice of individual classi-

fiers may be tailored to the characteristics of the data domains). Naturally, this requires

a full characterisation of the overlap problem in imbalanced domains, which to this point

is not a well-established topic in the literature, as we will further detail in the following

section.

5.5 Limitations of Seminal Research

Despite related research provides interesting findings, as discussed throughout the previous

sections, there is still a long way to go before extrapolating insights for real-world domains.

Indeed, related research has the following limitations:

• All research works consider artificially generated data domains, where class overlap,

class imbalance, data typology, class decomposition, local data densities, and data

dimensionality are defined apriori ;

• Not all aspects are studied across all research works: class decomposition and data
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dimensionality are frequently understudied. Also, authors often neglect scenarios of

extreme imbalance;

• Experiments are confined to well-defined shapes (e.g., squares or clusters of data),

with little minority class decomposition (maximum of 5 subregions for clover/flower

and subclus domains), a regular majority class representation (an integumental re-

gion, without class decomposition), and small data dimensionality (most works are

limited to 2-dimensional domains).

Naturally, control over these parameters allows a better understanding of the generated

domains and consequently a more precise evaluation of obtained results. Also, the in-

sights provided over synthetic data lay the foundation for the interpretation of results

over real-world domains, and respective investigation of specialised approaches. This was

the rationale behind the thorough analysis of previous research that culminated in the

insights summarised in Sections 5.3 and 5.4. To this regard, the conclusions derived pre-

viously are to be taken as a global view of the peculiarities of the data domains and

footprints of classifiers, showing that the combination of class imbalance and overlap may

give rise to a multitude of scenarios, each presenting its own implications for classification

tasks in general, and classification paradigms in particular. Nevertheless, generalisation

for real-world datasets requires further investigation, and it is important to discuss some

open issues currently preventing that more profound conclusions are derived:

Class overlap is not mathematically well-established:

Throughout related research, there is no standard measurement of the overlap degree.

Hence, class overlap is measured in rather distinct ways. Prati et al. [70] measure

class overlap as the distance between cluster centroids, which does not reveal the

exact degree of overlap in each configuration. Similarly, the research of Garćıa

et al. [156, 157, 158, 161] lacks a formulation of the overlap degree. Given the

simplicity of typical domains, one may infer that the degree of overlap can either be

determined as a fraction of the area that is overlapped over the total minority area or

over the total majority area. However, for atypical situations, the notion of overlap

degree gets rather lost (no percentages or any other values are presented for the

overlap degree) and the results need to be evaluated considering the local imbalance

combined with the size of the overlap region, instead of evaluating an exact measure

of class overlap. Furthermore, these methods of estimating class overlap do not

generalise for different data structures (e.g., non-geometrical shapes), or for a higher

number of dimensions, frequently found in real-world domains. Although it may

seem an intuitive concept, to this point there is not a well-established mathematical

definition for class overlap [446]. This may be due to the fact that, as the literature

progresses, several concepts associated with class overlap have been brought to light,

leading to the discussion of distinct representations of the problem.
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Class overlap assumes different representations:

In related work, class overlap is often associated to different concepts, that ultimately

result in its characterisation according to different representations. Class overlap is

often associated to concepts such as class separability (distance between cluster

centroids [70]), overlapping regions or areas [114, 156, 158, 161], structural biases

such as distribution skews (local imbalance in overlapping regions) [157], complex

structures (class decomposition, data sparsity [320, 405, 462]), data typology (via

borderline examples [320]), and the discriminative power of features (data dimen-

sionality [309, 462]). These representations of class overlap are assessed differently

(e.g., distance between concepts, percentage of overlapped area, combination of lo-

cal imbalance with size of overlap region, percentage of borderline examples), which

complicates the comparison of results among related work. Also, except for data

typology, the used measures for the assessment of other overlap representations are

not generalisable for real-world domains. Identifying and quantifying class overlap

becomes a more strenuous task if it has different representations. Different represen-

tations of class overlap are associated with different insights regarding the domain

and represent different sources of degradation. However, to this point, no study

in the literature refers to this issue. What is more, studying class overlap without

measuring it clearly (not to mention without attending to its different representa-

tions) may prevent meaningful insights from being derived: general conclusions can

be obtained (i.e., with respect to the overall effect of class overlap), but it is not

possible to extract more specific guidelines for future developments in the field.

The class overlap degree does not take other factors into account:

Prati et al. [70] control class overlap as a distance between clusters centroids, al-

though this does not take into account the data sparsity in the overlap region, which

conditions the number of examples that effectively contribute to class overlap. Sim-

ilarly, when Garćıa et al. [157] measure class overlap as a percentage of overlapped

area, the distribution of examples within the overlapping area is not considered. For

instance, two typical domains with different global class imbalance may have the

same overlap area, although the number of data examples in the overlap region is

different. If we were to consider atypical domains, the issue is even more clear. Note

how both a typical and atypical situation may have the same overlap area, although

they refer to two very distinct situations in terms of class overlap and associated

difficulty for classification tasks. Furthermore, recall that in related work, atypical

situations do not have an associated measure. As discussed in Section 5.3, the lo-

cal properties of data are important to characterise the degradation that the class

overlap produces. To this regard, situations presenting class skews (generated by

data distribution/sparsity, or local imbalance) are important to acknowledge when

producing an overlap measure. Napierala et al. [320], Stefanowski [405, 406], and

Wojciechowski and Wilk [462] consider the local characteristics of data by associat-
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ing class overlap to the percentage of borderline minority examples in the domain.

Nevertheless, depending on how they are distributed, two domains with the same

percentage of borderline minority examples may affect the classification tasks differ-

ently. In addition, despite borderline examples are highly related to the problem of

class overlap (closer to class boundaries), other examples scattered throughout the

domain may also contribute to class overlap.

Due to these limitations, we argue that the joint-effect of class overlap and imbalance

is still not fully characterised. One may argue that, since seminal work on this topic,

other lines of research have attempted to define a more accurate characterisation of do-

mains and its relation with classification performance. A natural question therefore arises:

“Moving past seminal work, how is the combination of class imbalance and overlap cur-

rently measured and handled in real-world domains?” To shed some light on this matter,

the following sections elaborate on these two important aspects. One is the identifica-

tion and quantification of class imbalance and overlap, whereas the other is the devise of

suitable techniques to overcome these issues simultaneously (both focusing on real-world

domains). We therefore provide a comprehensive analysis of measures to characterise class

imbalance and class overlap (Section 5.6), and a thorough overview of the state-of-the-art

class overlap-based approaches used in imbalanced domains (Section 5.7). We will show

that, despite the recent developments in the field, the measures and approaches devised

for real-world domains still suffer from similar limitations as previous research on syn-

thetic data. This will be made clear throughout the following sections, motivating our

claim regarding the need to move towards a unified view of the class overlap problem in

imbalanced domains.

5.6 A Taxonomy of Class Overlap Measures

Throughout the years, class imbalance has been consistently estimated by considering

the number of examples of each class and computing the Imbalance Ratio (IR), such as

IR = 2 or IR = 2 : 1, as given by Equation 5.1, where |Cmaj | and |Cmaj | represent

the number of majority and minority examples in the domain, respectively. It may also

be represented by the percentage of minority class examples in the domain, as follows

from Equation 5.2, where N represents the total number of examples in data. Note that

we are focusing on binary-classification problems for simplicity, although extensions for

multi-class domains can be found in [80]. Other definitions of class imbalance can be

found in [79] (Entropy of Class Proportions), [353] (Minority Value and Class Balance),

and [309] (degIR). These measures are, however, only discussed within the respective

papers, whereas IR and Minority (%) represent the formal, well-established definitions

accepted in the field [138]. On the contrary, estimating class overlap is a more complicated

task, given that it comprises several representations, as discussed in Section 5.3. Indeed,
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certain intrinsic characteristics of data (class imbalance, local imbalance, data typology,

non-linear boundaries, class decomposition, data dimensionality) may give rise to different

facets and degrees of overlap. Before focusing on specific measures and approaches, let

us discuss some situations to clarify the idea that class overlap may comprise different

representations and that the overlap degree may be affected by other factors, namely class

imbalance. Herein we will briefly refer to some measures of class overlap to discuss this

issue, but they will be thoroughly described in the following sections.

IR =
|Cmaj |
|Cmin|

(5.1)

Minority (%) =
|Cmin|
N

× 100 (5.2)

We start by analysing the synergetic effects of class imbalance and overlap over the do-

mains presented in Figure 5.2, previously discussed in seminal work [157] (Section 5.2).

Figure 5.2 represents two “typical situations”, where classes are uniformly distributed

over 2-dimensional squares of the same size. In these domains, the computation of the

class overlap degree was either determined as a fraction of the area that is overlapped

(Aoverlap) over the total minority area (Amin), or over the total majority area (Amaj),

since Amin = Amaj . As an example, consider the scenario depicted in Figure 5.2 (left-

side), where the domain presented a class overlap of 40% [157]. This overlap percentage

may be calculated as
Aoverlap
Amin

× 100 or
Aoverlap
Amaj

× 100, which corresponds to an overlap

degree of 2000
5000 × 100 = 40%.
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Figure 5.2: Artificial domains generated according to Garćıa et al. [156]. Although the
overlap region is the same in both examples, one domain (left-side) considers an IR of 4:1
whereas the other (right-side) has an IR of 8:1. According to the percentage of overlapped
area, both reveal the same overlap degree (40%), although due to the imbalance ratio, the
local properties of the domains are rather different.
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Now, note how focusing a measure of class overlap solely on the area of the overlap regions

does not take the imbalance ratio into account. For instance, in Figure 5.2 (left-side), the

domain is generated for an IR of 4:1, for 500 examples: would it be adequate to assume

that the same setup for a 8:1 ratio (Figure 5.2, right-side) would also produce a class

overlap of 40%? Since the number of conflicting examples in the same overlap region is

lower, this may not be the case. Nevertheless, measuring class overlap as a percentage of

the overlapped area remains a common strategy used in the experimental setup of recent

research [445, 446]. Note also that determining the number of misclassified examples

following a k-Nearest Neighbour rule (another strategy to quantify class overlap, more

closely related to the concept of local data characteristics - to be discussed in Section 5.6.3),

would return a different overlap degree for each scenario, whereas determining the size of

overlapped area is more related to the structural properties of the data, and unable to

capture more local changes in the domain. The key idea here is to show how class overlap

may depend on other characteristics (class imbalance in this example) and that different

measures capture different representations/vortices of class overlap.

Let us consider another example on different facets of class overlap, by examining Fig-

ure 5.3. The example shows two scenarios where class overlap is measured according to

the Maximum Fisher’s Discriminant Ratio, F1 (discussed in Section 5.6.1).

f2

f1

f2

f1

Figure 5.3: F1 measures the highest discriminative power for all features in data, i.e., it
returns the minimum overlap of individual features found in the domain. Accordingly, the
scenarios above reveal the same discriminative power: feature f1 has the same (and high-
est) F1 value in both cases. However, the individual overlap in feature f2 is different, which
makes these scenarios different in terms of classification difficulty. F1 therefore captures
one facet of class overlap (feature overlap) but it does not provide a full characterisation
of the class overlap problem in the domain.

In both scenarios, the data is projected onto the axis of features f1 and f2. The projections

are the same for the f1 but differ for f2. Since F1 is maximal (and the same) in both

situations, the scenarios reveal the same class overlap degree. However, in the scenario to

the right, the separability of f2 increases when compared to the situation to the left. If local

information is taken into account, this domain would return a different overlap degree,
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since the number of misclassified examples (1NN) is lower (misclassified examples are

marked in grey in Figure 5.3). Additionally, F1 does not consider class imbalance: for two

datasets with different imbalance ratios and similar statistical properties (i.e., means and

variances of each class are similar for both scenarios), F1 returns similar values. Again, this

shows that class overlap may comprise different representations and that certain measures

are able to capture some while failing to uncover others. In this case, F1 focuses on

feature-level overlap, but does not consider local data characteristics (local information).

Now that we have illustrated how class overlap may comprise several representations and

that some measures are able to capture some representations while neglecting others, it is

important to establish the link between existing measures of class overlap in the literature,

and the type of information (vortices of class overlap) they are associated to.

Throughout the years, several measures have been proposed and reformulated to identify

and estimate certain properties of the data domains, referred to as data complexity mea-

sures [80, 220, 286, 334]. The most well-known taxonomy of complexity measures is the

one defined by Ho and Basu [220], although throughout the years, other authors sought

to complement this taxonomy, presenting their own division or proposing additional cat-

egories [80, 286]. Overall, these measures provide important insights regarding several

properties of data and naturally, some relate to the problem of class overlap. However,

complexity measures often focus on individual characteristics of the data, which might

be insufficient to fully characterise class overlap, given that it is a heterogeneous concept

comprising different sources of complexity (especially in the presence of other factors, such

as class imbalance). A first step towards a robust characterisation of class overlap would

be the definition of a taxonomy of class overlap measures that attends to its different rep-

resentations, i.e., sources of complexity. However, although class overlap is considered one

the most harmful issues for classification problems [136, 157], no such taxonomy currently

exists. In what follows, we propose a novel taxonomy of complexity measures for class

overlap, focusing on different vortices/representations of the problem and the measures

that are able to characterise them.

Our taxonomy of class overlap complexity measures comprises four main groups: measures

associated to Feature Overlap, Structural Overlap, Instance-Level Overlap and Multires-

olution Overlap. Figure 5.4 provides an overview of the proposed taxonomy, where each

group is established depending on the representation of class overlap it is more suited to

capture. Also, the concepts associated to each representation are highlighted, and the

measures for which adaptations to imbalanced domains have been explored in the litera-

ture are identified. The following sections thoroughly characterise each group and their

respective class overlap measures. All measures described in this section are implemented

in a new Python library named pycol - Python Class Overlap Library, publicly available

on GitHub1.

1https://github.com/miriamspsantos/pycol
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Class Overlap
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Figure 5.4: Taxonomy of class overlap complexity measures. Different groups can be es-
tablished depending on the representation of class overlap they are attentive to. Measures
marked with an asterisk are those for which adaptations to imbalanced domains have been
discussed in the literature.

5.6.1 Feature Overlap

These measures characterise the class overlap of individual features in data. Some are

deeply associated to the concept of class separability, i.e., individual feature separability

(F1, F1v) and focus on certain properties of class distributions to determine the discrim-

inative power of features. Others resort to feature space partitioning to delimit overlap

regions (F2, F3, F4, IN), i.e., they divide features into certain ranges where data overlap

is analysed.

Maximum Fisher’s Discriminant Ratio (F1)

The maximum Fisher’s discriminant ratio (F1) is perhaps the widest used measure to

compute the overlap degree of a given dataset [272, 278, 387]. For each feature fi comprised

in the dataset, the Fisher’s discriminant ratio (rfi) is obtained through Equation 5.3, where

µ1, µ2, σ2
1, and σ2

2 are the means and variances of class 1 and 2, respectively. Then, F1 is

obtained by finding the maximum rfi over all features in data. As depicted in Figure 5.5

(to the left), F1 traditionally measures how discriminative each feature is, i.e., how well it

can separate classes. Intuitively, higher values of F1 indicate less overlapped domains.

rfi =
(µ1 − µ2)2

σ2
1 + σ2

2

(5.3)
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In order to provide a measure of class overlap rather than class separability, Lorena et

al.[80] establish the inverse of the original F1 formulation: F1 = 1
1+r , where r is the

maximum rfi among all features. In such a case, higher values of F1 indicate more

overlapped domains.

Directional Vector Maximum Fisher’s Discriminant Ratio (F1v)

Rather than determining the separability of classes on projections of data perpendicular

to the axes (please refer to Figure 5.5), F1v searches for a vector where data can be

projected with maximum separability [334]. It computes the two-class Fisher criterion,

dF , as defined in Malina [302], where higher values indicate a higher separability between

classes. Similarly to F1, Lorena et al. [80] define F1v as follows from Equation 5.4, where

lower values indicate that there is a vector capable of separating classes after projecting

data onto it. In other words, higher values of F1v indicate higher amounts of class overlap.

F1v =
1

1 + dF
(5.4)

Volume of Overlapping Region (F2)

To determine F2, the overlap of the distribution of feature values is computed individually

for each feature (fi = 1, . . . ,m). First, the maximum and minimum values of each feature

fi are found, considering both classes C1 and C2. Then, the overlap length of feature

values is determined and normalised by the overall range of the feature. Finally, F2 is

determined by multiplying the ratio obtained for each feature (Equation 5.5), where higher

values indicate a greater amount of class overlap. An example of the determination of F2

is depicted on Figure 5.5 (rightside).

F2 =
m∏
i=1

overlap(fi)

range(fi)
=

m∏
i=1

max{0, minmax(fi)−maxmin(fi)}
maxmax(fi)−minmin(fi)

, where (5.5)

minmax(fi) = MIN
(
max(fi, C1),max(fi, C2)

)
,

maxmin(fi) = MAX
(
min(fi, C1),min(fi, C2)

)
,

maxmax(fi) = MAX
(
max(fi, C1),max(fi, C2)

)
,

minmin(fi) = MIN
(
min(fi, C1),min(fi, C2)

)
.

120



On the joint-effect of Class Imbalance and Overlap:
A Critical Review

f2

f1minmax(f1)maxmin(f1)

maxmin(f2)

minmax(f2)

f2

f1

Figure 5.5: Representations of F1 (leftside) and F2 (rightside) measures for the same
dataset. Note how F1 projects data onto the axes to establish the amount of overlap,
where f1 is the feature with highest discriminative power, i.e., lowest overlap. In turn, F2
considers both features to define a region where classes coexist.

Maximum Individual Feature Efficiency (F3)

Traditionally, F3 measures the discriminative power of individual features by determining

the efficiency of each feature and returning the maximum value [220]. For each feature,

F3 determines the regions where there are values from both classes and then returns the

ratio of feature values that are not in the overlapping regions. In Lorena et al. [80], a

complementary measure is presented, where F3 measures the minimum amount of overlap

between feature values of different classes. This is represented by Equation 5.6, where

i = 1, . . . ,m features and n is the total number of examples in data (noverlap(fi) is given

by Equation 5.7). Accordingly, higher values of F3 indicate more overlapped domains

(Figure 5.6).

F3 = min
(noverlap(fi)

n

)
(5.6)

noverlap(fi) = |{xj ∈ fi : xj > maxmin(fi) ∧ xj < minmax(fi)}| (5.7)

Collective Feature Efficiency (F4)

Whereas F3 focuses on individual feature efficiency, F4 considers the discriminative power

of all features [334]. To find F4, the following procedure is applied: first, the feature with

highest discriminative power (lowest overlap) according to F3 is taken and all examples

that can be separated using this feature are removed from the data. Then, the next most

discriminative feature (considering the remaining examples) is taken and the process is

repeated iteratively over all features.
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f2

f1minmax(f1)maxmin(f1)

f2

f1

maxmin(f2)

minmax(f2)

Figure 5.6: Representation of F3 measure for the data domain of Figure 5.5. Feature
efficiency is measured individually for f1 (leftside) and f2 (rightside), where f1 is the most
efficient feature, i.e., it returns the minimum amount of overlap. Adapted from [80].

In the end, according to the original formulation [334], F4 returns the proportion of ex-

amples that have been discriminated, thus providing an estimate of the proportion of

examples that could be correctly separated by hyperplanes parallel to one of the axis of

the feature space. Lorena et al. [80], however, consider F4 as the ratio of examples that

could not have been separated (Figure 5.7). Thus, higher values of F4 indicate a larger

amount of overlap between classes, considering all features collectively. F4 may be de-

termined by Equation 5.8, where fl represents the last most discriminative feature found

through the iterative process described above and n is the total number of examples in

data.

F4 =
noverlap(fl)

n
(5.8)

f2

f1

maxmin(f2)

minmax(f2)

f2

f1

f2

f1minmax(f1)maxmin(f1)

Figure 5.7: Representation of F4 measure for the data domain of Figure 5.5. Since f1 is the
most efficient feature, all examples that can be separated according to f1 (outside the grey
area) are removed. Then, the same is performed on f2. The remaining data examples are
those that could not be separated, thus contributing to class overlap. Adapted from [80].
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Input Noise (IN)

The Input Noise (IN) is related to the amount of overlap between features of different

classes [288]. To determine the input noise, the maximum and minimum values of each

feature for each class are used to define their boundaries. Then, if a given example falls

inside the boundaries of another’s class feature values, it is contributing to the overlap on

this feature. To this regard, the input noise is related to F2 and F3 measures. However, the

input noise measure then determines, for each example, in how many dimensions (features)

it overlaps and normalises the total by n×D, where n is the number of examples in data

and D is the number of existing dimensions (Equation 5.9). Higher values of IN indicate

higher amounts of class overlap. In Equation 5.9, gi represents the number of features

where the ith example is in overlapping regions.

IN =
1

n ·D
n∑
i=1

gi (5.9)

5.6.2 Structural Overlap

This group of measures is associated with the concept of class complexity (non-linear

boundaries and class decomposition), comprising information on the internal structure of

classes (data morphology). They can be used to characterise class overlap regions using

a “divide-and-conquer” perspective, i.e., focusing on the structure of the domain to find

problematic regions. Some measures analyse the properties of a Minimum Spanning Tree

(MST) built over the data domain to produce measures of decision boundary complexity

and structural overlap (N1). Others approach the identification of class overlap using the

notion of hypersphere coverage (T1, Clst, ONB, LSCAvg). Some consider both MST and

hypersphere coverage (DBC). Finally, also linked to the concept of data morphology, other

measures aim to quantify the data sparsity/density of manifolds (N2, NSG, ICSV).

Fraction of Borderline Points (N1)

N1 measures the proportion of examples that are connected to the opposite class by an edge

in a Minimum Spanning Tree (MST) (Figure 5.8) [220]. Most often, these examples are

those located near the boundary between classes, or those inserted in overlapped regions

in the data space. In general, higher values of N1 indicate a higher degree of class overlap

(classes are more deeply intertwined) [80, 103]. However, there are situations where N1

may assume higher values for simpler domains, e.g., if the class boundary has a narrower

margin than the intra-class distances [387].
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Considering V and E as the set of vertices and edges of a MST (V,E), N1 can be defined

by Equation 5.10, where yi is the class label of a given example xi.

N1 =
1

|V | |{xi ∈ V : ∃(xi, xj) ∈ E ∧ yi 6= yj}| (5.10)

Figure 5.8: A representation of the N1 measure. Marked points from both classes are
those contributing to class overlap (connected to the opposite class in the MST). Adapted
from [80].

Fraction of Hyperspheres Covering Data (T1)

To determine T1, a hypersphere centred at each example of the dataset is created and

its radius is grown until it reaches an example of the opposite class. Then, hyperspheres

contained in larger ones (of the same class) are eliminated (Figure 5.9). T1 is then defined

as the ratio of hyperspheres that remain, as shown in Equation 5.11, where n represents

the total number of examples in data.

T1 =
#Hyperspheres

n
(5.11)

Lorena et al. [80] consider an alternative implementation of T1, where the growth of a

hypersphere is stopped when it starts to touch a hypersphere of the opposite class. Accord-

ingly, this modification starts by determining the existing mutual nearest enemies in data,

for which their radii are automatically established as half of the distance between them.

The radius of the remaining hyperspheres are then determined recursively (Figure 5.10).

Given that the hyperspheres only contain examples of the same class, higher values of

T1 indicate a larger amount of class overlap. Nevertheless, this measure is also sensitive

to the distribution of data in the domain, i.e., covering situations where the domain is

composed by different clusters of the majority and minority classes (even if there is no

class overlap), will require a higher number of hyperspheres [80].
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Figure 5.9: Representation of the original T1 solution for two datasets (top and bottom
rows). In the scenario depicted in the top row, the hyperspheres of examples D and A are
not completely absorbed by any other hypersphere in the domain. On the contrary, in the
scenario of the bottom row, hypersphere D and A are absorbed by hyperspheres C and B,
respectively, and are therefore eliminated.

G
A

B

C F

E

D C

E

FD

A G

C

E

FD

A G

D F
C

G

E

A

B

E

F
D

C

G

B

A

B B

Figure 5.10: Alternative T1 implementation [80] for the scenarios depicted in Figure 5.9.
The modification starts by finding which data examples are each other’s nearest neighbours
of opposite classes (i.e., nearest enemies): D and F in the scenario of the top row, and both
D and F and A and G in the bottom row. The radii of their hyperspheres are automatically
defined as half of the distance between them. Then, for each remaining data point, its
radius is defined as the distance to its nearest enemy minus the radius of the nearest enemy
itself. Considering the scenario in the top row, the radius of hypersphere C corresponds to
its distance to F (its nearest enemy), minus the radius of F itself. Accordingly, the radius
of E is determined by considering its distance to C, and so forth.
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Local Set Average Cardinality (LSCAvg)

The Local Set (LS) of a given data example xi is the set of examples whose distance to xi

is smaller than the distance of xi to its nearest neighbour of the opposite class, NNio [256].

An example of a LS is depicted in Figure 5.11. Considering U as the set of all examples in

the data space, the LS of a given example xi can be defined according to Equation 5.12,

as follows:

LS(xi) = {xj ∈ U : d(xi, xj) < d(xi, NNio)} (5.12)

To determine the Local Set Average Cardinality (LSCAvg) of a dataset, the number of

examples included in each example’s LS is aggregated according to Equation 5.13, where

n represents the total number of examples in data.

LSCAvg =
1

n2

n∑
i=1

|LS(xi)| (5.13)

Examples with a small number of examples in their LS are either examples located near

narrow decision borders, or examples located in regions populated by the opposite class

(overlapping regions). A smaller number of examples in each example’s LS leads to lower

values of LSCAvg, which represent more overlapped and complex domains.

A
B

Figure 5.11: The concept of Local Set. Considering xi as point A, its nearest neighbour
of the opposite class NNio (nearest enemy) is point B. Thus, the LS of point A is the set
of examples whose distance to A is smaller than d(A,B), comprised in the dotted circle.
The local set cardinality of A is therefore 4, i.e., |LS(A)| = 4. Adapted from [256].
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Number of Clusters (Clst)

The Number of Clusters (Clst), similarly to T1, determines the number of clusters of the

same class that cover the data domain [256]. The algorithm proposed in [256] starts by

considering the data examples with higher LS cardinality as cluster cores. Then, for each

remaining example, the algorithm checks if they belong to the LS of a cluster core. If so,

the example is included in the existing cluster; otherwise, a new cluster core is created,

and the process is repeated, always prioritising cores with the highest LS cardinality. An

example of the clustering procedure is depicted in Figure 5.12. After all examples are

assigned to clusters, the total number of existing clusters is determined and Clst defined

by Equation 5.14, where n is the total number of examples in data.

Clst =
#Clusters

n
(5.14)

B
D

EA

C

F

G

H

I

Figure 5.12: Local Set-based clustering. The first identified cores are E and G, in any
order, since they have the largest LS (|LS(E)| = |LS(G)| = 3). Then, examples A and
C are chosen as cores since they both have a LS of 2. The remaining examples do not
become cores, since they are already comprised in the local sets of other cores. Finally,
although D is both contained in the LS of E and C, it belongs to the cluster with core E,
since E has a higher LS cardinality. Adapted from [256].

A note worth considering is that, in the original formulation [256], LSCAvg and Clst

mainly focus on characterising class borders (determining how narrow and/or irregular

they are). For this reason, overlapping and noisy examples are considered atypical and

removed from the dataset (using the ENN algorithm [248]) prior to the computation of the

LS cardinality of each example. Nevertheless, both types of examples (located near the

class borders, or in overlapping regions) contribute to class overlap, and both LSCAvg and

Clst can be used to characterise it. Figures 5.13 and 5.14 provide an comparison between

a solution that does not remove overlapping examples and one that does (as originally

formulated).
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Figure 5.13: A representation of the Clst solution for a given dataset, considering all
examples. The LS of each data example is determined and starting with the examples
with largest LS, the clusters are built by iteratively finding candidate cluster cores. In
this solution, all existing examples are kept and the final number of clusters reflects the
amount of class overlap in the domain: 15 clusters for 23 data examples.

Figure 5.14: A representation of the Clst solution for the dataset in Figure 5.13, removing
overlapped and noisy examples. In this scenario, prior to the LS computation, the noisy
and overlapped examples are removed according to the ENN rule, returning a solution of
3 clusters for 13 data examples. It seems, however, that removing data examples alters
the true complexity of the original data domain.

Overlap Number of Balls (ONB)

The Overlap Number of Balls (ONB) is based on the same rationale as T1 [103]. The idea

is to determine how many balls containing only examples of the same class are needed

to cover the entire data space. ONB uses the Pure Class Cover Catch Digraph [304] to

determine the maximum radii for all examples in data (the radius of a ball is increased

until it touches an example of the opposite class). Then, for each example, the ball that

includes the largest number of same-class examples is chosen, until all examples are covered

(Figure 5.15). After the final number of balls is defined, two measures can be determined:

ONBtot and ONBavg. ONBtot represents the ratio between the number of balls necessary

to cover the domain and the number of examples in data, n (Equation 5.15). ONBavg

determines the average ONB, considering the number of balls necessary to cover each class

Ci, according to Equation 5.16 (C and |Ci| represent the total number of classes and the

number of examples of class Ci, respectively ).
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Figure 5.15: A representation of the ONB solution for the dataset in Figures 5.9 and 5.10
(top-row). First, a ball is centred at each data point and grown until it touches a point of
the opposite class. Then, the balls containing a larger number of examples are iteratively
chosen. Adapted from [103].

ONBtot =
#Balls

n
(5.15)

ONBavg =
1

C
·
C∑
i=1

#BallsCi
|Ci|

(5.16)

Decision Boundary Complexity (DBC)

The Decision Boundary Complexity (DBC) is an extension of T1 which determines the

interleaving of hyperspheres of different classes [294]. After the hyperspheres from T1 are

found, a Minimum Spanning Tree (MST) is constructed using the centres of the hyper-

spheres (Figure 5.16). Then, the number of connected centres of different classes (Ninter)

is determined and DBC is computed according to Equation 5.17.

Figure 5.16: A representation of the DBC measure. In the MST, there are 8 centres
connected to centres of a different class (Ninter = 8).
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DBC =
Ninter

#Hyperspheres
(5.17)

Ratio of Intra/Extra Class Nearest Neighbour Distance (N2)

N2 compares the within-class and between-class spread, i.e., it represents a trade-off be-

tween intra-class distances and inter-class distances [220]. The distance between each data

example and its nearest neighbour of the same class, d(xi, NNis), as well as between its

nearest neighbour of the opposite class, d(xi, NNio), is computed (Figure 5.17).

d(x i, 
NN io)

d(xi , NNis )

xi

Figure 5.17: A representation of intra-distances and inter-distances for N2 computation.
Less overlapped domains generally present more compact concepts (lower intra-distances
average) that are well-separated (higher inter-distances average), thus returning lower
values of N2. Adapted from [80].

Then, the sum of all intra and inter-class distances are aggregated to produce an intra/inter

class ratio (r) and N2 can be determined by Equation 5.18, according to the modification

introduced by Lorena et al. [80], where n represents the total number of examples in data.

Higher values of N2 indicate more overlapped domains [387].

N2 =
r

1 + r
, where r =

∑n
i=1 d(xi, NNis)∑n
i=1 d(xi, NNio)

(5.18)

Number of samples per group (NSG)

This measure provides an indication of the average size of groups that exist in data by

determining the average number of examples in each hypersphere found by T1 (Equa-

tion 5.19) [288]. Ni represents the number of examples inside hypersphere i.

NSG =
1

#Hyperspheres

#Hyperspheres∑
i=1

Ni (5.19)

In such a way, NSG (as all density measures in general) adds local information to structural

overlap measures. A large number of hyperspheres comprising a small number of examples

is indicative of a more intertwined data domain.
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Inter-Class Scale Variation (ICSV)

The inter-class scale variation measures the standard deviation of hyperspheres’ densi-

ties [288]. First, the density ρ of each hypersphere found according to T1 is determined,

where Nsphere and Vsphere represent the number of examples in a hypersphere and its vol-

ume, respectively. Then, the standard deviation of the sphere densities (ICSV) is found, as

follows from Equation 5.20. nH represents the number of hyperspheres (#Hyperspheres)

and µρ represents the average density of hyperspheres. Higher ICSV values are associ-

ated with changes in the local data densities of the domain, thus indicating more complex

scenarios.

ICSV =

√√√√ 1

nH

nH∑
i=1

(ρi − µρ)2, where ρ =
Nsphere

Vsphere
and µρ =

1

nH

nH∑
i=1

ρi (5.20)

5.6.3 Instance-Level Overlap

These measures are able to analyse the domains at a local level, where class overlap is com-

monly associated to the error of the k-nearest neighbour classifier. While some measures

provide an overall value for the entire domain (R-value, Raug, degOver, N3, SI, N4), others

are particularly related to the identification of local data characteristics, i.e., data typol-

ogy or instance hardness (kDN, D3, Borderline Examples, IPoints). They provide local

information on the complexity of the domain by identifying problematic examples in data,

frequently those near the class boundaries (associated with class overlap). Although some

of these measures evaluate data examples individually according to their characteristics,

they can be adapted in order to produce an estimate for the entire domain.

R-value and Augmented R-value

The R-value defines the degree of overlap between two classes Ci and Cj by determining the

number of examples of each class that fall onto overlapping regions between classes [327].

For each mth instance of class Ci (represented as pim), the examples in its k-neighbourhood

that belong to Cj , represented by kNN(pim, Cj), are found (Figure 5.18). Then, pim

is assigned as belonging to an overlapping or non-overlapping region, as follows from

Equation 5.21. |Ci| represents the number of examples of class Ci, whereas θ is a threshold

used to define whether pim is inside an overlapping region or not. λ is a binary function

that represents such decision, i.e., λ(a) = 1 if a > 0; otherwise λ(a) = 0. In other words, if

we consider θ = 2, it means that 2 is the maximum number of examples from the opposite

class that we tolerate in the k-vicinity of pim. If there are more than 2 examples, then

pim is considered an overlapping point. The same is performed for class Cj and the final
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results are aggregated as follows from Equation 5.22.

r(Ci, Cj) =

|Ci|∑
m=1

λ
(
|kNN(pim, Cj)| − θ

)
(5.21)

R(Ci, Cj) =
r(Ci, Cj) + r(Cj , Ci)

|Ci|+ |Cj |
(5.22)

R-values range from 0 (no overlap) to 1 (complete overlap), taking into account all exam-

ples in the data domain, whether they are from the majority or minority classes.

Ci
Cj

kNN(pi1) 
kNN(pi2) pi1

pi2

Figure 5.18: Basic concepts for R-value computation. Note how |kNN(pi1, Cj)| = 0 and
|kNN(pi2, Cj)| = 4, for k = 6. Adapted from [327].

The Augmented R-value (Raug) is an extension of R-value that takes into account the

imbalance ratio of the data domain [58] (Equation 5.23), where R(Cmin) and R(Cmaj)

may be calculated as an arbitrary R(Ci) according to Equation 5.24.

Raug(Cmin, Cmaj) =
1

IR + 1

(
R(Cmaj) + IR ·R(Cmin)

)
(5.23)

R(Ci) =
1

|Ci|

|Ci|∑
m=1

λ
(
|kNN(pim, Cj)| − θ

)
(5.24)

This extension is based on the rationale that, for binary-classification problems, the con-

tribution of the majority class overlap to the overall overlap should not be directly propor-

tional to the number of majority examples, given that most of them are frequently non-

overlapping examples [58]. For IR = 1, Raug is equivalent to the R-value (Equation 5.22),

whereas as the IR increases, Raug becomes closer to the R-value of the minority class

(Equation 5.24, assuming Ci as Cmin).
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degOver

Similarly to what was described in the previous section, degOver determines the degree

of overlap by finding overlapping and non-overlapping examples in a k-neighbourhood (k

= 5) [309]. For a given example, if all of its 5-nearest neighbours are from the same

class, then the example belongs to a non-overlapping region (Figure 5.19). Otherwise, it is

considered an overlapping example. Then, the number of overlapping examples (of both

classes), i.e., nminover and nmajover is divided by the total number of examples in the data

space, n (Equation 5.25). Higher values of degOver represent more overlapped domains.

degOver =
(nminover + nmajover)

n
(5.25)

Figure 5.19: A representation of degOver. Marked examples of both classes are those that
contribute to class overlap (located in overlapped regions).

Error Rate of the Nearest Neighbour Classifier (N3)

N3 measures the error rate of the Nearest Neighbour classifier (1NN), estimated using a

Leave-One-Out (LOO) cross-validation. Higher N3 values are associated with a higher

overlap degree between classes [220]. Considering U as the set of all examples in the data

space, N3 can be defined according to Equation 5.26, where yi represents the class of

example xi, and yNNi represents the class of its nearest neighbour, NNi.

N3 =
1

|U | |{xi ∈ U : yi 6= yNNi}| (5.26)

Separability Index (SI)

Thornton’s Separability Index (SI) determines the proportion of examples whose class is

the same as of its nearest neighbour [172, 418]. Considering a given example xi and its

nearest neighbour NNi, SI is defined by Equation 5.27. In such a way, SI measures class

overlap by informing on the separability of the data domain, being the complementary

measure of N3, where higher values indicate that there is a large amount of data examples
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whose nearest neighbour is of the same class.

SI =
1

|U | |{xi ∈ U : yi = yNNi}| (5.27)

Non-Linearity of the Nearest Neighbour Classifier (N4)

To compute N4, new synthetic examples x̂i are generated by interpolating pairs of data

examples from the same class, chosen randomly (Figure 5.20). Then, the error rate of the

Nearest Neighbour classifier is estimated solely over the set of the new examples obtained

by linear interpolation, I. For each new example, its closest neighbour of the original data

space NNiU is determined, and their class labels are compared in order to produce N4

(Equation 5.28). By determining the 1NN error on these new examples, N4 establishes the

overlap that exists between the convex hulls that delimit the classes [80]. Higher values of

N4 represent more deeply overlapped domains.

N4 =
1

|I| |{x̂i ∈ I : ŷi 6= yNNiU }| (5.28)

Figure 5.20: A representation of N4 computation. New synthetic examples (in grey)
are generated by linearly interpolating random examples of the same class (connected
by dotted lines). Then, the 1NN error is measured over the new examples: marked
examples are those whose 1NN classification produces an error, thus identifying class
overlap. Adapted from [80].

Class Density in the Overlap Region (D3)

D3 aims to describe the density of each class in the overlap regions by determining, for

each class, the number of examples that lie in regions populated by a different class [305].

For each example xi, its k-nearest neighbours are found and if the majority belongs to a

class different from xi, then xi is considered to be in an overlapping region. The number of
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examples that lie inside overlapping regions is then retrieved for each class Cj . Considering

U as the set of all examples in the data space and kNNi as the set of the k-nearest

neighbours of xi, D3 can be defined according to Equation 5.29, where higher values for

a given class correspond to regions populated by another class. yi and yv are the class

labels of xi and xv, respectively, and ∆xi establishes the proportion of nearest neighbours

of xi that share its class (Equation 5.30).

D3Cj = |{xi ∈ U : ∆(xi) < 0.5}| (5.29)

∆xi =
|{xv ∈ kNNi : yv = yi}|

k
(5.30)

K-Disagreeing Neighbours (kDN)

Considering an example xi, k-Disagreeing Neighbours (kDN) measures the percentage of

its k nearest neighbours xv that do not share its class [353], as given by Equation 5.31:

kDN(xi) =
|{xv ∈ kNNi : yv 6= yi}|

k
(5.31)

In such a way, kDN measures the local overlap of a given data example, where values closer

to 0 indicate that xi is inside a safe region (all neighbours share its class label), whereas

higher values indicate increasing amounts of data examples from the opposite class in its

neighbourhood. A global measure for the entire domain could be achieved by averaging

kDN over all examples in data, n, according to Equation 5.32:

kDNavg =
1

n

n∑
i=1

kDN(xi) (5.32)

Complexity Metric Based on k-nearest neighbours (CM)

CM focuses on the local neighbourhood of each example to decide on its difficulty for

classification [35]. The k nearest neighbours of each example xi are found, and if the

majority of neighbours is of the same class as xi, the example is considered easy; otherwise

it is considered difficult. CM then measures the proportion of difficult examples in data,

as defined in Equation 5.33, where kDN(xi) has been previously described (Equation 5.31)

and n is the total number of examples in data. CM is therefore intrinsically related to

kDN and somewhat the aggregation of D3 over the entire domain. Recent extensions of

CM include wCM (Weighted Complexity Metric), and dwCM (Dual Weighted Complexity
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Metric) [393], that use a weighted kNN approach rather than a standard kNN classifier.

CM =
|{xi : kDN(xi) > 0.5}|

n
(5.33)

Borderline Examples

As discussed in Section 5.3, the presence of borderline examples is closely related to the

problem of class overlap since higher percentages of this type of examples complicate the

decision boundary between classes. A popular data typology divides data examples into

4 categories [319, 320, 405, 462], according to their local neighbourhood (typically k = 5),

as follows:

• Safe examples have 0 or 1 neighbours of the opposite class;

• Borderline examples have 2 or 3 neighbours of the opposite class;

• Rare examples have 4 neighbours of the opposite class. Additionally, the only neigh-

bour of the same class should be either an outlier example, or a rare example as

well;

• Outlier examples have all 5 neighbours of the opposite class.

B

C

D

E

F

A

Figure 5.21: A representation of different example types: A is a safe example, surrounded
only by neighbours of its class; B is an outlier example, isolated in an area of the opposite
class; C and D are rare examples and finally, E and F are borderline examples, located
near the decision border between classes.

A representation of each type of example is presented in Figure 5.21. Most often, the data

typology is used in scenarios comprising class imbalance [319, 320, 405, 462], and therefore

is often solely applied to the minority class. However, it can be applied to all existing

classes. In such a case, the number of borderline examples from all classes (nborderline)

is determined according to the rules described above and divided by the total number of

examples in data (n), thus defining the degree of overlap as a percentage (Equation 5.34).

This would be reminiscent of R-value, degOver, and CM, although it considers solely one
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type of difficult examples (borderline examples), as they relate the most to the concept of

class overlap.

Overlap (%) =
nborderline

n
× 100 (5.34)

Number of Invasive Points (IPoints)

When data examples are clustered according to the their local sets (LS), some resulting

clusters may contain only one instance. This may represent a situation where two cluster

cores share some examples in their local sets, except than one of the cores has a larger

local set cardinality [256]. An example of such situation has previously been discussed in

Figure 5.12, where cores E and C share point D, but D belongs to the cluster with core E,

since E has a higher LS cardinality. Then, point C will produce a separate cluster of only

one point (itself). If a given cluster has only one point (the core) and its local set contains

only the point itself, then it is called an “invasive point”. Note that in Figure 5.12, point

C is not an invasive point because, although it will produce a cluster of only itself, its

local set contains C and D, i.e., LS(C) = {C,D}. An example of an invasive point is given

in Figure 5.22.

K
J

L

Figure 5.22: A representation of an invasive point. Note that K is an invasive point since
it produces a cluster of only itself, has no other points in its local set, and is not included
in the local set of any other point, including its closest neighbours, J and L. In turn, J and
L are not invasive points because despite their local sets contain only themselves, they
do not produce singular clusters, as they are included in other points’ local sets (other
clusters). Adapted from [256].

Invasive points are therefore border examples that somewhat infiltrate the opposite class,

or examples located in overlapping regions of the data space. The number of these type

of points normalised by the total number of points (n) characterises the complexity of

the domain, where a large number of invasive points indicates more intertwined domains
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(Equation 5.35).

IPoints =
#Invasive Points

n
(5.35)

5.6.4 Multiresolution Overlap

This group of measures uses multiresolution approaches to identify regions of different

complexity within the domains. Some are more closely related to the previous ideas of

using hyperspheres (MRCA) or k-neighbourhoods (C1 and C2) to define regions of the

space where class overlap can be analysed. Others are associated with feature space parti-

tioning, where features are divided into a specific number of intervals where the properties

of class overlap may be assessed (Purity and Neighbourhood Separability). Nevertheless,

the main idea than binds these measures together is that they operate recursively (fine-

grain search), i.e., defining hyperspheres, neighbourhoods, or feature partitions at different

resolutions, all of which are individually analysed. This allows to combine both local and

structural information, characterising the data domains from the perspective of recursive

data subspaces. Class overlap is therefore determined at several resolutions, providing a

trade-off between global and local data characteristics.

Multiresolution Complexity Analysis (MRCA)

Multiresolution Complexity Analysis (MRCA) aims to identify regions of different com-

plexity in the data domain [37]. Each data example is attributed a profile space, which is

then used for clustering and complexity analysis. To generate a profile space for a given

data example, hyperspheres of different radii are drawn around it. The content of each

hypersphere is then analysed through the use of an imbalance estimation function which,

given a set of examples D, is defined according to Equation 5.36, as follows:

ψD(x, σ) = y(x) · N
+
σ (x)−N−σ (x)

N+
σ (x) +N−σ (x)

(5.36)

The data example x and parameter σ are the centre and radius of the hypersphere, re-

spectively, and N+
σ (x) and N−σ (x) are the number of data examples of the positive and

negative classes inside the hypersphere. y(x) gives the class of x, herein assuming two

possible values {-1,1}. ψ therefore ranges between [−1, 1], where −1 and 1 indicate a

strong imbalance inside the hypersphere, with most of the data examples being from the

opposite class of x (-1), or mostly equal to x (1). ψ = 0 characterises situations where

both classes are equally represented inside the hypersphere.
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A profile pattern of x can be obtained by considering different radii σ in the genera-

tion of the hyperspheres. Considering a set of m hyperspheres, a profile p is given by

Equation 5.37:

p = [ψ(x, σ1), ψ(x, σ2), . . . , ψ(x, σm)] (5.37)

After all data examples have been assigned their profile patterns, a set of profile patterns

∆ is obtained, which can then be clustered to determine regions of different complexity, via

k-means clustering [37]. To define the pattern and cluster complexity, a Multiresolution

Index (MRI) can be computed for each pattern p, following Equation 5.38, where wj =

1− j−1
m , giving higher weights to components with finer granularity. An example is depicted

in Figure 5.23.

MRI(p) =
1

2m
·
m∑
j=1

wj · (1− pj), (5.38)

The complexity of a kth cluster is then determined by averaging the complexity of patterns

p that belong to it, as follows from Equation 5.39:

MRI(k) =
1

|∆(k)| ·
∑

p∈∆(k)

MRI(p) (5.39)

x

!1
!2

!3

 (x,�1) = 1

 (x,�2) = 0

p
MRI(p) ⇡ 0.15

 (x,�3) ⇡ 0.33

Figure 5.23: A representation of MRCA. The profile of data example x is defined using 3
hyperspheres of radius σ1, σ2, and σ3, for which ψ(x, σ) is computed, respectively. Thus,
a profile pattern p is constructed as p = [1, 0, 0.33], with a MRI(p) of 0.15. After all
data examples have been profiled, a new data space of profile patterns ∆ is constructed
and clustered, where each pattern p is included in clusters of different complexity. Data
example x was mapped to a pattern p that belongs to the blue cluster. In such a way, it is
possible to find patterns p of different difficulty by analysing the cluster solution, which in
turn correspond to difficult data examples x in the original data space. Note that patterns
p included in the same cluster do not necessarily correspond to nearby examples in the
original data space since clusters are built based on the difficulty of data examples, not
their distance to each other.
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Lower values of MRI(k) characterise clusters comprising patterns p with most ψD(x, σ) ≈
1, which represent patterns x belonging to less complex regions. In turn, higher values

of MRI(k) indicate clusters comprising patterns p with most ψD(x, σ) ≈ −1, represent-

ing patterns x in more complex regions. Balanced clusters indicate medium complexity

regions, with MRI(k) = 1
2 .

Case Base Complexity Profile (C1)

Similarly to MRCA, C1 measures the local complexity of a data domain by focusing on

the spatial distribution of data examples [306]. The complexity of each data example

is determined based on the class distribution within its k-neighbourhood, for increasing

values of k. For each k value and data example xj , the proportion of examples that share

the same class as xj is determined (pkj) and a nearest neighbour profile can be determined

by plotting pkj as a function of k (Figure 5.24).

xj
k = 1

k = 2

k = 3

pkj 1.0

0.5

0.67

k1 2 3

Figure 5.24: A representation of C1. A complexity profile can be determined for xj by
analysing the characteristics of its neighbourhood for different values of k. With K = 3,
the complexity of xj is 1− 1

3(1 + 0.5 + 0.67) ≈ 0.28. Adapted from [306].

For a given chosen K, the complexity of xj is given by Equation 5.40, where neighbours

closer to xj have a higher influence on the complexity since they are used to compute

several values of pkj [98].

Complexity(xj) = 1− 1

K

K∑
k=1

pkj (5.40)

To provide an overall complexity value for the entire data domain, the complexity of all

examples may be averaged according to Equation 5.41, where n is the total number of
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data examples.

C1 =
1

n

n∑
j=1

Complexity(xj) (5.41)

Similarity-Weighted Case Base Complexity Profile (C2)

C2 is a modification of C1 that associates the weight of each neighbour to their distance to

xj , so that closer neighbours have a higher impact in complexity computation [98]. In C2,

pkj is given as the average similarity between xj and the k-neighbours that share its class.

The overall complexity C2 is given by the same Equations 5.40 and 5.41, yet considering

the modifications to pkj .

Purity and Neighbourhood Separability

Another type of multiresolution analysis is feature space partitioning. Feature space parti-

tioning measures work by recursively partitioning the data space into hypercuboids (cells)

at several resolutions, where each resolution is defined by the number of partitions per

feature [394, 395]. As the resolution increases, the data space is composed by a larger

number of cells and each cell includes a smaller number of data examples. Based on this

partitioning scheme, two complexity measures called Purity and Neighbourhood Separabil-

ity may be defined. The former relates to how pure are the defined cells, considering the

number of representatives of each class comprised inside each cell. The latter finds, for

each example in a cell, the proportion of nearest neighbours that share its class.

For both measures, the data space is divided at different resolutions from B = 0 (no

partitioning) to B = 31 (up to 32 cells per axis), where data examples are assigned to

their closest cell (Figure 5.25). Then, the following strategy is applied:

• At each resolution B, the complexity (purity or neighbourhood separability) is mea-

sured individually for each cell;

• The estimates of each cell are linearly weighted to produce a global estimate for

that resolution, where the weight given to the values determined for each cell is

proportional to the number of examples it contains (nln ), where nl is the number of

examples in the cell and n represents the total number of examples in data;

• The complexity across all cells at a given resolution is also exponentially weighted

by a factor of w = 1
2B

, where larger weights are given to lower resolutions;

• Finally, a curve of complexity versus resolution is plotted and the Area Under the

Curve (AUC) defines the overall complexity of the data, bounded within the [0, 1]

interval.
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In what follows, we explain how Purity and Neighbourhood Separability are computed.

Detailed algorithms of both measures, as well as the feature partitioning scheme, are

available in [395].

Figure 5.25: A representation of the feature partitioning scheme for B = 2, B = 3 and
B = 9, from left to right, respectively. Higher resolutions provide more local information
regarding the domain. At each resolution B, the domain complexity (purity or neigh-
bourhood separability) is determined, where each cell is individually analysed. The final
complexity measures are determined by averaging the individual results of all cells. Cells
marked in grey are those shared by examples of different classes, identifying overlapping
regions.

The Purity measure determines how pure the defined cells are, focusing on class represen-

tation inside each cell. If all data examples are from the same class, the cell is completely

pure; otherwise, the purity of each cell depends on the number of representatives of each

class comprised inside it. In the worst case scenario, if a cell contains the same number of

examples for each class, its purity is zero.

Considering a total of Kl classes in cell Hl, and considering that the number of examples of

class Ci in cellHl is given by λil, the purity of a cell is defined as follows from Equation 5.42,

where pil is the probability of class Ci in Hl (Equation 5.43).

SHl =

√√√√( Kl

Kl − 1

) Kl∑
i=1

(
pil −

1

Kl

)2
(5.42)

pil =
λil∑Kl
i=1 λil

(5.43)

The estimates SHl of each cell are then linearly weighted and summed to produce an

average purity SH , according to Equation 5.44, where H is the total number of cells.

SH =
H∑
l=1

SHl ·
nl
n

(5.44)
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As previously detailed, SH is further weighted by 1
2B

before plotting the purity values

versus the resolution at which they were computed. The overall purity measure, i.e., the

AUC of purity values across all cells (SH) versus the respective resolution (B), is bounded

within the range [0, 1] where higher values represent less overlapped domains. For less

overlapped domains, the purity is expected to increase as the number of cells increases

with higher resolutions. However, if the domain is extremely overlapped, the purity will

be low despite the increase of the number of cells, therefore returning a lower average

purity value. Additionally, for less overlapped domains, the measure will increase rapidly

as the resolution increases, contrary to data with significant class overlap.

The Neighbourhood Separability measure is more sensitive to the shape of decision bound-

aries and determines, for each data example in a cell, its proportion of k-nearest neighbours

from the same class (for varying values of k). For each data example xj in cell Hl, its

k-nearest neighbours are found based on the Euclidean distance, and the proportion of

neighbours from the same class as xj is determined as pkj . This procedure is repeated for

several values of k, from 1 to a maximum value of λil, in steps of 1 (recall that λil is the

number of examples of class Ci inside cell Hl). Thus, for each data example xj inside cell

Hl, it is possible to plot a curve of pkj versus k and determine the area under the curve as

φj . Then, the average neighbourhood separability of cell Hl can be estimated according

to Equation 5.45:

pl =
1

nl

nl∑
j=1

φj (5.45)

The neighbourhood separability across all cells is computed by a weighted sum of the pl

values of all cells (Equation 5.46) and then weighted by 1
2B

to account for the data space

resolution.

SNN =
H∑
l=1

pl ·
nl
n

(5.46)

Similarly to Purity, a final curve of SNN values versus the resolution at which they were

computed is plotted and the area under the curve is the overall neighbourhood separability

measure for a given domain, where higher values represent less overlapped domains.

5.6.5 Summarizing Comments

Throughout this section we discuss the idea that class overlap is a heterogeneous problem

with different representations. To standardise existing vortices of class overlap, we propose

a novel taxonomy that associates common concepts found in related research to four groups

of class overlap complexity measures (Figure 5.4): Feature Overlap, Structural Overlap,
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Instance-Level Overlap, and Multiresolution Overlap. We show how each group measures

a particular facet of class overlap and describe their representative measures in detail,

which is a step towards providing a more complete characterisation of class overlap in

real-world domains. However, there are two topics left for discussion. One is if (and how)

these measures of class overlap are attentive to class imbalance as well. The other regards

the development of new measures that simultaneously account for several representations

of class overlap. Let us start by discussing the existing body of knowledge regarding the

sensitivity of class overlap measures to class imbalance.

As highlighted in Figure 5.4, there are some measures for which adaptations to imbal-

anced domains are discussed in the literature. Some were originally developed in the

scope of imbalanced data (Raug, ONB, CM, dCM, dwCM, Borderline Examples), while

others correspond to the recently-suggested, class-wise adaptations of well-known com-

plexity measures (F2, F3, F4, N1, N2, N3, N4, T1) [176]. The underlying motivation for

these adaptations is that, since certain measures consider classes altogether, the majority

class tends to dominate their computation, and hence they perform poorly in imbalanced

domains [35, 151, 177]. Current adaptations are therefore based on evaluating the in-

dividual class complexities, i.e., decomposing measures into their minority and majority

counterparts. As an example, consider the original N3 measure which determines the

error of a 1NN classifier. The adapted version of N3 consists of taking the 1NN error

per class. For binary-classification domains, the adapted measures have shown promising

results in estimating the difficulty of classification tasks more accurately than the origi-

nal measures [176, 177], although this is still a line of ongoing research. Except for the

measures discussed herein (and marked in Figure 5.4), there are no considerations regard-

ing the remaining in what concerns imbalanced domains. Naturally, in the same light of

the results previously discussed, we can expect a biased behaviour for certain measures

(e.g., those that provide estimates averaged over the total number of examples in data).

Nevertheless, others require further investigation.

The devise of adaptations and combinations of existing representations (i.e., measures)

of class overlap remains an open challenge for future research. Although the presented

taxonomy is insightful to associate existing measures to different class overlap represen-

tations, each group of measures still gives emphasis to a particular facet. To provide a

complete characterisation of the problem of class overlap for a given domain, and a full

understanding of to what extent it is harming the classification task, it is required that

these measures are either used collectively, or combined to capture several representations

simultaneously. The idea that, in imbalanced domains, class overlap may be more thor-

oughly characterised by measures that consider multiple sources of complexity is recently

touched upon in Pascual-Triana et al. [103]. With the development of ONB, authors ex-

plore the suitability of combining structural, local, and class imbalance information to

provide good estimates for class overlap.
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Although both topics are currently under research, they show that there is somewhat a

consensus in what concerns the limitations of individual measures of class overlap, and

the need to characterise the problem in all its dimensions, while also accounting for class

imbalance. This is one of the biggest open challenges in the imbalanced data field, and

the reason why a unified view of the problem is necessary to put forward.

In the next section, we will review the state-of-the-art class overlap-based approaches

applied to real-world imbalanced domains. We will show that, although under the same

rationale of minimising class overlap, the methods often approach the problem from differ-

ent perspectives, i.e., focusing on different representations of class overlap. Also, despite

the fact that several class overlap measures have been discussed in the literature, related

research often fails to characterise the problem in the domains, which complicates the eval-

uation of the efficiency of the approaches, besides preventing the generation of informed

recommendations for researchers.

5.7 Class Overlap-Based Approaches

The topic of learning from imbalanced data has been extensively studied in the past years,

with several survey papers being recently published [107, 138, 178, 229, 241]. As such, the

characterisation of the problem of class imbalance and respective taxonomies of approaches

and applications is quite well-established. However, few works have attempted to provide

a global view of the problem of class overlap in imbalanced domains that summarises,

categorises, and compares the state-of-the-art strategies used to handle both problems

simultaneously. Xiong et al. [467] suggest that data in overlapping regions can be handled

by discarding, merging, and separating schemes. In brief, the discarding scheme only learns

from non-overlapping regions, disregarding the remaining. The merging scheme considers

the overlapped data as a new class, whereas the separating scheme treats overlapping and

non-overlapping regions separately, i.e., two separate models are built for each scenario.

Most recently, Pattaramon et al. [446] divide class overlap methods depending on whether

methods address all overlapping examples or just those closer to the decision boundaries

(borderline examples).

Nevertheless, the relationship between existing class overlap approaches and class overlap

representations remains somewhat hidden. This naturally hinders the devise of recom-

mendations for researchers, i.e., it is not possible to determine which approaches would

be best for a given domain based on its characterisation. Ultimately, this would be a

game-changing contribution to research: guide the choice of appropriate methods or the

development of specialised approaches based on the characteristics of the domains, going

towards a meta-learning logic. Throughout this section, we will show that, unfortunately,

this remains an open issue due to certain limitations found in current research, which will

be summarised at the end of this section. However, we thoroughly analysed the existing
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class overlap-based approaches in order to associate their internal behaviour to the char-

acteristics of data they are sensitive to. With that, we propose a novel taxonomy of class

overlap-based approaches aligned with the taxonomy of class overlap complexity measures

discussed in the previous section.

Figure 5.26 depicts the most common approaches to handle imbalanced and overlapped

domains, together with the class overlap representations, information, and concepts they

are associated to.

Class Overlap-Based
Approaches

Undersampling 
Approaches

Neighbourhood-based 

Oversampling  
Approaches

Ensembles Region Splitting
Approaches

Evolutionary  
Approaches Hybrid Approaches

Density-based Fuzzy-based
Borderline and 

 noisy examples
Entire overlapping

region
Weighted
Sampling

Safe or Borderline
Examples

Other Approaches

Clustering 
Approaches 

Cleaning  
Approaches

Structural 
 Overlap

Density of  
manifolds

Structural 
 Overlap

coupled withMultiresolution  
Overlap

Cleaning
Approaches

Instance Hardness  
Data Typology 

Instance-Level  
Overlap 

Figure 5.26: A taxonomy of methods for handling imbalanced and overlapped datasets.
The scheme shows the different class overlap-based approaches that are analysed in this
section, associating each group to common class overlap concepts and representations
found in related research.

In imbalance data learning, resampling approaches – undersampling and oversampling –

are by far the most popular [387]: it comes therefore at no surprise that they remain two of

the most explored approaches when handling class imbalance and overlap simultaneously.

In addition, cleaning approaches are also frequently applied, either alone or in combination

with undersampling and oversampling. Finally, recent research has also explored the use

of ensembles, region splitting, evolutionary, and hybrid approaches. In what follows, we

describe the proposed taxonomy in higher detail, illustrating each category with both well-

established and emergent approaches studied in the context of imbalanced and overlapped

domains.

Table 5.2 provides an overview of the discussed class overlap-based approaches, where

each approach is characterised in what concerns its category (according to the established

taxonomy) and the type of information it relies on. The measures used to characterise the

data domains in what concerns class imbalance and overlap, as well as the benchmark of

compared approaches used in the respective research work, are also presented.
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Table 5.2: Benchmark of class overlap-based approaches. For each approach is identified
its category, the type of information it encompasses, the considered measures of class
imbalance and class overlap, and a benchmark of compared methods. Approaches are
marked depending on whether they obtained superior performance with respect to F-
measure/G-mean results (in bold), sensitivity results (†) or AUC results (‡).

Category Approach Information Measures Compared Methods

ClusBUS†‡

(2014)
Density-based clustering IR SMOTE

DBMUTE‡

(2017)
Density-based clustering

Graph-based
IR ROS, RUS, SMOTE, BLSMOTE, SLSMOTE

DBSMOTE, TL, MUTE

DBMIST-US

(2020)
Density-based clustering

Graph-based
IR

CNN, ENN, TL, NCL, OSS

SBC, ClusterOSS, RUS, EUS

EE, BC, RUSBoost

Undersampling
ClusterOSS

(2014)

Cluster-based (k-means)

Local Information (1NN) IR OSS, RUS†, ROS, SMOTE, CBO

ClusterOSS+ROS‡

CUST‡ (2016)
Cluster-based (k-means)

Local Information (1NN) IR RUS, ROS, ClusBUS, SMOTE, OSS

OBU† (2018) Fuzzy-based clustering IR kmUnder

AdaOBU† (2020) Fuzzy-based clustering

Adaptive threshold
IR

SMOTE, BLSMOTE, kmUnder, SMOTE-ENN

SMOTEBag, RUSBoost, OBU, BoostOBU

MUTE (2011) Local Information (kNN) IR BLSMOTE, SLSMOTE, SMOTE

SMOTE-IPF‡

(2015)

Local Information (kNN)

Ensemble-based

Fine-Grain Search
IR SMOTE, SMOTE-TL, SMOTE-ENN

SLSMOTE, BLSMOTE

NB-Basic (2020) Local Information (1NN)

Cleaning NB-Tomek (2020) Local Information (kNN)

NB-Comm

(2020)
Local Information (kNN) IR SMOTE, BLSMOTE, ENN, kmUnder, OBU

NB-Rec† (2020)
Local Information (kNN)

Fine-Grain Search

MWMOTE‡

(2014)

Cluster-based (hierarchical)

Density information

Local information (kNN)
IR SMOTE, ADASYN, RAMOBoost

ASUWO‡

(2016)

Cluster-based (hierarchical)

Local information (kNN)

Classification Complexity
IR ROS, SMOTE, BLSMOTE, SLSMOTE

kmUnder, ClusterSMOTE, CBO, MWMOTE

IA-SUWO‡

(2020)

Cluster-based (hierarchical)

Local information (kNN)

Classification Complexity

Adaptive Weighting

IR
ROS, SMOTE, BLSMOTE, ADASYN

SLSMOTE, ClusterSMOTE, MWMOTE

A-SUWO, ISMOTE, kmSMOTE

Oversampling

NI-

MWMOTE†‡

(2020)

Cluster-based (hierarchical)

Local information (kNN)

Classification Complexity

Density information

IR
ROS, SMOTE, BLSMOTE, ADASYN

SLSMOTE, ClusterSMOTE, MWMOTE

A-SUWO

PAIO†‡ (2020)
Density-based clustering

Local information (kNN) IR ROS, SPIDER, SMOTE, SLSMOTE

MWMOTE, SMOM, INOS, MDO, RACOG

CCR†‡ (2017) Hypersphere Coverage IR SMOTE, ADASYN, BLSMOTE, SMOTE-TL

SMOTE-ENN, NCL

G-SMOTE‡

(2019)
Hypersphere Coverage IR ROS, SMOTE

SDPM†‡ (2018)

Ensemble-based

Local Information (kNN)

Undersampling
IR EE, NBLog, RF, NB, SMOTE+NB

RUS+NB, DNC, SMOTEBoost, RUSBoost

CluAD-EdiDO

(2020)

Ensemble-based

Cluster-based

Local information (kNN)

Oversampling

IR and OR

SMOTE, SMOTEBag, RUS, ROS, RUSBoost

KNOS, DOVO, DOAO, MDO, DECOC

GP-ECOC

Soft-Hybrid†

(2015)

Region Splitting

Cluster-based

Local and

Density information

IR and F1 SVM, RBFN

SVM/RBFN:(ROS, RUS, SMOTE)

To be continued on the next page. . .

147



Chapter 5

Table 5.2: Continued from previous page.

Category Approach Information Measures Compared Methods

OSM (2018)

Region Splitting

Fuzzy Logic (Fuzzy SVM)

Cost-sensitive

Local Information

(kNN and 1NN)

IR and OR
SVM, SVM+RUS, SMOTE-SVM, SDC

SVMBoost, FSVM-CIL, EFSVM

EMatMHKS, 1NN

Other

Approaches
EVINCI (2019)

Evolutionary-based

Ensemble-based

Graph-based

Local Information (1NN)

IR and N1 SMOTEBag, RUSBag, ROSBag, Adaboost

RUSBoost

EHSO‡ (2020)

Evolutionary-based

Local Information (kNN)

Undersampling
IR and OR

RUS, NCL, NM, IHT, RENN, AkNN, OSS

ROS, SMOTE, BLSMOTE, ADASYN

SMOTE-ENN, SMOTE-TL, RBO

SMOTE-CCA, CCR

MBP-GGE

(2013)

Hybrid Approach

Graph-based

Cost-sensitive

IR SBP, MBP, SBP+GGE, SMOTE, RUS

SMOTE+GGE

BoostOBU (2020)

Hybrid Approach

Fuzzy-based clustering

Local Information (kNN)

Oversampling

Undersampling

IR

SMOTE, BLSMOTE, kmUnder, SMOTE-ENN

SMOTEBag, RUSBoost

OBU, AdaOBU†

ImWeights (2018)

Hybrid Approach

Cluster-based

Local information (kNN)

Cost-sensitive

IR and Data

Typology
ROS, BLSMOTE, ADASYN

†: The approach obtained superior performance with respect to sensitivity results.

‡: The approach obtained superior performance with respect to Area Under the Curve (AUC) results.

OR refers to Overlapping Ratio, which may differ between approaches (please refer to the discussion).

EUS[155], EE[267], BC[267], RUSBoost[381], kmUnder[470], SMOTEBag[455], RAMOBoost[87], Cluster-SMOTE[2], ISMOTE[86]

kmSMOTE[120], INOS[76], MDO[14], SMOM[485], RACOG[106], NBLog [308], DNC[456], SMOTEBoost[432], SDC[20]

SVMBoost[465], FSVM-CIL[49], EFSVM[131], EMatMHKS[484], RUSBag[42], ROSBag[455], NM[303], IHT[353], RENN[242]

AkNN[242], RBO[239], SMOTE-CCA[468], KNOS[374], DOVO[152], DOAO[227], DECOC[53], GP-ECOC[258].

5.7.1 Undersampling Approaches

Undersampling approaches focus on removing redundant majority examples from data and

often involve the application of cluster-based methods, thus taking advantage of structural

overlap information to identify and characterise overlapping regions in the domain. Based

on the internal behaviour of methods proposed in related research, we further divided

cluster-based methods into three main types: density-based, neighbourhood-based, and

fuzzy-based approaches.

Density-based approaches make use of information regarding the density of manifolds to

define clusters in data and often rely on the well-known DBSCAN algorithm [129]. A

recent example is ClusBUS [105], which discards majority examples lying on overlapping

regions by using DBSCAN to find clusters that contain both minority and majority ex-

amples, and removing enough majority examples to define a vacuum region surrounding

minority examples. As previously discussed in Section 5.6, structural overlap measures

may observe a combination of both geometrical and graph-based properties (e.g., hyper-

sphere coverage and MST), and include measures of data sparsity and density of manifolds.

Similarly, density-based undersampling algorithms often incorporate both density-based

and graph-based procedures. DBMUTE [61] uses DBSCAN to define a blemished graph

and eliminate majority examples from the overlap region. DBMIST-US [174] handles
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overlapping and noisy majority examples through a combination of DBSCAN clustering

with a MST.

When the clustering algorithm is k-means, the undersampling approaches rely mostly on

neighbourhood-based information (distances between examples). In the context of im-

balanced and overlapped domains, k-means is used to define the major core concepts in

data, whereas complicated or redundant examples are further removed from the train-

ing set. ClusterOSS [175] is an extension of OSS (One-Sided-Selection [242]) that uses

k-means to choose the candidate majority examples to start the OSS algorithm. After-

wards, borderline and noisy majority examples are removed using Tomek links [421]. In

turn, CUST [10] first removes borderline majority examples using Tomek links and the

remaining redundant and noisy majority examples are eliminated after k-means analysis.

Finally, some approaches consider soft-clustering algorithms to look for (and eliminate)

overlapping majority examples. This is the case of OBU [447], which uses Fuzzy C-means

to establish class-membership degrees to majority data examples. Indecisive examples

(those with unclear membership) are considered to be overlapped and are therefore re-

moved. AdaOBU [444] further incorporates an adaptive elimination threshold in OBU

allowing its generalisation to datasets with varying overlap degrees.

5.7.2 Cleaning Approaches

Cleaning approaches focus on cleaning the training set by eliminating redundant and/or

harmful examples for classification. They may remove examples only from the majority or

minority classes, or both (in a two-classification problem). In imbalanced and overlapped

domains, however, cleaning approaches are often used as undersampling approaches, since

the eliminated examples are often exclusively from the majority class.

All cleaning approaches consider local information, i.e., they commonly rely on instance-

level overlap. Some focus on cleaning complicated examples near the decision boundaries,

thus analysing local data characteristics (data typology or instance hardness). Accord-

ingly, they determine the safeness level of individual examples to define which should be

removed (e.g., evaluating 1NN rules, kDN rules or searching for borderline examples).

Others offer a more deep cleaning throughout the entire domain, handling examples that

may be located far from the class borders.

Let us start with more seminal cleaning approaches, which were traditionally conceived

to eliminate harmful examples irrespective of their class, and focused mostly on border-

line examples. Tomek Links (TL) [421] define a pair of examples from different classes

that are each other’s closest neighbours, and can be used as a cleaning approach (remov-

ing both examples) or undersampling approach (removing just the majority point). The

Condensed Nearest Neighbour Rule (CNN) [182] eliminates redundant examples

by keeping only a consistent subset of examples, i.e., those from which a 1NN rule would
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be able to correctly classify the remaining. Similarly, CNN can be used as an under-

sampling approach (US-CNN) by keeping all minority examples and producing a subset

of majority examples. The One-Sided-Selection (OSS) technique [242] can alleviate

the problem of class overlap in imbalanced domains by combining US-CNN and TL to

remove redundant, borderline, and noisy majority class examples in data. The Edited

Nearest Neighbour (ENN) rule [248] removes data examples that are misclassified by

their k-nearest neighbours (typically k = 3). It can be used as an undersampling method

by eliminating only majority class examples. Similarly, the Majority Undersampling

Technique (MUTE) [63] eliminates majority examples whose k-neighbourhood is en-

tirely from the minority class and can therefore be considered a cleaning approach as well.

Finally, another well-known cleaning approach is the Neighbourhood Cleaning Rule

(NCL) [253], which is similar to OSS, although it emphasises more the data cleaning

procedure by using ENN.

These are some well-established cleaning approaches that can be used as (or incorpo-

rated in) undersampling approaches, or even coupled with oversampling approaches (e.g.,

SMOTE-TL and SMOTE-ENN [123]). Cleaning approaches have proven to enhance clas-

sification results by removing overlapped examples that existed in the original training

dataset or that were created during the synthetisation of new examples [387].

Overall, the above approaches aim to clean complicated examples near the class bound-

aries, therefore focusing mostly on borderline regions. However, as previously discussed,

despite the fact that borderline examples are a frequent representation of class overlap,

there are other types of examples scattered throughout the domain that also contribute

to class overlap. Most recently, Pattaramon et al. [445] proposed a set of cleaning ap-

proaches (used for undersampling) that focus on providing a deeper level of elimination of

harmful examples. They are all based on neighbourhood analysis (instance-level overlap)

and therefore identified with the NB- (i.e., “neighbourhood based”) prefix. The Basic

Neighbourhood Search (NB-Basic) removes any majority example that has a minor-

ity neighbour. The Modified Tomek Link Search (NB-Tomek) removes any majority

example with a minority neighbour, only if it appears within the k-neighbourhood of that

minority example. In the Common Nearest Neighbours Search (NB-Comm), the

common majority nearest neighbours of any two minority examples are identified as over-

lapped examples and removed. Finally, the Recursive Search (NB-Rec) combines

local information with multiresolution (fine grain search) information. It starts with the

majority examples to be eliminated by NB-Comm and uses them as secondary queries for

NB-Rec. The majority examples that are the common nearest neighbours of any pair of

these secondary queries are then eliminated as well. By introducing this extension, a finer

grain-search criteria is provided and as a result, a larger number of overlapped majority

examples is detected and removed.
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5.7.3 Oversampling Approaches

Oversampling approaches generally focus on generating new minority examples to mitigate

the problem of class imbalance. In overlapped domains, the main concern of oversampling

approaches is to increase the representation of minority examples in specific regions of the

data space. For that reason, they often rely on instance-level overlap (local information)

to look for candidate examples to guide the synthetisation process.

By far, the most well-known oversampling approach is the Synthetic Minority Over-

sampling Technique (SMOTE) [433]. Although it successfully balances the data do-

main, SMOTE has no particular mechanism to alleviate class overlap and may even gen-

erate overlapping examples if the oversampling procedure occurs near the class borders

or includes noisy examples located within the majority class (the problem of overgeneral-

isation [139]). However, over the years, several modifications of SMOTE have been pro-

posed [238], more and more tailored to certain characteristics of the data domain, including

class overlap. Some approaches focus either on improving the representation of examples

in the borderline regions between classes (Borderline-SMOTE), or in safe regions of the

data space (Safe-Level SMOTE) [62, 180]. Other approaches search the entire domain

and give a higher weight to examples that are harder to learn and should therefore be over-

sampled more often (ADASYN) [186]. To do so, they mostly consider instance-hardness

and data typology information, namely variations of the kDN measure. Also considering

instance-hardness information are the approaches that incorporate cleaning procedures.

These often couple SMOTE with some of the cleaning procedures discussed above, namely

SMOTE-ENN, SMOTE-TL [123], and SMOTE-IPF [9]. SPIDER [407] is another

example, which couples oversampling with deletion of noisy examples. In this case, SPI-

DER also redirects the oversampling towards either only borderline or both borderline

and safe regions, depending on the chosen amplification.

Although there are different variations, these approaches are based on the same underlying

information that considers the kDN of each minority example to decide on their proba-

bility of oversampling and/or their removal from the dataset. Despite the fact that these

approaches generally improve the performance of classifiers over imbalanced and over-

lapped domains, they have well-known handicaps [387]. Several SMOTE-like methods, by

using the same interpolation as SMOTE, are prone to the problem of overgeneralisation,

and may generate examples in overlapping areas. Also, in some cases, if the probability

of examples to be oversampled is the same across the domain, some redundant minority

examples might be oversampled unnecessarily. Finally, noisy minority regions can also

be oversampled and remain even after the cleaning procedure. These handicaps occur

because the above approaches are focused only on analysing local information, disregard-

ing the structure of both minority and majority classes. Thus, recent research is starting

to explore approaches that also consider other types of information, namely structural

information.
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As previously discussed, one popular way to consider structural information of the domain

is via clustering approaches. To that regard, AHC [95], CBO [214], DBSMOTE [64],

and MWMOTE [44] are popular oversampling cluster-based approaches that attend

simultaneously to structural and instance-level overlap information on the domain. To this

regard, MWMOTE has proven to be a strong competitor over traditional oversampling

approaches, due to its further ability to aggregate other types of operations (clustering,

cleaning, and adaptive weighting of examples) [387].

Similarly, other recent oversampling algorithms are starting to combine different types

of information (structural overlap, data typology, and instance hardness) and operations

(clustering and cleaning). ASUWOs [323] synthesises more examples in the sub-clusters

with higher misclassification error. IA-SUWO [457] is an extension of ASUWO that con-

siders a different weighting scheme for minority examples (least squares support numerical

spectrum values) and the k-information nearest neighbour method in the oversampling

stage. NI-MWMOTE [458], a MWMOTE extension, starts by adaptively removing

noise. Then, it uses AHC to segment the minority class examples and adaptively deter-

mine the number of examples to synthesise in each sub-cluster using misclassification error

as a measure of cluster complexity. The oversampling is performed using MWMOTE. An

interesting detail of NI-MWMOTE is that it also uses information regarding the density

of manifolds (neighbours’ density) to distinguish between suspected and real noise. An-

other example is PAIO [486], which divides the minority examples using a density-based

clustering method similar to DBSCAN (NBDOS), and then defines different interpolation

strategies for each type of minority examples. In this case, rather than the standard data

typology defined by k-neighbourhood analysis, PAIO uses NBDOS to distinguish between

inland examples, borderline examples, and trapped examples.

There are also recent approaches where clustering is more aligned with the concept of

hypersphere coverage. CCR [240] combines cleaning with oversampling by introducing

a energy-based ball coverage strategy. Each minority example has an associated sphere

and energy budget, and the sphere is expanded until there is no available energy. When

the expansion can no longer proceed, the majority examples are pushed out of the spheres

(though not eliminated). The oversampling stage relies on the spheres produced during the

cleaning stage. For every minority example, new examples are generated within its sphere,

where the proportion of examples to generate is inversely proportional to the radius of the

sphere. G-SMOTE [119] replaces the interpolation method used by SMOTE to define

a flexible geometric region (a truncated hyperspheroid) where the synthetisation of new

examples occurs. A minority example and one of its nearest minority neighbours are used

to define a hypersphere where the new synthetic example will be generated. Through a set

of geometric hyperparameters, the hypersphere can be transformed to represent different

configurations (hyperspheroids) and parameters can be tuned for optimal performance.

Overall, we are witnessing a shift towards approaches that combine multiple sources of
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information (local and structural information) and couple different operations to achieve

optimal results. The main objective is that new approaches address the existing limitations

of their predecessors, while increasingly adapting to the characteristics of the domains.

5.7.4 Other Approaches

Undersampling, oversampling, and cleaning approaches are by far the most common in

the field. Herein, we discuss other emergent approaches to handle imbalanced and over-

lapped domains. These are based on different paradigms, namely Ensembles, Region

Splitting, Evolutionary, and Hybrid Approaches.

Ensembles are based on the combination of different classifiers, called base classifiers.

Each base classifier is trained over the data domain and the individual predictions are

combined to produce the final decision. The model resulting from that aggregation is the

ensemble, which is then used to classify new data examples [463]. In imbalanced learning,

popular ensembles are Boosting (commonly AdaBoost) [145, 146] and Bagging [60]. How-

ever, the traditional use of ensembles (simply combining classifiers) may not be sufficient

to handle imbalanced and overlapped domains [135]. On contrary, ensembles are com-

monly coupled with resampling (undersampling or oversampling), and cleaning strategies,

in order to adapt to the peculiarities of these domains.

SDPM [85] combines class overlap reduction and ensemble imbalance learning. First,

NCL cleaning is used to remove the overlapping examples. Then, the data is randomly

undersampled several times to produce different subsets that are trained by different clas-

sifiers. The final classification model is built by assembling the base classifiers through

the AdaBoost mechanism. CluAD-EdiDO [88] was developed to handle multi-class

imbalanced and overlapped datasets. First, a clustering-based adaptive decomposition

is applied to generate an adaptive number of clusters. Then, an editing-based diversi-

fied oversampling method is used to address class imbalance and overlapping in different

clusters. For the overlapping problem, a cleaning technique is used (removing examples

with complicated neighbourhoods) whereas the class imbalance problem is alleviated by

SMOTE or DKNOS [88, 374], depending on the type of example. Finally, an ensemble

learning framework is used to select the best classification algorithm for each cluster.

Region Splitting approaches (same as separating scheme approaches [467]) separate

the data domain into non-overlapping and overlapping regions (or safe and overlapping

regions). Then, each region is handled independently, by different classifiers or using

different parametrisations of the same classifier (e.g., different k values in kNN, different

SVM hyperparameters) [413, 414].

In the last couple of years, this “divide-and-conquer” strategy has been popular in im-

balanced and overlapped domains. Soft-Hybrid [443] divides the data domain into non-
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overlapped, borderline, and overlapped regions using the modified Hausdorff distance [340],

Radial Basis Function Networks (RBFN), and k-means. After the boundaries of each

region are found, DBSCAN is applied to the borderline regions, whereas RBFNs are con-

sidered for the remaining. OSM [246] separates the data space into soft and hard overlap

regions. Soft-overlap regions are classified using the decision boundary of the OSM clas-

sifier (a modified fuzzy SVM), whereas hard-overlap regions are classified using 1NN.

An important feature of OSM is the integration of instance-level overlap (defined using

kNN) and global information regarding class imbalance (via the Different Error Cost al-

gorithm [49]) to produce overlap-sensitive costs (weights) that are further incorporated in

its optimisation function.

Evolutionary Algorithms (EAs) are nature-inspired solutions, often associated to bi-

ological processes, such as reproduction, mutation, and recombination [399]. The process

of finding an optimal solution is based on a natural selection mechanism: the weakest

solutions are eliminated whereas the strongest are retained in the subsequent evolutions.

In imbalanced and overlapped domains, EAs are used to select a representative set of

examples from the training set that simultaneously minimise the imbalance ratio, improve

the representation of the minority class in overlap regions, and avoid information loss.

EVINCI [352] uses a multi-objective evolutionary algorithm (NSGA-II [110]) to selec-

tively reduce the concentration of redundant majority examples in the overlapping areas,

thus improving the representation of minority examples in these areas. EHSO [487] finds

overlapping regions by analysing the local neighbourhood of each majority example. If a

given majority example has at least one minority class neighbour, then it is considered

an overlapping example. Then, overlapping majority examples are removed in a way that

the decision boundary between classes is maximised while preserving the original data

information as much as possible through the use of CHC evolutionary algorithm [201].

Finally, Hybrid approaches may aggregate a series of features from the previous methods.

As discussed throughout this section, several of the listed approaches can be considered a

hybridisation of others. For instance, certain oversampling approaches have a data cleaning

component (e.g., SMOTE-TL), while ensembles, region splitting, and EA approaches are

often coupled with resampling (oversampling, undersampling), and cleaning techniques.

Herein, we highlight recent hybrid approaches explored in the context of imbalanced and

overlapped domains.

MBP-GGE [26] uses a modified back-propagation multilayer perceptron to improve the

visibility of the minority class during the training process. Additionally, it eliminates ma-

jority examples in overlapping regions using the Gabriel Graph Editing technique (GGE).

BoostOBU [444] improves the detection of majority class examples in the overlapping

region, reducing excessive elimination. First, it applies Borderline-SMOTE to emphasize

the minority class borders. Then, AdaOBU is applied. ImWeights [251] combines struc-
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tural and local information to preprocess imbalanced data by simultaneous clustering and

categorising minority examples. First, it uses ImGrid clustering [250] to produce a grid of

cells containing information on the types of minority examples and existing minority sub-

clusters. Then, examples are weighted according to both their safety and their distance

to neighbouring minority clusters, using a gravity concept. The final weights can then be

incorporated into the learning process of classifiers.

5.7.5 Summarising Comments

Throughout the previous sections, we have carried out a thorough review of the state-

of-the-art class overlap-based approaches used in imbalanced domains. Additionally, we

proposed a new taxonomy of methods that resonates with the representations of class

overlap they are associated to. Overall, it is possible to identify some trends regarding

class overlap-based methods, which we summarise in what follows.

Undersampling approaches are more prone to consider structural information, via clus-

tering and graph-based approaches. These strategies are used to establish the regions

of interest of the data domains (core concepts) and discard redundant and overlapped

examples.

Alternatively, cleaning and oversampling approaches prioritise local information, mostly

evaluating instance-level overlap. In cleaning approaches, the value of k determines the

depth of the cleaning procedure (either addressing borderline regions or the entire domain).

To this regard, multiresolution information (fine-grain search) has also been explored

successfully to recursively remove harmful examples.

Oversampling is increasingly moving towards parametrised approaches that adapt the

generation of new examples to the characteristics of data. There is also some concern with

the generation of examples that are both informative and diverse (e.g., PAIO, G-SMOTE).

This allows the generation process to cover more regions of the data space and alleviate

the structural complexity of datasets to some extent. Oversampling approaches therefore

seem more flexible, but may require a large number of user-defined parameters, for which

there is not yet an established relationship with data characteristics.

Finally, is not uncommon for approaches to share some paradigms (e.g., local, structural,

and density information, fuzzy logic, and cost-sensitive strategies). This goes towards

the idea that class overlap has different vortices of complexity, and addressing them al-

together could potentially improve results. Also, there is a considerably lower number of

approaches developed within the scope of ensembles, evolutionary, region splitting, and

hybrid approaches, which may be due to the lack of current knowledge on the joint-effect

of class imbalance and overlap on different learning paradigms. This motivates the need

to put forward some insights regarding the footprints of different families of classifiers, as

we have performed in Section 5.4.
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Nevertheless, as stated at the introduction of this section, it is still premature to derive

recommendations for researchers regarding class overlap-based methods on the basis of

related research. On that note, Table 5.2 provides an overview of class overlap-based

approaches, referring to the proposed taxonomy, the information considered by each ap-

proach, the type of data characterisation provided (i.e., whether both class imbalance and

overlap are measured and how), and the benchmark of methods used for comparison.

Let us first discern why it is not possible to support the application of one approach (or

category of approaches) over the others from a theoretical point of view, i.e., based on the

internal behaviour of approaches. First, despite the extraordinary flexibility of oversam-

pling methods, the generation of synthetic examples becomes a more complicated task in

overlapped domains due to the risk of further exacerbating class overlap, i.e., generating

examples in problematic regions. This may be been attenuated to some extent by the

development of more refined approaches, but at the cost of increasing computational com-

plexity and interpretability (too many user-defined parameters to tune). Secondly, the

advantage of oversampling techniques due to their ability of considering the inner struc-

ture of data [159] may not hold for imbalanced and overlapped domains. Indeed, most

recent undersampling and cleaning approaches also consider structural and local informa-

tion of the domains and have proven to surpass well-established oversampling algorithms

(Table 5.2). Finally, there are obvious advantages in using other types of approaches, such

as the incorporation of data complexity and classification performance in multi-objective

evolutionary approaches, or the combination of multiple reasoning paradigms when using

ensembles.

There are further limitations found in current research that make it impossible to provide

an evidence-based recommendation of strategies to handle imbalanced and overlapped

domains. Let us conclude this section by discussing the most important.

For the most part, the comparison of class overlap-based methods remains limited to

well-established approaches (e.g., ROS, RUS, SMOTE, Safe-Level-SMOTE, Borderline-

SMOTE) which have been frequently outperformed. It is also not uncommon to find that

some class overlap-based approaches are compared with their analogous class imbalance

(i.e., distribution-based) approaches, rather than approaches developed for the same pur-

pose (i.e., handling both class imbalance and overlap). Thus, it would be informative to

compare approaches of the same category (e.g., DBMIST-US versus AdaOBU), as well as

approaches of different categories (e.g., DBMIST-US, NB-Comm, and NI-MWMOTE).

Furthermore, despite many methods are being proposed to overcome class overlap, there

is a clear lack of information on how datasets are affected by this problem, i.e., only a

few works provide a characterisation of class overlap. In fact, in most of the related work,

the used datasets are not characterised beyond their number of examples, features, and

imbalance ratio (Table 5.2). In terms of improvements with respect to class overlap, the

approaches are evaluated from a theoretical perspective, according to their inner behaviour
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and the effects of their application on classification performance, and without real empirical

validation. It is suggested that class overlap is alleviated since the classification results

improve, although no class overlap measures are analysed to support such claim. Hence,

it would be crucial to evaluate class overlap measures before and after the application

of methods to fully characterise their ability to solve the problem and perform a fair

comparison between approaches.

Finally, since no standard measure of class overlap is yet established, related research

resorts to different measures to characterise the domains, similarly to what was observed

for seminal work on synthetic datasets (Section 5.2). Some works refer to specific measures

(F1, N1, or data typology), while others refer to a generic Overlapping Ratio (OR), which

is based on different variations of instance-level overlap measures. Beyond not using a

standard measurement of class overlap, related work is in fact focusing on distinct vortices

of class overlap, by using measures that capture different dimensions of the problem.

Again, it becomes clear that there is much to be explored regarding the joint-effect of class

imbalance and overlap, and why a unified view of the problem is necessary for perceptive

advances in the field.

5.8 Open Challenges

Class overlap is currently one of the major difficulty factors affecting classification per-

formance in imbalance domains. Although previous research was able to establish some

insights regarding the joint-impact of class imbalance and overlap on classification per-

formance, the critical analysis presented in this chapter shows that there is still a lot to

uncover. As discussed throughout Section 5.5, seminal work on synthetic data suffered

from three major shortcomings, which have not yet been completely solved for real-world

domains (as discussed in Sections 5.6 and 5.7):

Class overlap is not mathematically well-established:

Contrary to class imbalance, there is not a well-established formulation and mea-

surement of class overlap for real-world domains, despite the fact that several data

complexity measures have been discussed throughout the years. This leads to the

lack of characterisation of class overlap across recent research and prevents a deeper

analysis and comparison of proposed approaches.

Class overlap assumes different representations:

Due to the lack of a standard measurement of class overlap, related research on

real-world domains uses different measures that may be focusing on distinct vor-

tices of the problem, which further complicates the comparison between approaches.

Nevertheless, it is possible to associate the underlying principles of existing class
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overlap-based approaches to the class overlap representations they are sensitive to.

Thoroughly characterising class overlap in real-world domains would be instrumen-

tal to guide the choice of appropriate approaches and the development of specialised

methods.

The class overlap degree does not take other factors into account:

Recent advances in the field show that there is an increasing interest in the study of

class overlap measures that account for other characteristics of data, especially class

imbalance [176, 177]. Some well-established measures have recently proved to be bi-

ased indicators in the presence of class imbalance, and consequently new adaptations

are starting to emerge. Beyond class imbalance, it seems that future research will

gravitate around the idea that class overlap comprises multiple sources of complexity,

and that new measures need to account for its heterogeneous nature [103].

In this work, we provide a comprehensive view of the joint-effect of class imbalance and

overlap, and discuss new perspectives in light of the limitations found in related research.

In sum, the research community needs to move towards a unified view of the problem of

class overlap in imbalanced domains regarding three main topics:

1. Representations of class overlap:

It is important that the research community comes together in establishing impor-

tant concepts associated with class overlap, and defining the types of degradation

they are associated to, i.e., their impact on classification performance. To this re-

gard, the ideas explored in this work regarding distinct representations of class over-

lap aim to start the discussion among researchers. Following directions should be

taken in order to fully understand the problem of class overlap in real-world domains:

• The study of public repositories (e.g., UCI, Kaggle, KEEL, OpenML [24, 115,

223, 330]) in what concerns the analysis of data intrinsic characteristics would

be an important contribution to future research. With respect to the problem of

class overlap, the taxonomy provided in Section 5.6 allows to group datasets de-

pending on their dominant overlap representation. Accordingly, some domains

may be conceptually intertwined (structural overlap), whereas others may be

mostly affected by complicated examples (referring to instance-level overlap).

We are currently conducting a large experimental study over imbalanced and

overlapped datasets, focusing on distinct representations of class overlap and

the ability of the identified groups of class overlap complexity measures to effec-

tively characterise them. Also with respect to the established representations

of class overlap, it would be interesting to study the effect of each type of degra-

dation (and their combination) on the performance of classifiers with distinct

learning paradigms;
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• The enhancement of existing repositories with artificial datasets or with real-

world datasets modified via data morphing [97, 369] or evolutionary algo-

rithms [6, 295, 351, 434] is also a possibility for future research. In such a

way, the diversity of current repositories can be improved by tailoring the new

datasets to specific sources and ranges of data complexity (e.g., introducing spe-

cific vortices of class overlap, more complex data structures, and class skews);

• In the scope of artificial data generation, we recommend the multidimensional

data generator described in [462], for which we provide the documentation in

English so that more researchers are able to understand and configure it. Ad-

ditionally, we include our example collection of generated artificial datasets, as

well as visualisation modules for data typology.2 We welcome other researchers

to contribute with their own research data in order to move towards the creation

of a representative repository of data complexity factors, beyond imbalanced

and overlapped datasets.

2. Characterisation and quantification of class overlap:

Future research should keep moving towards the definition of measures with broader

points of view, i.e., that are able to combine different representations of class overlap

and consider other factors, namely class imbalance. On that note, the discussion pre-

sented in Section 5.6 can serve as stepping stone. It provides an overview of existing

class overlap measures and the class overlap representations they are associated to,

the type of insights they provide, and whether they consider additional complica-

tions (e.g., class imbalance). The following directions may guide future researchers

towards a better insight into the characterisation of the class overlap problem in

imbalanced domains:

• Acknowledging class overlap as a heterogeneous concept, the development of

new measures that combine several sources of complexity/information is per-

haps the most pressing topic for future research. To this point, existing com-

plexity measures focus on assessing individual properties of data, whereas real-

world domains require more perceptive and flexible sets of measures. In that

regard, our proposed taxonomy may be a starting point to the exploration of

measures with broader points of view, namely in what concerns the combination

of class overlap representations and associated insights;

• Beyond the measures identified in Figure 5.4 and highlighted in Section 5.6.5,

which have been designed or adapted to account for class imbalance, the re-

maining should be further investigated in imbalanced domains;

• The development of approaches to assess other learning tasks other than binary-

classification problems, namely multi-class domains, also remains a topic for fu-

ture research. Most class overlap measures are studied over binary-classification

2https://github.com/miriamspsantos/datagenerator
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domains, and current adaptations to class imbalance (i.e., class decomposition)

may not be adequate to the evaluation of multi-class problems [88, 153, 327,

369].

3. Benchmark of approaches for imbalanced and overlapped domains:

It would be important to provide a benchmark of approaches that simultaneously

handle class imbalance and overlap, in light of the ideas discussed throughout this

work. It is crucial to compare state-of-the-art approaches with each other, rather

than with well-established methods. Also, a more insightful characterisation of

datasets is necessary. It is fundamental to fully characterise the problem of class

overlap in the domains, so that improvements introduced by the approaches are

more profoundly assessed. Also, the characterisation of domains is essential to infer

on the behaviour of approaches with distinct underlying mechanisms. To this regard,

the summary of existing benchmarks and the taxonomy proposed in Section 5.7 is a

good starting direction. The development of new approaches to handle imbalanced

and overlapped domains may take into consideration the following directions:

• Future research should evaluate new proposed approaches against emergent

methods developed during recent years, rather than limiting the analysis to

well-established approaches. It is also important to consider a deeper charac-

terisation of datasets, beyond the number of examples, features, and imbalance

ratio. The same is true regarding the standardisation of performance metrics.

These aspects are crucial to guarantee a fair evaluation and comparison of ap-

proaches;

• A large number of class overlap-based approaches is based on the evaluation

of complicated examples (e.g., borderline, noisy examples), mostly relying on

the assessment of instance-level overlap. New studies in the field should explore

other vortices of class overlap simultaneously, to produce more robust solutions;

• Future work should consider sharing the source code and obtained results of

proposed approaches, in order to guarantee the reproducibility of research re-

sults. Regarding imbalanced and overlapped domains, we provide a collection

of related resources (data and code), which researchers may consider in future

experiments.3 Additionally, we provide an extended Python library – Python

Class Overlap Library (pycol)4 – comprising the class overlap complexity mea-

sures discussed in Section 5.6, to encourage a more comprehensive study of the

problem of class overlap.

Addressing these avenues would provide a renewed and improved view of the problem,

ultimately leading to important advances in the field.

3https://github.com/miriamspsantos/open-source-imbalance-overlap
4https://github.com/miriamspsantos/pycol
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5.9 Conclusions

In this work, we address the joint-effect of class imbalance and overlap in classification

tasks, from precursor work to most emergent approaches, showing that their combination

is still not completely understood. Accordingly, this chapter may be divided into two main

parts.

First, we start by discussing the insights derived from previous work on the topic, as

well as existing limitations. We focus particularly on the analysis of some neglected,

although important, aspects left undiscussed in seminal research, namely i) the influence

of intrinsic data characteristics (data decomposition, data structure, data dimensionality,

data typology) on the classification performance for imbalanced and overlapped domains,

and ii) the characterisation of the footprints of classifiers with distinct learning biases in

this context. The analysis of related research culminated in the identification of limitations

regarding the characterisation of the problem of class overlap in real-world domains and

finally, to the acknowledgement of class overlap as a heterogeneous concept, comprising

multiple sources of complexity.

Accordingly, we move towards the second part of this work, discussing the key concepts

associated to the identifiability and quantification of class overlap, and the most recent

approaches to address the problem in real-world domains. In that regard, we first propose

a novel taxonomy of class overlap complexity measures, comprising four main class overlap

representations: Feature Overlap, Structural Overlap, Instance-Level Overlap, and Mul-

tiresolution Overlap. A comprehensive set of complexity measures associated with class

overlap is thoroughly reviewed, and each measure is included in one of the established

groups, depending on which representation it is able to capture. Then, the most emer-

gent class overlap-based approaches in imbalanced domains are analysed following the

same perspective: we further present a taxonomy of class overlap-based approaches asso-

ciating their underlying behaviour to the class overlap representations they are attentive

to. In other words, the taxonomy of class overlap-based approaches is aligned with the

established taxonomy of class overlap complexity measures.

In sum, this work provides a unique view of the joint-problem of class imbalance and

overlap, discussing important concepts from related research, exploring new perspectives

and ideas, and establishing key insights that may hopefully encourage future researchers

to move towards a unified view of the problem and inspire the development of novel

approaches that account for the peculiarities of imbalanced and overlapped domains.
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Chapter 6

A Unifying View of Class Overlap

and Imbalance: Key Concepts,

Multi-View Panorama, and Open

Avenues for Research

As established in the previous chapter, due to the lack of a well-formulated definition and

measurement of class overlap in real-world domains (especially in the presence of class

imbalance) the research community has not yet reached a consensus on the characterisa-

tion of both problems. This naturally complicates the evaluation of existing approaches to

address these issues simultaneously and prevents future research to move towards the de-

vise of specialised solutions. In this chapter, we advance the ideas discussed in Chapter 5,

pushing forward a unified view of the problem of class overlap in imbalanced domains.

Acknowledging class overlap as the overarching problem – since it has proven to be more

harmful for classification tasks than class imbalance – we start by discussing the key con-

cepts associated to its definition, identification, and measurement in real-world domains,

while attending to its characterisation according to multiple sources of complexity. We

then extend and systematise the taxonomy of class overlap complexity measures proposed

in the previous chapter by i) establishing the taxonomical components that guide the cre-

ation of the final groups of measures, ii) providing a deeper discussion on the link to what

specific types of class overlap problems these measures cover, while also highlighting their

intrinsic difficulties, and iii) evaluating the properties of the proposed taxonomy and its

implications for future research. Finally, we overview the current body of knowledge on

the topic across several branches of Machine Learning (Data Analysis, Data Preprocess-

ing, Algorithm Design, and Meta-learning), identifying existing limitations and discussing

possible directions for future work.
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6.1 Introduction

In Data Science classification problems, researchers often find that they compile data with

uneven class representation, which generally degrades the performance of many standard

machine learning models, independently of their learning paradigms [107]. However, it is

currently well known that the observed class imbalance is not the sole responsible for this

undesired behaviour, but rather its combination with other difficulty factors, where class

overlap has been characterised as the most harmful among them [139, 157, 353].

Note how class imbalance may not be a problem per se. It refers to the disproportion

between class examples in the domain, which does not implicitly align with classification

complexity [387]. As an example, consider a linearly separable problem, where a standard

classifier will be able to obtain good performance, even if the domain is highly imbalanced.

On the contrary, class overlap is undeniably problematic, even in balanced domains. It

depicts a situation where examples from both classes (in binary-classification problems)

are located in the same region of the data space, thus compromising the definition of

clear decision boundaries [114, 272]. In imbalanced domains, this issue is however ex-

acerbated, since it may be in those overlapped regions that the minority examples that

exist are located. Hence, their recognition comprises a much more difficult scenario for

classifiers [178, 246]. Accordingly, class overlap stands as a more complex and overarching

problem in classification tasks, and will therefore be given a deeper discussion throughout

this chapter. In turn, class imbalance acts as an exacerbator and its relationship with class

overlap will be depicted throughout the definition, measurement, and characterisation of

the latter, notwithstanding the analysis of the synergy between both issues across several

fields of Machine Learning.

As illustrated in the previous chapter, the joint-effect of class imbalance and overlap has

been one of the major hot topics in research for the past two decades [70, 114, 157, 462] and

is still a trending question nowadays [147, 309, 393, 446]. Seminal work on the topic focused

on establishing class overlap as a difficulty factor for imbalanced domains, whereas ongoing

research mostly concerns the study of several forms of learning where the combination of

both issues may be problematic. Accordingly, while previous work focused on artificial

domains where class imbalance and overlap were synthetically generated, current research

aims to characterise both problems in real-world domains.

The identification and characterisation of class overlap in imbalanced domains is, how-

ever, a subject that still troubles researchers in the field since, to this point, there is no

consensual, clear, standard, well-formulated definition and measurement of class overlap

for real-world domains [446]. For the most part, current research heavily relies on the data

complexity measures originally proposed by Ho and Basu [220], despite the fact that many

other measures have been proposed throughout the years [35, 37, 58, 98, 256, 353].
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Nevertheless, data complexity measures have the limitation of focusing on certain indi-

vidual properties of data, although some data characteristics may simultaneously com-

prise several sources of complexity. More and more, researchers are gravitating around

the idea that class overlap, especially in combination with class imbalance, is such a

case [103, 176, 446]. It follows that class overlap arises as an heterogeneous concept,

encompassing distinct representations of the problem. Accordingly, certain complexity

measures are eximious in characterising some specific types of class overlap, while failing

to adequately capture others.

The main idea and contribution of this work therefore consists of putting forward a unified

view of the problem of class overlap in imbalanced domains, from the definition of the class

overlap problem and its characterisation in all dimensions (i.e., sources of complexity), to

the analysis of the most emergent topics in the field to address in the years to come. We

start by introducing the idea that class overlap is currently regarded as an umbrella term

that stands for a multitude of related, although distinct, problems, and discussing the key

concepts associated to its definition, identification, measurement, and characterisation in

real-world domains. Then, we map the relationship between existing data complexity

measures and the specific class overlap problems they cover, extending and systematising

the taxonomy of class overlap complexity measures proposed in Chapter 5. The taxonomy

aggregates a comprehensive set of measures proposed over the past years, beyond the well-

established data complexity measures of Ho and Basu [220]. Furthermore, it is especially

devised for the class overlap problem, while also identifying important adaptations of

complexity measures to simultaneously consider the class imbalance problem. Finally,

we provide a multi-view panorama on the joint-problem of class imbalance and overlap,

discussing the current state of knowledge and emerging challenges across four vital areas

of research in the field (Data Analysis, Data Preprocessing, Algorithm Design, and Meta-

learning), and present our view regarding promising future directions for research in each

of them.

In recent years, several outstanding survey papers have been published on the topic of

learning from imbalanced datasets in the presence of data difficulty factors. A book by

Fernández et al. [138] provides a comprehensive summary of the established data intrin-

sic characteristics and their added difficulty for classification tasks. Das et al. [107] give

an impressive bird’s eye view on data irregularities and their interrelation. Finally, Pat-

taramon et al. [446] provide an in-depth review of approaches that handle simultaneously

overlapped and imbalanced domains. Similarly, the field of data complexity measures has

also been a focus of intense research in the last couple of years. Most recent surveys in-

clude the research of Rivolli et al. [366], discussing existing data characterisation measures

for classification datasets (including data complexity measures), and Lorena et al. [80],

providing a detailed overview on data complexity measures and their use in the literature.
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Contrary to previous works (and the previous chapter), this work does not focus on pre-

senting an exhaustive review of related literature and existing approaches in the field, but

rather on fostering a unified view of the synergy between class imbalance and overlap.

First, it establishes our position regarding the definition and measurement of class overlap

in real-world domains, as well as its characterisation attending to distinct sources of com-

plexity. Then, it revisits the taxonomy of class overlap measures proposed in Chapter 5

and focuses on structuring its components, establishing the relationships between groups

of measures and highlighting the intrinsic difficulties of each group, and evaluating its

core properties and implications. Finally, it identifies the main open issues across several

research fields where the joint-effect of class overlap and class imbalance may severely

compromise the outcome of the applications, and suggests important directions to gain a

deeper understanding of this complex problem in each of the identified research fields.

Accordingly, this chapter is essentially divided into two main parts and may be navigated

as follows. Sections 6.2 and 6.3 comprise the first half of this work and consist of a

conceptual discussion of the class overlap problem. Section 6.2 moves towards a unifying

view of the problem of class overlap, establishing the key concepts for its definition and

characterisation, whereas Section 6.3 elaborates on the taxonomy of complexity measures

for class overlap. Then, Sections 6.4, 6.5, and 6.6 constitute the second half of this work,

focusing on the current state of knowledge about the dual problem of class imbalance

and overlap. These sections introduce the main novelty of this chapter (in comparison to

Chapter 5) and are structured in a rather modular format, so that the reader may navigate

them easily. Section 6.4 provides a panorama of the main developments across important

tasks in machine learning (Data Analysis, Data Preprocessing, Algorithm Design and

Meta-learning) and the limitations they currently face. Section 6.5 highlights the open

challenges identified within each field of Section 6.4 and discusses promising lines for

future research. In turn, Section 6.6 focuses particularly on data benchmarking and open

source contributions. Finally, Section 6.7 concludes the chapter, providing an overview

of the ideas discussed throughout this work, and summarising important directions that

the research community should debate for a renewed perspective on the problem of class

overlap in imbalanced domains.

6.2 A Unifying View of Class Overlap

The definition and characterisation of class imbalance is well described in the literature,

where the Imbalance Ratio (IR) and the percentage of minority examples (% Min) con-

stitute the formal measures in the field [138]. However, whereas class imbalance corre-

sponds to a distribution-based irregularity, class overlap may comprise multiple sources of

complexity and is therefore more complicated to assess [103, 107]. Herein we provide an

overview of the characterisation of class overlap, elaborating on the key concepts frequently
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discussed in related work.

The characterisation of the class overlap problem can be subdivided into three main se-

quential tasks, as shown in Figure 6.1. First, it important to decompose the data domain

into regions of interest. Then, the problematic regions (overlapped regions) need to be

identified. Finally, it is possible to proceed to the quantification/measurement of class

overlap, and establish its associated insight. Depending on the approaches applied to each

of these tasks, class overlap may be characterised from different perspectives, leading to

distinct representations of the problem (i.e., specific types of class overlap). Ultimately,

each representation is associated with different measures and perceptions regarding the

data domain. This measurement and characterisation of class overlap falls onto the scope

of data complexity measures and will be addressed in Section 6.3. First, let us discuss the

importance of establishing the key concepts and insights regarding the problem of class

overlap.

Handling  
Class Overlap

Learning 

Machine Learning 
Tasks

Decomposition of
the data domain

Identification of
overlapped regions  

Data Complexity Measures 

Quantification / Measurement

Characterisation of the 
class overlap problem

Insight / Representation

Hyperparameter Tuning 
Specialised Approaches 

Recommendation

Meta-knowledge 

Figure 6.1: An overview of the main tasks encompassed in the characterisation and analysis
of the class overlap problem: (1) decomposition, (2) identification, and (3) quantification
and insight. The characterisation of class overlap first requires the decomposition of the
data domain into regions of interest and the identification of the problematic (overlapped)
regions. Then, the chosen measure to quantify class overlap (and the insight that measure
unveils) will ultimately define the representation of the problem in the domain, i.e., the
specific type of class overlap that is being measured and analysed.

Note that once the overlapping regions are identified, it is possible to handle class overlap

directly (Figure 6.1). As illustrated in the previous chapter, this can be performed through

modifications of the data domain (e.g., cleaning approaches), algorithm modification, or

by handling simple and problematic regions separately, among others, depending on the

end goal. However, the difference between applying ad hoc solutions that globally ease the

problem, and performing informed, specialised decisions based on the characteristics of the

domain relies on a thoughtful understanding and characterisation of the class overlap prob-

lem. If such meta-knowledge is available, then it is possible to guide the recommendation
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of suitable classifiers or preprocessing techniques, the choice of suitable hyperparameters,

or the design of specialised approaches. Fundamentally, determining the specific type of

class overlap present in the data domain allows to establish what is truly affecting the

machine learning tasks and, in the end, it is that insight (meta-knowledge) that guides

the choice and the development of optimal solutions.

In what follows, we give an overarching view of the key concepts associated with the

definition of class overlap in related work, which ultimately results in the definition of

distinct representations of the problem. Figure 6.2 summarises both the main tasks,

concepts, and insights encompassed in the characterisation of class overlap. Starting from

the core of the schema, we will now move along the sequential steps required to characterise

class overlap, discussing important concepts found in the literature.

Class
Overlap

Feature 
Overlap 

Class  
Separability

Feature Space 
Partitioning

Discriminant 
Analysis

Local  
Information

Instance
Overlap

Local Data 
Characteristics

Data  
Typology
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Analysis

Class  
Skews
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Overlap 

Fine-Grain  
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Global and  
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Granular
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Structural 
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Data 
 StructureClass  

Complexity

Non-linear 
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Data  
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Data  
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Overlap Area

Insight / RepresentationQuantification / MeasurementDecomposition / Identification

Figure 6.2: An overarching view of the characterisation of the class overlap problem.
Moving from the core to the peripheral parts of the schema, we may follow along the
sequential steps encompassed in class overlap characterisation. First, it is necessary to (1)
decompose the domains and (2) identify problematic regions (overlap regions or areas).
Then it is possible to move to (3) the quantification of the class overlap problem in the
domain (overlap degree or ratio). Depending on the approaches used in the previous
steps, the obtained estimates will reflect distinct insights on the problem, and may be
associated to different representations of class overlap. The established representations
(Feature Overlap, Instance Overlap, Structural Overlap, and Multiresolution Overlap)
and associated concepts shown in the peripheral parts of the schema have been introduced
in Chapter 5 and will be further discussed in Section 6.3.2.
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Essentially, Figure 6.2 corresponds to a more detailed view of the Data Complexity Mea-

sures block of Figure 6.1. Accordingly, the (1) decomposition of the data domain and (2)

the identification of problematic regions represent the first two tasks necessary to under-

stand the problem of class overlap. On that note, it is important to define the concepts

of Class Overlap, Overlap Regions, and Overlap Areas:

Class Overlap, Overlap Regions, and Overlap Areas:

These definitions are rather intertwined since class overlap is a phenomenon that

implies the existence of ambiguous regions or areas of the data space. Class over-

lap is often defined as i) regions of the data space where the representation of the

classes is similar [114], ii) regions that contain a similar number of training exam-

ples from each class [272], iii) regions with similar class priors [139] or iv) regions

containing examples from more than one class, where class boundaries overlap [136].

These definitions seek to illustrate the same idea that there may be regions of the

data space that are shared by different classes. Intuitively, this complicates their

discrimination, leading to a poor classification performance. Note however, how def-

initions i) to iii) refer to the concept of class overlap in a scenario equally populated

by existing classes. In imbalanced domains, these definitions may not hold, as the

representation of the classes in overlapping regions is not necessarily similar (nor

are priors established equally for each class). A global definition of class overlap

should therefore be based on the existence of regions simultaneously populated by

examples of different classes. However, this does not prevent these regions, as well

as the examples that populate them, from assuming distinct properties, leading to

different representations of the problem. Accordingly, the decomposition of the data

space, the identification of class overlap (problematic regions), and its quantification,

can be performed in several ways, focusing on different properties of the overlap re-

gions, and consequently producing different insights on the problem of class overlap.

For the most part, the concept of “overlap region” is therefore a generic term, not

subjected to a formal characterisation. Most often, this is also the case of “overlap

area”, taken as a synonym for “region”, although in some related research, the over-

lap area is in fact defined by computing the mathematical area of overlapped regions

(2-dimensional datasets) [157, 446].

Once the overlap regions are identified, it is possible to move towards (3) the quantifica-

tion/measurement of the class overlap problem over the domain. In that regard, related

research often refers to the concept of “Overlap Degree” or “Overlap Ratio”.

Overlap Degree or Overlap Ratio:

“Overlap Degree” is perhaps the broadest term used to describe the extent to which

some domains are affected by class overlap, even when the “extent” of the problem is

not mathematically defined. This occurs frequently in seminal work with synthetic
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data, where the overlap degree has been defined as the distance between cluster

centroids of different classes [70], captured by the “extent to which adjacent regions

intertwine” [114], or even not characterised numerically ([157] for atypical domains).

Other seminal work estimates the overlap degree as the proportion of the domain

area that is overlapped [156, 157, 158, 161] (2-dimensional domains), or the propor-

tion of examples near the decision borders [320, 405, 462]. In real-world domains,

the quantification of class overlap is more frequent (i.e., rather than a qualitative

characterisation of the problem) and is intrinsically associated to the computation

of data complexity measures. In that regard, the overlap degree, sometimes referred

to as “Overlap Ratio” [88, 246, 487], reflects a quantitative estimate of the problem

of class overlap in the domain.

All in all, the concepts of overlap regions/areas and associated overlap degrees/ratios are

rather generic and encompass a broad spectrum of overlap representations, depending on

the strategies used to tackle the decomposition, identification and quantification of the

problem. This is shown in the peripheral parts of Figure 6.2 and will be clearly explained

throughout the following section, where we extend our proposed taxonomy of class overlap

complexity measures to encompass all three components.

6.3 A Taxonomy of Complexity Measures for Class Overlap

Current research largely resorts to data complexity measures in order to characterise

certain data characteristics. These measures are frequently organised into groups or cate-

gories, depending on the common factors each author considers in the division. By far, the

most well-known grouping of complexity measures is the one defined by Ho and Basu [220],

which considers three main categories: i) measures of overlap of individual feature val-

ues, ii) measures of separability of classes, and iii) measures of geometry, topology, and

density of manifolds. Over the years, other authors sought to complement this grouping,

presenting their own division, or proposing additional categories in order to characterise

the prevalence of a given domain characteristic. Sotoca et al. [286] also consider three main

groups of complexity measures: i) measures of overlap, ii) measures of class separability,

and iii) measures of geometry and density. Lorena et al. [80] divide complexity measures

into i) feature-based measures, ii) linearity measures, iii) neighbourhood measures, iv)

network measures, v) dimensionality measures and, vi) class imbalance measures.

For the most part, the groups discussed above do not derive from a taxonomical classifica-

tion, i.e., they are defined according to each author’s evaluation of common characteristics

or insights among measures. The principles underlying the categorisation of measures

are therefore nor explicit, nor characterised themselves.1 A natural consequence is that

1In this regard, we may argue that the taxonomy proposed in the previous chapter is not truly a
“taxonomy”, by definition, but rather a grouping as well.
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authors may include the same measure in different groups. A representative example is

the grouping of F1, F2, and F3 measures, identified as measures of overlap in [305], as

measures of overlap of individual feature values in [220], and as feature-based measures

in [80]. Another example is the categorisation of T1 measure, encompassed in the geom-

etry, topology and density of manifolds group in [220, 278], in the geometry and density

group in [305] and in the neighbourhood measures group in [80, 103, 177]. Throughout

the years, other data complexity measures have been proposed, although they are often

overlooked and included in additional categories of measures (e.g., “Other Measures” [80]).

With respect to class overlap, due to its heterogeneous nature, it is expected that several

data complexity measures appear scattered across different groupings (T1 is such an exam-

ple), which has several drawbacks. One is that they may not be identified as class overlap

complexity measures: this is observed when measures are grouped based on the object

of analysis (e.g., feature-based measures, neighbourhood measures), rather than accord-

ing to the insight they provide over the domain (e.g., feature overlap, instance overlap).

Other is that some recent measures that characterise class overlap are either described as

general complexity measures, included in a separate category (e.g., “Other Measures”),

or do not figure among established groupings. Finally, some of the existing groups may

be misleading by defining categories of measures of overlap that comprise measures that

capture only one specific type of class overlap (e.g., feature overlap).

We advocate that data complexity measures should be grouped according to the insight

they provide over the domain, and in the particular case of class overlap, attending to

its heterogeneous nature. Accordingly, this was the main contribution of the previous

chapter, culminating in the proposal of a novel taxonomy of class overlap measures that

attends to its different representations and sources of complexity. In turn, one of the

main contributions of this chapter relies on extending and systematising the taxonomy

presented in Chapter 5. We start by establishing the components that lead to the final

grouping of measures (Section 6.3.1). Then, we characterise the groups of measures on

a deeper level, illustrating scenarios where they might succeed or fail to capture certain

class overlap idiosyncrasies (Section 6.3.2). What follows is an evaluation of our taxonomy

in what concerns its properties and significance to future research (Section 6.3.3). Note

that some information is revisited from the previous chapter to help the reader effortlessly

follow the given examples and rationale, as the main focus herein is to complement and

scrutinise the ideas previously presented.

As discussed in the previous section, the characterisation of class overlap is intrinsically

tied to the definition and quantification of problematic regions in data. Accordingly,

along this section, we restructure the taxonomy of complexity measures for class overlap,

based on the strategies used to address the three main identified components of overlap

characterisation: (1) decomposition of the data space, (2) identification of problematic

regions, and (3) quantification and insight of the overlap problem in the domain.
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The taxonomy is now presented as a tree structure (Figure 6.3), based on the sequential

tasks of Figures 6.1 and 6.2. Class overlap measures are first divided depending on their

decomposition of the data space. As we move down each path, further groups arise,

depending on the identification of problematic areas and ultimately, on the class overlap

representations they are able to capture.
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Analysis NeighbourhoodFeature Space 

Partitioning
MST-based

Multiresolution  
Overlap 

F2*, F3*

F4*, IN 
 

Instance 
Overlap 

R-value, Raug* 
degOver, SI 

N3*, N4*, D3 
CM*, wCM*, dwCM* 

Instance
Hardness 

kDN 
Borderline Examples* 

IPoints 

Structural
Overlap

T1*, ONB* 
Clst 

N2* N1*

Decomposition Quantification / InsightIdentification

LSC 

C1, C2

Neighbourhood
Separability

Purity

MRCA

Density of
Manifolds

NSG, ICSV 
LSCAvg 

DBC

Figure 6.3: Extended taxonomy of class overlap complexity measures. Different groups
can be established depending on the level of the analysis. In the tree structure, class
overlap measures are divided in what concerns their approach to decompose the data
domain, identify regions of interest, and quantify class overlap. Measures marked with an
asterisk are those for which adaptations to imbalanced domains have been explored in the
literature.

Rather than focusing solely on the well-known measures of Ho and Basu [220], we consider

a larger set of measures proposed throughout the years. The relationship between mea-

sures is also characterised, since some measures based on different paradigms may provide

similar insights, whereas others are complementary. Complexity measures that have been

previously studied in imbalanced contexts are also identified.

In the remainder of this section we will elaborate on further aspects of the proposed tax-

onomy. To summarise, we start by defining and describing the essential components of

class overlap characterisation (Section 6.3.1). We mainly focus on components (1) and (2),

whereas (3), comprising the final proposed representations of class overlap and respective

insights, is further discussed on Section 6.3.2, alongside their associated complexity mea-

sures. We end this section with an evaluation of the proposed taxonomy (Section 6.3.3).
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6.3.1 Components for defining a Taxonomy of Class Overlap Measures

Essentially, all overlap measures require three components:

1. A component to decompose the data domain into regions of interest: We

consider three main approaches to divide the feature space into regions of interest.

Although all are distance-based, they rely on different types of distances:

• Statistical Distance: Based on the distance between class distributions (e.g.,

Fisher Linear Discriminant);

• Geometrical Distance: Based on the distance between pairs of data examples

(e.g., Euclidean Distance);

• Graph-Based Distance: Based on the geodesic distance (e.g., Minimum

Spanning Trees).

2. A component to identify problematic regions: We consider the following

strategies for the identification of problematic regions:

• Discriminant Analysis: The properties of class distributions are analysed in

order to determine the discriminative power of features. Problematic regions

are those where classes remain overlapped in the projections with maximum

separability;

• Feature Space Partitioning: The feature space is partitioned into certain

ranges or into a specified number of intervals where the properties of data

are then analysed. Problematic regions are delimited in specific ranges of the

feature space;

• Neighbourhood Analysis: The data domain is analysed at a local level,

based on the neighbourhood characteristics of examples. Problematic regions

are those associated with larger errors of the k-nearest neighbour classifier;

• Hypershpere Coverage: The necessary number of subsets (hyperspheres) to

cover the entire domain is found. Problematic regions are those encompassed

in hyperspheres with smaller radii;

• Minimum Spanning Trees: The data domain is represented by a graph

(often a minimum spanning tree). Problematic regions are identified by directly

connected vertices with disagreeing class memberships.

3. A component for quantifying the overlap problem in the problematic

regions: This component returns the final groups of the tree structure, consisting

in the ultimate division between overlap measures. For that reason, we will discuss

each group in detail throughout the following section (Section 6.3.2), along with the

measures they include, and the insights they provide.
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By addressing the definition and quantification of problematic regions differently, com-

plexity measures characterise class overlap from different perspectives. Indeed, as dis-

cussed throughout Chapter 5, problematic regions often present certain properties that

have an impact on the definition and measurement of class overlap (e.g., class imbalance,

local imbalance, class decomposition, non-linear boundaries, different types of examples in

data) [157, 309, 320, 462]. These characteristics of data may therefore give rise to different

representations of class overlap, and certain measures may successfully characterise some,

while failing to uncover others. The final groups of the proposed taxonomy associate the

complexity measures to the representations of class overlap they intend to characterise,

and are thoroughly described in what follows.

6.3.2 Representations of Class Overlap

Formally, we recognise four main representations, i.e., specific types, of class overlap (Fig-

ure 6.3): Feature Overlap, Instance Overlap, Structural Overlap, and Multiresolution

Overlap. There are however some subgroups that somewhat complement the character-

isation of certain representations (Instance Hardness and Density of Manifolds). They

will be discussed within the respective groups (Instance Overlap and Structural Overlap,

respectively).

Feature Overlap

Class overlap is often referred to as “class separability” [28, 136, 139]. This term refers

to the degree to which classes may be separated by discriminative rules, i.e., the degree

to which good decision boundaries may be found. Hence, it provides an interpretation of

class overlap via its contrary, i.e., an overlapped domain is one where the class separability

is low.

Feature Overlap measures are intrinsically associated with the concept of class separability,

i.e., they aim to characterise the discriminative power of features in data or, accordingly,

the class overlap of individual features in data. Some measures estimate class overlap by

looking for the most discriminative projections of data (F1, F1v) [80, 220], where others

resort to feature space partitioning to delimit overlap regions, based on the properties of

class distributions (F2, F3, F4, IN) [220, 288, 334].

By focusing on the individual properties of features, these measures may fail to capture

other idiosyncrasies of class overlap. Let us revisit the scenario illustrated in the previous

chapter, and consider Figure 6.4. F1 measures the highest discriminative power for all

features in data, i.e., it returns the minimum overlap of individual features found in the

domain. Accordingly, the scenarios in Figure 6.4 reveal the same discriminative power:

feature f1 has the same (and highest) F1 value in both cases. However, the individual
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overlap in feature f2 is different, which makes these scenarios different in terms of classifi-

cation difficulty (as emphasized by the superimposed optimal linear discriminant). In turn,

marked points illustrate the facet of the problem measured by Instance Overlap. Rather

than analysing feature separability, instance overlap – described in what follows – captures

the amount of conflicting examples in data through the analysis of their neighbourhood,

thus obtaining different estimates for the presented scenarios.

Other limitations of feature overlap measures have already been described in the litera-

ture [80, 98]. First, these measures presuppose their application over continuous features.

Then, with the exception of F1v, they assume that the decision boundary between classes

is perpendicular to one of the features’ axes. Measures based on feature space partition-

ing (F2, F3, F4, IN) are additionally susceptible to disjunct concepts (a situation where

features present more than one valid interval), and noisy data [98].

f2

f1

f2

f1

Figure 6.4: Example of F1 computation for two domains. The measure outputs the
same value of class overlap for both domains, despite the fact that the problem affects
domains differently, as indicated by the superimposed optimal linear discriminant. F1
therefore captures one facet of class overlap (feature overlap) but it may not provide a
full characterisation of the class overlap problem. As an example, marked points illustrate
a representation of instance overlap, identifying data points which are misclassified by
their nearest neighbour (k = 1). Different estimates of class overlap are obtained for
each domain, namely 19/35 = 54.3% and 11/35 = 31.4% for the left-side and right-side,
respectively.

Instance Overlap

Instance Overlap measures are deeply linked to the exploration of “local data character-

istics” [56] and comprise a local, rather than a global, characterisation of domains. These

characteristics are often approximated by analysing the neighbourhood of data examples

and determining their complexity accordingly. This “complexity” is often associated to the

error of the k-Nearest Neighbour (kNN) classifier and is used to characterise class overlap

by focusing on the amount of overlapped examples in data, i.e., those that are misclassi-

fied by kNN. Instance Overlap measures include R-value [327], Raug [58], degOver [309],
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N3 [220], SI [172, 418], D3 [305], N4 [220], CM, wCM, and dwCM [35, 393], which pro-

vide an overall insight on the amount of overlapped examples in the entire domain, and

kDN [353], Borderline Examples [320], IPoints, and LSC [256], which, despite providing

similar insights, are more aligned with the idea of estimating the complexity of individual

examples in data, associated with the concepts of “instance hardness” [353] and “data

typology” [320].

“Instance Hardness” and “Data Typology” reflect the idea that not all examples in data

are equal for classification tasks. On the contrary, depending on the local characterisa-

tion of class distributions, some examples may be harder to learn than others. “Instance

Hardness” corresponds to the likelihood of an example to be misclassified, for which class

overlap is the principal contributor [353]. In turn, “Data Typology” comprehends the

division of data examples according to four types: safe, borderline, rare, and outlier ex-

amples [319]. Note that ultimately, the typology of examples depends on the endgame

and desired treatment of different types of examples, and therefore it is not uncommon to

find other notions of redundant, noisy, danger, or unsafe examples [10, 174, 387]. Overall,

since borderline examples are those located in the borderline between classes, where their

discrimination becomes complicated, they are highly associated with the definition of class

overlap [319, 320, 405, 462]. Nevertheless, it may also be important to consider overlapped

examples scattered across the entire domain, i.e., those that, although farther from the

border, also contribute to class overlap [444]. In that sense, borderline examples are con-

sidered a subset of overlapped examples, and class overlap measures may either consider

solely the borderline regions between classes or the entire domain. This ultimately relies

on each measure’s setting regarding the size of local neighbourhoods (k value) and/or the

tolerance threshold which distinguishes an overlapped from a non-overlapped example.

The concept of “Class Distribution Skew” is also worthy of discussion within the problem

of class overlap [107, 157]. In addition to situations where classes are intertwined, class

overlap may possess other structural biases, where one class is dominant in the overlap

region. Such a phenomenon may arise due to the presence of local imbalance in the overlap

region, or irrespective of class imbalance, e.g., due to differences in class densities (one

class is sparse in the overlap region whereas the other is dense). Some authors refer to

this phenomenon as “local densities” [157], while other describe it as a distribution skew

or “class skew” [107]. In such scenarios, instance overlap measures, due to their flexibility

(variable neighbourhood definition), may be helpful in capturing the degradation caused

by class overlap.

Nevertheless, instance overlap measures, focusing on the properties of individual exam-

ples in data, disregard the characterisation of overlap regions themselves. In general,

instance overlap measures are concerned with the class membership of examples within a

k-neighbourhood, regardless of the actual distance between them. It follows that, given

two examples of different classes that are each other’s nearest neighbours, instance over-
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lap measures cannot distinguish a situation where they share similar values in the feature

space from a situation where they have rather different feature values. Ultimately, despite

being each other’s closest neighbours, the examples may belong to distinct regions of the

data space where there is no class overlap. Similarly, in the borderline between classes,

instance overlap measures may also produce erroneous estimates of class overlap in some

scenarios.

Consider Figure 6.5a, where the distance between examples on class boundaries is smaller

than the distance between examples of the same class. Instance overlap measures, focusing

on local properties of data, will produce biased class overlap estimates even though the

domain illustrates a linearly separable problem. Additionally, domains where the proper-

ties of examples are the same at a local level may be indistinguishable. Consider Figures

6.5a and c, which comprise examples with similar local neighbourhoods. Oblivious to the

global properties of problematic regions, instance overlap measures will output similar

values of class overlap for both domains. In turn, note how analysing the global properties

(e.g., structure) of problematic regions (Figures 6.5b and d) provides a different insight

on the characterisation of the class overlap problem.

a) b)

c) d)

Figure 6.5: Comparing local (a and c) versus global (b and d) information. Focusing on
local information, instance overlap measures may not be able to capture certain properties
of the domains that affect class overlap: a) and c) result in similar characterisations, despite
the fact that a) is linearly separable. Analysing the structure of problematic regions (b
and d) provides different insights on the characterisation of the class overlap problem.

Increasing the value of the k is one way to move towards a more global view of the

domain [35, 157]. Note how the scenario depicted in Figure 6.5a would be distinguishable

from c) if instead of k = 1, we were to consider k = 3 or 5: in c), we would find a larger

number of examples with conflicting class neighbourhoods. However, optimal values of
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k are hard to determine, especially in the presence of domain peculiarities such as class

skews: k values that correctly characterise one region may produce biased estimates for

another.

Similarly, categorising examples into several types is a way of approximating the global

properties of data, which provides additional insight on the domain; yet it is still based

on a local analysis paradigm (dependent on the k hyperparameter configuration). These

are intrinsic limitations of instance or neighbourhood-based identification and may be

attenuated by a characterisation of problematic regions themselves, focusing on a global

analysis of the domain.As an example, consider Figure 6.6, which characterises two data

domains (a and d) from a local to a global perspective.

safe border rare outlier

f2

f1a)

f2

f1d)

f2

f1f)

f1c)

f2f2

f1b)

f2

f1e)

Figure 6.6: Characterisation of two domains affected by class overlap, moving from a
local to a global analysis. Instance overlap measures define class overlap by analysing the
properties of individual examples, thus neglecting certain structural characteristics of the
domain (a and d). Studying the data typology (b and e) is a way of approximating the
global properties of the domain, combining both local and global information (although
still dependent on k hyperparameter configuration). The characterisation of the class
overlap problem may be complemented by structural overlap measures, focusing on global,
rather than local, characteristics of the domains (c and f).

Note how a) and d) return the same overlap value (k = 1), despite depicting different

representations of class overlap. The identification of different types of examples (k = 5,

in b and e) reveals that the domains are indeed conceptually different: a/b observe a more

classical class overlap (complicated borderline regions), whereas d/e depict a situation

where complicated examples from one class (blue crosses appearing as rare and outlier

examples) are scattered throughout regions of the other. The characterisation of the class

overlap problem in each domain may be complemented by focusing on global, structural
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properties of data: c) characterises the domain as having two well-defined concepts and

a confounding boundary (balls of both classes with smaller radii, containing only one

example and close to each other), whereas f) identifies a well-defined region of one class

(blue crosses comprised in a lower number of balls with large radii and local sets) and

another region with higher class decomposition (red points comprised in a larger number

of balls with variable local sets) contaminated with scattered examples of the opposite

class (blue crosses in balls of smaller radii, containing only one example, close to larger

balls of the other class, with higher local sets).

Structural Overlap

Recognised as the most impactful issue for prediction tasks [139, 157], class overlap is also

often used interchangeably with the term “class complexity” [28]. We have seen this for

instance overlap measures, where class overlap is associated with the complexity of indi-

vidual examples in data, and often evaluated on the basis of disagreeing neighbourhoods

of examples (overlapped or “complex” examples) [35, 393]. Beyond this, recall that class

overlap aggregates a multitude of complexity sources, as we have been discussing so far. In

particular, data morphology (data topology, shape, or structure) may have hidden depen-

dencies on the problem. On the one hand, the global characteristics of the domain (e.g.,

class decomposition, complexity of the decision boundaries, data sparsity) influence the

identification of problematic regions and consequently the quantification and characteri-

sation of class overlap. On the other hand, class overlap directly affects the shape of the

decision boundaries between classes and may create additional complications such class

skews, changing the structural properties of the domains. In fact, recent research is grav-

itating towards the idea that complexity measures related to data morphology may prove

good predictors of class overlap, especially in the context of imbalanced domains [103, 176].

Structural Overlap measures are more attentive to the internal structure of classes (data

morphology) when evaluating problematic regions. Some measures analyse the properties

of a minimum spanning tree (MST) built over the data domain to identify complicated

regions where classes intertwine (N1 [220]). Others approach the identification of class

overlap using the notion of hypersphere coverage, where the domain is entirely divided

into subsets comprising only examples of the same class (T1 [220], Clst [256], ONB [103]).

Some consider both MST and hypersphere coverage (DBC [294]). Additionally, we refer to

a subset of structural overlap measures (“Density of Manifolds” group) that complements

the characterisation of class overlap by adding local information to data morphology, i.e.,

focusing on data density/sparsity. These measures characterise the average number and

dispersion of examples comprised within the hyperspheres that cover the domain (NSG

and ICSV [288]), describe the within- and between-class spread (N2 [220]), or determine

the average local set cardinality of examples in the domain (LSCAvg [256]).
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Recall the domains of Figure 6.6, where the analysis of global, structural information (Fig-

ures 6.6c and f) supports the distinction between a domain with complicated borderline

regions (Figure 6.6a) and a domain with a large amount of intrusive points (Figure 6.6d).

Figures 6.6c and 6.6f are in fact representative of structural overlap and illustrate the

computation of Clst [256], which divides the data domain into clusters of the same class

(Chapter 5, Section 5.6.2). However, despite the fact that the domains are easily distin-

guished when visualised, their Clst values are rather similar, since Clst is only concerned

with the number of total clusters in data, regardless of their radius, their local sets (how

many examples they cover), or the distance between them.

A way to enhance this characterisation would be to analyse additional structural infor-

mation, such as assessing the interleaving of classes along the decision boundary of each

domain. Accordingly, Figures 6.7a and 6.7d illustrate a representation of DBC [294], which

creates a MST using the cluster centres defined by Clst, and determines the number of

connected centres of different classes.

a)

4

6

9

9

6
2

b)

3

6

2

7

8

9

3

4

d) e)

4

6

9

9

6
2

3

6

2

7

8

9

3

4

c)

f)

Nodes connected 
to the opposite class 

Overlapping examples
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(invasive points)

Figure 6.7: Exploring the structural properties of the domain may be fundamental to
derive a more accurate characterisation of class overlap. Nevertheless, complexity measures
focused on individual characteristics of data (e.g., number of connected cluster centres of
opposite classes in a and d), may not return perceptive insights. In this regard, exploring
additional information on the domain (e.g., local sets represented in b and e) may lead
to a better understanding of what is truly harming the domains (borderline examples in
c and intrusive examples in f), enabling the development of specialised solutions for each
scenario.
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As in the previous case, although the problem of class overlap is conceptually different

when assessed visually, DBC also returns similar values, since the number of connected

nodes of opposite classes is similar for both domains. The analysis of NSG [288], which re-

turns the average size of clusters, would yield identical conclusions to those of the previous

measures.

Note how the difficulty in distinguishing the domains via existing complexity measures

is due to their focus on individual properties of data: Clst and NSG disregard the char-

acterisation of clusters, whereas DBC neglects other properties of the MST (e.g., edge

weights, local sets of connected nodes). Alternatively, Figures 6.7b and e characterise

the domains by combining several structural overlap measures. Accordingly, they incor-

porate information regarding class decomposition (starting with the solution defined by

Clst), complexity of decision boundaries (considering the solution achieved by DBC), and

density of manifolds (considering the local set cardinality of each node in the MST). On

contrary to Figures 6.7a and d, the marked points represent clusters that include only

one example (the core) and whose local set contains only the core itself, defined as “in-

vasive points”(IPoints) [256].2 Now, despite the number of invasive points is similar in

both domains, it is possible to differentiate i) situations where these points are “strongly

connected” to others of the same type of the opposite class, identifying examples located

in overlapping regions of the data space, from ii) situations where these points are con-

nected to nodes of the opposite class with larger local sets, identifying examples that

somewhat infiltrate the other class.3 Hence, Figure 6.7c illustrates a domain where all of

its invasive points strongly connect to others of the same type (and of the opposite class),

suggesting that class overlap is the main complexity factor affecting the domain (9 out of

15 nodes represent complicated borderline regions, which amounts to a class overlap of

60%), caused by overlapping class borders. In turn, Figure 6.7f reveals that only 4 out

of 16 nodes (25%) are responsible for class overlap (4 invasive points strongly connected),

whereas the remaining 4 identified points are intruding the opposite class, and may in-

dicate different issues: either representing noisy data [136], or suggesting the existence

of valid, though underrepresented, sub-concepts in data (a situation likely to arise in the

case of imbalanced data [319]).

2Note how despite the fact that LSCAvg is comprised in the Structural Overlap group (as it estimates
the density of manifolds in the domain), and that LSC and IPoints derive from structural information, i.e.,
hypersphere coverage (Figure 6.3), they can be used to add local information regarding the internal class
structures found in data. In fact, LSC, similarly to IPoints, may be an indicator of instance hardness and
instance overlap, identifying examples whose local set cardinality is low.

3Note that our purpose is not to derive a new complexity measure for class overlap. With this example,
we explore the investigation of additional properties of the MST (namely edge weights) as well as density
and local information (local set cardinality) to complement the characterisation of class overlap. Combining
distinct sources of information allows to distinguish shorter, stronger connections between nodes, from
weaker connections, where edges between nodes are longer. To determine whether an invasive example
is responsible for class overlap or is infiltrating the opposite class – in the case that an invasive point is
connected to both an invasive point and other nodes of higher cardinality (all of the opposite class) – it is
possible to adjust the edge weights by the local set cardinality of connected nodes (e.g., wi = 1

di
×LSCnodei).

Nevertheless, the main purpose of this example remains to highlight the advantage of considering multiple
sources of complexity when characterising class overlap.
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Let us end this discussion by analysing the impact of considering structural information in

the characterisation of class overlap. Figure 6.8 shows different cleaning solutions for the

original domains of Figures 6.6a and d (top and bottom rows of Figure 6.8, respectively).

f2

f1c)

f2

f1a)
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f1b)

f2

f1d) f)

f2

f1e)

f2

f1

Removing conflicting examples (k = 1)
(see Figures 6.6a and d)

Removing non-safe examples (k = 5)
(see Figures 6.6b and e)

Removing invasive examples
(see Figures 6.7b and e)

Figure 6.8: Impact of considering structural information in the characterisation of class
overlap. Figures a and d illustrate the solution achieved by removing all conflicting ex-
amples according to Figures 6.6a and d. In b and e, all non-safe examples (borderline,
rare and outlier examples) are removed, following the data typology of Figures 6.6b and
e. Finally, c and f illustrate the removal of the invasive points found according to Figures
6.7b and e.

Despite the fact that all characterisations of class overlap lead to solutions with simplified,

clear decision boundaries, alleviating the problem of class overlap, they differ in what

concerns both the amount of cleaning performed, and the ability to retain the original

structure of data. Approaches relying solely on instance overlap (Figures 6.8a, b, d,

and e) tend to be more conservative when compared to those that incorporate structural

information (Figures 6.8c and f). Nevertheless, note how Figures 6.6b and e, despite

considering more global information than Figures 6.6a and d (via data typology), are more

conservative. This is due to i) the larger neighbourhood considered: k = 5 versus k = 1,

which only identifies nearest-enemies (please refer to Figure 6.6b where more examples are

considered conflicting), and ii) the borderline category often assigned to examples in the

neighbourhood of rare and outlier examples, which may not represent valid class concepts,

but rather intrusive/noisy points, affecting mainly the domain in Figure 6.6e.4

4Note that in imbalanced domains, there a difference between rare and outlier examples, and noisy
data (please refer to [319]), given that distant, isolated minority examples may result from an insufficient
representation of the minority class in certain regions of the data space. Accordingly, rare and outlier
examples may represent valid sub-concepts rather than noise. Nevertheless, the given example (Figure
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In turn, solutions 6.8c and f are the less invasive, i.e., the class overlap problem is solved

while removing a smaller amount of examples and retaining most of the original internal

structure of data. Finally, note how for domains with less complex data structure/mor-

phology, instance overlap measures are able to accurately characterise the problem of class

overlap, whereas structural information needs to be considered when dealing with domains

presenting additional sources of complexity. On that note, although we may argue that

structural overlap measures focus on data characteristics unrelated to class overlap, in the

sense that they describe other general properties of the domains (e.g., geometry, topology,

density), we advocate that class overlap cannot be fully understood irrespective of struc-

tural information, since the global properties of the domains affect its identification and

characterisation.

Multiresolution Overlap

Multiresolution Overlap measures characterise class overlap by providing a trade-off be-

tween global and local data characteristics (Figure 6.9). Some are more closely related

to the previous ideas of using hypershperes (MRCA [37]) or k-neighbourhoods (C1 and

C2 [98, 306]) to define regions of the space where class overlap can be analysed. Others are

associated with feature space partitioning, where features are divided into several intervals

to assess the properties of class overlap (Purity and Neighbourhood Separability [394, 395]).

x

!1
!2

!3

 (x,�1) = 1

 (x,�2) = 0

 (x,�3) = 0.33

a) b) c)

Figure 6.9: Example of multiresolution overlap measures, which aggregate global and local
information on the domains. In a) and b), a strategy of recursive feature space partitioning
is used to analyse the domains at increasingly lower resolutions. At each resolution, prob-
lematic regions (grey cells) are individually analysed. In c), example x exhibits distinct
complexity values depending on the resolution of its neighbourhood (defined using hyper-
spheres with different radii). The final characterisation of domains consists of averaging
the individual results obtained at several resolutions.

Nevertheless, the aggregating characteristic of these measures is that they operate by

moving iteratively from a global to a local analysis of the domains (fine-grain search

6.6e), represents a balanced domain where rare and outlier points are not distant or isolated examples, but
rather infiltrating the opposite class and do not constitute interesting class concepts.
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criteria). They recursively define hyperspheres, neighbourhoods, or feature partitions at

different resolutions, all of which are individually analysed to characterise the problem of

class overlap, combining both structural and local information.

6.3.3 Evaluation of the Proposed Taxonomy

Along the previous section, we have been discussing the idea that class overlap often

aggregates information on different data characteristics, and therefore it is important

to establish the insight that different complexity measures provide to fully characterise

the problem. To standardise existing types of class overlap, we established a taxonomy

that defines four main groups of class overlap representations and associated complexity

measures, while describing their perception on the class overlap problem as well as their

intrinsic limitations. In this section, we discuss some further details of the proposed

taxonomy, and elaborate on its implications for future research in the field.

Properties of the Proposed Taxonomy

Beyond mapping the relationship between complexity measures and their associated class

overlap representations, the proposed taxonomy evidences certain properties of the mea-

sures and illustrates other existing relationships between the categories that constitute the

taxonomy. In particular, three main characteristics may be highlighted:

1. Measures belonging to different decomposition or identification categories

may be associated to the same class overlap representations: As shown in Figure

6.3, there are situations where measures based on distinct decomposition and/or iden-

tification strategies aim to provide similar insights. An example is the case of Purity

and Neighbourhood Separability measures, C1 and C2, and MRCA, which are comprised

in the “Multiresolution Overlap” group (since their insights are derived from the same

underlying principle), despite the fact that their identification of problematic regions is

performed differently (through “Feature Space Partitioning”, “Neighbourhood” analysis,

and “Hypersphere Coverage”, respectively). The same rationale applies to other examples

depicted in Figure 6.3.

This evidences that the strategy through which overlapped regions are decomposed and/or

identified, may not correspond directly to the knowledge they incorporate. In other words,

this illustrates that although the analysis of the process of decomposition and identifica-

tion of problematic regions is essential to the characterisation of class overlap, investigat-

ing its quantification and the insights provided by each complexity measure – through

a careful analysis of their design and purpose – is fundamental to fully understand the

problem. To some extent, existing research has often grouped complexity measures accord-

ing to the process inherent to the identification of certain properties (e.g., feature-based,
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neighbourhood-based) [80, 103], rather than the insight they produce on the data domain.

In this regard, one of the advantages of the presented taxonomy is that the decomposition

and identification processes of each measure can be dissociated from the perception ob-

tained from data, i.e., measures are grouped based on the knowledge they provide on the

domain, rather than on their underlying processes. Nevertheless, such information is not

lost, since it remains established in the upper-levels of the tree structure that compose the

taxonomy.

2. Measures may incorporate two or more decomposition or identification

methods: Although the established groups are subsets of complexity measures with

shared similarities, their boundaries are not strictly delimited. Accordingly, some measures

may result from two or more decomposition or identification methods. To some extent,

they may be considered “hybrid” measures, which is the case of N1 and DBC. N1 is based

on graph decomposition although it also incorporates neighbourhood information to iden-

tify connected vertices with disagreeing class memberships. In turn, DBC first divides the

domain into hyperspheres, and then builds a MST considering their centres and analyses

the neighbourhood of the MST vertices. Both their insights are however more related to

boundary complexity and the internal structure of classes (structural overlap) rather than

to local data characteristics (neighbourhood analysis) and are therefore included in the

Structural Overlap group.

3. Measures may complement certain representations of class overlap: Some

groups of measures are also intrinsically related to (or complemented by) others, as previ-

ously discussed. This is the case of Instance Overlap measures, that cannot be dissociated

from the concept of “Instance Hardness”, and the case of Structural Overlap measures,

which encompass the characterisation of the “Density of Manifolds”. We have chosen

to highlight these two subgroups in the taxonomy since, notwithstanding their represen-

tations, they are often crucial to devise optimal solutions for certain domains. When

analysing the current panorama on class imbalance and overlap problems (Section 6.4),

we will see how instance hardness information is useful for preprocessing approaches, and

often embedded in the internal operations of some resampling algorithms for imbalanced

and overlapped domains. In turn, instance overlap measures provide a better insight of

the overall difficulty of the domain for classification. Similarly, some class overlap-based

methods, more than analysing certain global properties of the domains (e.g., structural

properties), may further incorporate density information for improved results.

Sensitivity of Complexity Measures to Class Imbalance

The sensitivity of class overlap complexity measures to class imbalance has been previously

discussed in Chapter 5 (Section 5.6.5). To avoid wearying the reader, we briefly resume

the most important takeaways from that discussion. To this point, only a handful of class

overlap measures is attentive to class imbalance. These comprehend either those that
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were originally proposed within the scope of imbalanced domains (Raug [58], ONB [103],

CM [35], wCM, and dwCM [393])5, or those that consist of class-wise adaptations of

well-established measures (F2, F3, F4, N1, N2, N3, N4, T1) [176]6 Indeed, class-wise

complexity computation is the current solution among ongoing research, and has shown

promising results for binary-classification tasks, although it raises complicated questions

for multi-class problems. This will be further discussed in Section 6.4.1.

Implications for Future Research

Let us now delve into the implications associated with the inception of our proposed

taxonomy for future research in the field.

In alternative to discussing general measures of classification complexity, our taxonomy

focuses specifically on class overlap. Among well-known data issues, this is the most

harmful for imbalanced learning tasks [136, 139] and the one which generates most debate

regarding its definition, measurement, and understanding [446]. In this regard, our tax-

onomy clarifies the concepts associated with the definition, identification, quantification

and characterisation of class overlap, and illustrates its distinct representations, as well as

the sources of complexity to which they are associated.

Additionally, rather than aggregating complexity measures solely according to their cat-

egory of data descriptors (e.g., separability, topology, sparseness, decision boundary) or

their object of study (e.g., feature-based, neighbourhood-based, network-based), the tax-

onomy focuses on associating class overlap measures to the insight they provide regarding

the domain. In other words, each measure is associated to the class overlap representation

it is able to perceive. Consequently, several practical implications for future research may

be drawn:

• Our taxonomy advocates for the establishment of standard measures of the overlap

degree, on contrary to what is still currently portrayed in related research, where class

overlap is measured in rather distinct ways.7 In this regard, the taxonomy highlights

which measures are better suited to capture specific types of class overlap, should

researchers be interested in a particular facet of the problem;

• Notwithstanding the effort to associate each measure with the class overlap rep-

5Although only Raug incorporates the imbalance ratio in the computation of class overlap, while the
remaining use a strategy of class decomposition.

6In this regard, F1 was also studied in [176, 177], although, since it relates two means and variances, it
was not possible to adapt it in order to obtain individual information by class. The same is expected for
F1v.

7As discussed in Chapter 5, some works refer to specific measures (F1 [443], N1 [352], or data typol-
ogy [251]), while others refer to a generic Overlapping Ratio [88, 246, 487], which is based on different
variations of instance overlap measures. Besides not using a standard measurement of class overlap (and
hence preventing a fair comparison between approaches), related work is in fact focusing on distinct facets
of class overlap, by resorting to measures that capture different dimensions of the problem.
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resentation it captures, the proposed taxonomy simultaneously reflects the three

basal components of class overlap characterisation (decomposition, identification

and quantification/insight). Accordingly, it allows that different groupings are es-

tablished depending on the intended level of the analysis;

• Acknowledging class overlap as a heterogeneous concept, our taxonomy further ad-

vocates for the need of a complete characterisation of the problem, through the

combination or simultaneous analysis of distinct class overlap representations. In

this regard, the properties and relationships between measures illustrated may serve

as a stepping stone for the development of more perceptive, flexible, and robust sets

of complexity measures;

• Beyond well-established measures, this taxonomy includes more recent (although

lesser-known) measures, often encompassed in uncharacterised groups (e.g., “Other

Measures” [80]). The new taxonomy actively characterises their properties, relation-

ships, and insights, which contributes to a broader and deeper knowledge on the

topic;

• The taxonomy also identifies class overlap measures that have been developed in

the scope of imbalanced domains, or for which adaptations to imbalanced data have

been explored in the literature. Accordingly, it illustrates to which extent the joint-

effect of both issues has been discussed in the scope of classification complexity, and

highlights opportunities for novel contributions in the field.

To summarise, the proposed taxonomy systematises the current state of knowledge re-

garding the characterisation of class overlap. Furthermore, it highlights core properties

of the measures and provides an overview of the relationships between them. Finally, it

evidences that future research should keep moving towards the development of measures

with broader points of view, i.e., that are able to combine different representations of class

overlap and consider other factors, namely class imbalance.

Along the next sections, we offer a multi-view panorama of the state-of-the-art solutions for

class imbalance and overlap across several branches of machine learning. The main goal is

to analyse the current body of knowledge in different but related areas of research, identify

their limitations, and suggest possible future directions. Whenever possible, insightful class

overlap measures are identified and discussed within each area, based on related research

on the respective topics.

6.4 Class Imbalance and Overlap: A Multi-View Panorama

In this section, we summarise how state-of-the-art research tries to handle class imbalance

and overlap jointly across different fields.To provide the reader with a global understanding
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of the current state of knowledge on the subject, Figure 6.10 illustrates the main topics

discussed throughout this section. Four main areas (and respective sub-areas) of research

are identified and will be presented following the schema of Figure 6.10, moving from the

top-left corner to the lower-right corner: Data Analysis, Data Preprocessing, Algorithm

Design, and Meta-learning. Herein, we focus mostly on the topics that are currently being

explored more thoroughly within each field, summarising their most significant insights.

Also, whenever possible, we provide a discussion on insightful complexity measures for

each topic: naturally, some topics will be more deeply supported by the use of complexity

measures than others. Finally, although we provide a general view of all topics in Figure

6.10, those that are investigated less often are marked as open challenges and will be

further discussed in Section 6.5, where promising lines for future research are highlighted.

6.4.1 Data Analysis

One of the most common uses of complexity measures is their application to establish the

baseline classification difficulty of a given dataset. Insightful complexity measures produce

estimates that are aligned with the performance of classifiers, i.e., by determining com-

plexity measures over different datasets, we may infer which will yield better classification

results. Overall, class overlap measures have proven to be good indicators of classifica-

tion difficulty, although imbalanced domains require a more thoughtful characterisation,

given the bias towards the majority class [176]. Data analysis is perhaps the most fre-

quently studied topic on the problem of class imbalance and overlap, where different lines

of thought are currently under investigation, depending on the classification paradigm.

For binary-classification problems, the current established approach relies on the decom-

position of complexity measures by class, whereas multi-classification problems present

additional challenges for research. In what follows, we will detail the state-of-the-art

recommendations when handling these scenarios.

Binary Classification

In binary imbalanced domains, the majority class tends to dominate the computation of

some complexity measures [35, 151]. The focus is therefore shifting towards the proposal

of adapted measures that incorporate class imbalance, or the evaluation of the individual

class complexities, i.e., decomposing complexity measures into their minority and majority

counterparts [35, 58, 103, 176, 177].

Related research has demonstrated how several of the complexity measures by Ho and

Basu [220] are insensitive to class imbalance and propose new complexity measures that

correlate better to the classification performance of the minority class (e.g., Raug) [58]. An-

other line of research is the adaptation of the original measures by Ho and Basu [176, 177],

where complexity estimates are provided for the majority and minority class individually,
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rather than taking a single measure for the entire domain.

In particular, instance overlap measures have demonstrated an exceptional good align-

ment with classification difficulty, with adaptations of N3, CM, wCM, and dwCM for the

minority class obtaining the highest correlations with performance results [35, 176, 393].

Instance hardness measures have also proven to be good estimators of classification com-

plexity [319, 320, 353]. As they look for hard examples to classify, it is intuitive that they

are the very aligned with classification performance. In particular, measures that relate to

class overlap (kDN, percentage of borderline and rare/outlier points) have been identified
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Figure 6.10: Overview of current research in imbalanced and overlapped domains. Un-
derinvestigated topics are identified as open challenges, whereas for the remaining, the
major insights for research are summarised. Whenever relevant, insightful class overlap
complexity measures are also highlighted, based on the findings of related research.
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as accurate estimators of classification difficulty. Note how the most useful complexity

indicators are highly correlated: it becomes clear that analysing the local properties of

the domains is a suitable approach to determine classification difficulty in the case of

binary-classification domains.

Multi-classification

Contrary to binary-classification problems, a decomposition by class may not suffice to ac-

curately estimate the difficulty of the classification tasks in multi-class domains: previous

research has shown some inconsistencies between the complexity obtained for a given class

and the performance achieved on that class [327]. Nevertheless, the co-decomposition

of complexity measures considering the combination of existing classes may be used to

characterise multi-class domains more deeply. In particular for class overlap, this may

be helpful to establish which classes have broad overlapping areas with the remaining or

which classes are responsible for the majority of problematic areas. Another advantage

of co-decomposition is the ability to integrate the individual properties of classes in the

computation of a final measure. As an example, Raug could be used to measure the over-

lap of every two classes, where the imbalance between those classes will also be captured.

Alternatively, previous class-wise adaptations of complexity measures may be further ex-

amined in multi-class imbalance domains, i.e., determining the complexity between every

two classes.

The major question here is how to determine an overall measure for the entire domain,

which constitutes an open issue for research. Most frequently, strategies to compute

complexity measures over multi-class datasets rely on One-Versus-One (OVO) or One-

Versus-All (OVA) approaches. OVO considers all possible combinations for every two

classes in the domain, i.e.,
(
C
2

)
binary sub-problems (C representing the total number of

classes in the domain). In turn, OVA tests every class against the remaining, composing C

binary sub-problems. In both cases, a final measure may be defined as the average across

all sub-problems. This is in fact the default behaviour of existing software for complexity

measures: DCoL [334] uses OVA whereas ECoL [80], ImbCoL [176], and pymfe [25] use

OVO. However, this type of decomposition somewhat perverts the decision boundaries

of the original domain, since the individual properties and relations between classes are

disregarded.

Naturally, some thoughtful measures such as Raug or the adaptations of complexity mea-

sures allow to incorporate more information into the final measure, namely the imbalance

between classes, thus avoiding treating all pairs of classes equally. Similarly, it is possi-

ble to define several approaches for the aggregation of individual values (rather than the

average). One possibility is to weight the contribution of each class to the overall over-

lap according to the representation of the class concept in the domain. Other possible

aggregations have recently been derived [147]. Despite that, new approaches need to be
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investigated, especially taking into account the mutual relationships between classes. Pos-

sible directions are to consider cluster-based solutions [88] or incorporating the similarity

between classes while computing data typology [252]. We acknowledge this topic as one of

the major issues for future research, and discuss some approaches for multi-classification

domains in Section 6.5.1.

6.4.2 Data Preprocessing

Data Preprocessing encompasses a series of operations that may be applied before the data

is passed to the learning stage, where the classification models are built. In the context of

imbalance and overlapped domains, common preprocessing tasks include:

• Data Resampling: To compensate for class imbalance by removing majority exam-

ples and/or synthesising new minority examples, and to identify and clean overlapped

regions or examples;

• Dimensionality Reduction: To alleviate the dimensionality ratio problem (i.e., the

curse of dimensionality [341]), by characterising the data domain through a reduced

representation, rather than the entire input data. This process is commonly per-

formed using feature selection (selecting a subset of the original features by discard-

ing redundant and/or overlapped features), or using feature extraction (replacing the

original features with new transformed/extracted features that retain the relevant

information in data);

• Missing Data Imputation: To replace missing values with plausible estimates. In the

last couple of years, strategies for missing data imputation in imbalanced domains

have gained some notoriety due to the increased difficulty of estimating plausible

values when certain concepts are underrepresented or overlapped.

Data Resampling

In the scope of class overlap-based methods, data resampling approaches (undersampling,

oversampling, and cleaning), have been extensively reviewed in the previous chapter (Sec-

tion 5.7). In what follows, we simply highlight the discussed trends and point out existing

limitations.

While undersampling approaches focus mostly on structural information, considering clus-

tering and graph-based methods [61, 174, 444, 447], cleaning and oversampling approaches

mostly prioritise local information, often via kDN rules [63]. To some extent, multi-

resolution information is also explored within cleaning approaches to recursively remove

complex examples from data [445]. Oversampling is gravitating towards the development
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of approaches that adapt to the characteristics of data [9, 323, 457, 458], while also produc-

ing informative and diverse solutions [119, 486]; nevertheless, at the cost of complicated

hyperparameter configurations, which is currently an open challenge (more details will be

given in Section 6.5.4). Beyond data resampling, there are considerably fewer approaches

developed within the scope of ensembles, evolutionary, region splitting, and hybrid ap-

proaches, which may be due to the lack of current knowledge on the joint-effect of class

imbalance and overlap on hyperparameter tuning, and different learning paradigms and

ensemble learning (addressed in Sections 6.5.4 and 6.5.5).

Additionally, as previously discussed (please refer to Section 5.7.5), both from a theoretical

and empirical point of view, there is currently not enough knowledge to support the

application of one approach (or category of approaches) over the others. In this chapter,

we focus mostly on the latter, i.e., empirical limitations, which relate to the experimental

design of related work, and the lack of dataset benchmarking and open software. We will

discuss these limitations and directions for further research in Sections 6.5.3, 6.6.1, and

6.6.2.

Feature Selection

Feature Selection is an important preprocessing step when handling high-dimensional data

in every standard classification domain, given that a large number of features can be

problematic for some classifiers [354]. In imbalanced and overlapped domains, it becomes

a more strenuous task since it is more difficult to discriminate certain concepts in data

and consequently select the features that increase class separability.

Past work has already discerned on the challenges of feature selection in imbalanced do-

mains [138], whereas the use of complexity measures for the recommendation of feature

selection methods has become a hot topic in the last couple of years. Okimoto et al. [90]

show the suitability of using data complexity measures for univariate feature selection,

where F1, F3 and N1 were successful in selecting the most relevant features. F1, associ-

ated with class separability, was the most effective. In a later work, F1 is coupled with

N2 to produce a univariate-multivariate feature selection approach [68], combining both

feature-based and neighbourhood-based information. Parmezan et al. [354] propose a new

framework for the recommendation of feature selection algorithms based on meta-learning,

considering both the characteristics of the feature selection methods and the intrinsic

characteristics of the datasets. Information theoretic and complexity meta-features have

shown promising results in the characterisation of datasets [366]. In particular, the ratio

signal/noise, dispersion of the data set and average mutual information between classes

and attributes were frequently selected as decision nodes in the meta-models. Similarly,

F2 was also present in the all the constructed meta-models. Seijo-Pardo et al. [382] use a

combination of feature overlap measures (F1, F2, F3) to guide the definition of thresholds

regarding a suitable number of features to keep by feature selection methods. Dong and
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Khosla [416] show that the performance of feature selection methods is correlated with

N3.

A few emergent approaches have attempted to handle class imbalance and overlap in syn-

ergy. Fernández et al. [141] propose a multi-objective evolutionary algorithm to handle

class imbalance and overlap. Both feature and instance selection are considered while

evolving solutions, to simultaneously compensate for the class distributions, remove com-

plicated examples, and remove features with high overlap degrees. Lin et al. [262] propose

a feature selection algorithm based on feature overlapping and group overlapping (FS-

FOGO). Feature overlapping is computed by the ratio of the overlapping region on the

effective range of each class (similarly to F3), while group overlapping is determined by the

number of examples that fall onto overlap regions between classes (using R-value [327]).

In such a way, FS-FOGO combines both feature and instance overlap to decide on the

discriminative power of features. Fu et al. [147] propose two feature selection methods to

define a subset of features under SVM and Logistic Regression classifiers: MOSNS (Min-

imising Overlapping Selection under No-Sampling) and MOSS (Minimising Overlapping

Selection under SMOTE). Both methods are built via sparse regularisation with the main

objective to minimize the overlap degree between the majority and the minority classes

(defined using Raug). However, MOSS first applies SMOTE to rebalance the training

data. MOSS outperformed all other approaches (MOSNS, ACC, and ROC-based fea-

ture selection) regarding classification performance, whereas MOSNS produced the lowest

number of retained features while providing better or comparable results to ACC, and

ROC-based methods in most datasets. Recently, MOSS has also shown to improve the

performance of imbalanced approaches in multi-class domains [183]. Based on the same

strategy of considering sparse feature selection to minimize class overlap (via Raug), Fa-

tima et al. [328] refer to RONS (Reduce Overlapping with No-sampling), ROS (Reduce

Overlapping with SMOTE), and ROA (Reduce Overlapping with ADASYN). RONS and

ROS are the same as MOSNS and MOSS, respectively, while ROA follows the sample

principle as MOSS although using ADASYN instead. Considering ADASYN instead of

SMOTE seems favourable, since ADASYN focuses on more complicated minority exam-

ples, whereas SMOTE considers all minority examples equally.

Feature Extraction and Visualisation

Rather than selecting a subset of features, feature extraction methods perform certain

transformations on the original set of features in order to produce a reduced set of artificial

features. These new features are somewhat a combination or mixture of the original

features that aims to retain most of the information comprised in the original feature space.

In imbalanced and overlapped domains, a common application of feature extraction is data

visualisation. Graphic inspection is often applied to get a feel of the structure of data, the

overlapping between classes, and the overall data complexity. To that end, datasets are
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often transformed using feature extraction techniques to allow data visualisation in two

or three dimensions.

Anwar et al. [35] used Multidimensional Scaling (MDS) to represent each data example

in two dimensions in order to visually assess data complexity. The visualisation is used

in conjunction with the proposed CM metric to analyse the degree of overlap between

classes. Whereas the majority class is shown in some colour, each minority class example

is identified by the number of same class neighbours in its 3-neighbourhood. Napier-

ala et al. [319] used MDS and t-Distributed Stochastic Neighbour Embedding (t-SNE)

to assess the dominant typology of datasets (safe, borderline, rare/outlier datasets) and

identify class overlap. Despite certain differences in the projections of both methods, the

observations regarding the complexity of the studied domains are similar.

Recent research is also exploring feature extraction and visualisation strategies to charac-

terise the footprint of algorithms. This is a methodology known as Instance Space Anal-

ysis, and may be applied to a collection of datasets or to individual observations within

a dataset. The rationale of the analysis is similar. Essentially, it involves summarising

each dataset or each instance within a dataset as a n-dimensional feature vector represent-

ing its complexity. Then, using a feature extraction technique, e.g., Principal Component

Analysis (PCA), a two or three dimensional embedding (an instance space) that can be vi-

sually investigated. The classification performance associated to each dataset or instance

can be superimposed in the visualisation to identify regions of good or poor behaviour

of classifiers, and identify pockets of hard and easy datasets or instances. Smith-Miles

et al. [400, 401] used PCA to project dataset instances onto a 2-dimensional space and

analyse algorithm performance. Muñoz et al. [6, 32] propose a new dimension reduction

methodology that improves the interpretability of the visualisations. The new projection

approach is optimised so that the created instance space represents as much as possible a

linear trend between data complexity and classification performance.

Missing Data Imputation

Missing Data, despite being a hot topic in the field of data preprocessing, has not yet

received its status as a confounding factor for imbalanced datasets: traditionally, they

are handled independently [74, 191, 231, 282, 316, 362, 378]. Although some research

has highlighted the harmful impact of this synergy, the association links between missing

data, class imbalance, and other factors (namely class overlap), have not yet been properly

explored. Notwithstanding, a few works have attempted to handle these issues simulta-

neously (mainly missing data and class imbalance), or at least consider the influence they

may have on each other while exploring suitable solutions.

Takum and Bunkhumpornpat [411] propose a parameter-free approach for the imputation

of imbalanced datasets. Each missing value of a given example is replaced by a randomly
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generated number that falls between the mean of the missing feature and the value of

the nearest neighbour of that example on that feature. Authors consider a set of im-

balanced datasets and missing values are only generated on the minority class. Sim et

al. [392], among other factors (missing rate, patterns of missing data, number of samples,

number of features) considered also the imbalance ratio of datasets to produce association

rules between data characteristics and imputation and classification methods. Darry and

Rahman [104] use stratification to handle imputation of imbalanced data: data is strati-

fied based on the class labels and imputation models are trained separately for each class.

Awan et al. [126] recently proposed a Conditional Generative Adversarial Imputation Net-

work (CGAIN) that considers class-specific characteristics when imputing missing data.

Using information regarding the original data, missing values and class labels, CGAIN

produces fake data pertaining to a given class. Then, through adversarial learning, it

generates (plausible) fake values that are very close to the original data distribution to

impute those that were missing.

Some research on the synergy between missing, imbalanced, and overlapped domains is

related to the exploration of strategies to define data typology [319]. Originally, the defi-

nition of data types uses a k = 5 neighbourhood and the Heterogeneous Value Difference

Metric (HVDM) [356], that handles missing values internally. Mahin et al. [298] discuss the

possibility of tuning both these parameters (distance functions and k value) based on the

classification results of a kNN classifier. In this work, however, not all distance functions

handle missing values. Along this line, Santos et al. [379, 385] study the impact of using

distinct distance functions that handle missing values for the imputation of heterogeneous

imbalanced datasets with kNN. Missing data is generated in both classes (minority and

majority), according to the imbalance ratio of each dataset. More complex datasets seem

to benefit from a more thoughtful selection of distance functions (informative measures

were F1, N1, and L2) [379].

Besides the synergistic aspects studied in previous research, there are some perspectives

that are yet to be formulated, as we will discuss in Section 6.5.2.

6.4.3 Algorithm Design

The idea behind algorithm design is to adjust a given approach, i.e., the parameters of a

classifier or preprocessing method, to the characteristics of data. In the context of imbal-

anced and overlapped datasets, a common strategy is to incorporate information regarding

both these problems in the development of approaches. Such information might appear in

the form of an heuristic based on complexity measures and/or other observed character-

istics of datasets, leading to the development of specialised approaches. Alternatively, it

can also be based on the tuning of hyperparameters. In this case, the main objective is to

maximise the classification performance by choosing optimal hyparameters for classifying

or preprocessing each dataset.
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Whereas some strategies for specialised approaches have been applied in the literature,

hyperparameter tuning remains an understudied topic in what concerns the design of ap-

proaches sensitive to the peculiarities of data suffering simultaneously from class imbalance

and overlap.8 In what follows, we discuss some existing approaches in this regard.

Specialised Approaches

Depending on the category of class overlap based-approaches (please refer to Chapter 5,

Section 5.7), different strategies may arise for the development of specialised approaches.

Recent approaches are based on defining heuristics for undersampling or cleaning methods

(adaptive thresholding or local neighbour adjustment), analysing local information for

selective oversampling (via data typology), and incorporating costs associated with data

complexity directly into the learning systems.

Pattaramon and Elyan [444, 445] propose two heuristics for cleaning overlapped majority

class examples. With AdaOBU [444], they introduce an automatic elimination threshold

adaptable to the degree of class overlap. The threshold is proportional to the fuzziness

of the dataset and consequently to the existing class overlap. In [445], authors discuss

another heuristic to determine a reasonable value of k for neighbourhood-based cleaning

methods that promotes the discovery of overlapped majority examples. The heuristic

considers information regarding both the number of examples in data and the imbalance

ratio. A similar approach is taken in [326], where k depends on the imbalance ratio of the

dataset.

Data typology has also been considered in the design of specialised approaches, where

selective oversampling has proven to improve classification results. Skryjomski et al. [398]

show how SMOTE can be empowered by incorporating information regarding the typology

of minority class examples. Similarly, Sáez et al. [8] guide the oversampling procedure

based on the data typology of examples. The best oversampling configurations often

involved the oversampling of only borderline and outlier examples, with a higher frequency

of the preprocessing of borderline examples.

Another strategy is to integrate the information regarding data complexity directly on the

learning stage of classifiers. Lango et al. [251] suggest to consider the information produced

by ImWeights regarding the number of clusters and associated difficulty (incorporating

both structural and local information). Lee et al. [246] introduce the concept of overlap-

sensitive costs, which combines both the imbalance ratio and the degree of overlap of

8Note that hyperparameter tuning, per se, constitutes a topic of interest across several fields beyond
traditional Supervised Learning, such as Deep Learning, and Meta-learning [439]. Accordingly, some
intersections between terms, trends, and solutions are likely to arise. Notwidstanding, in this work, we
detach from that intersection and overall considerations on hyperparameter tuning regarding the Deep
Learning and Meta-leaning fields specifically. In alternative, we focus particularly on hyperparameter
tuning with respect to imbalanced and overlapped domains, highlighting existing limitations which are yet
to be addressed by all communities.
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training observations (based on kDN).

Hyperparameter Tuning

Hyperparameter tuning allows to determine specific model parameters tailored to the

characteristics of each dataset in order to obtain optimal performance. Thus, more than

embedding “rule of thumb”, theoretical settings into the approaches, it is possible to

empirically fine-tune parameter values for individual datasets, improving classification

results.

With respect to imbalanced and overlapped domains, the tuning process is most often

performed directly by analysing the effect of hyperparameters on classification perfor-

mance [9, 10, 88, 240, 443, 486]. That involves testing a range of hyperparameters (or

combinations of hyperparameters) over a benchmark of datasets and choosing the one

that performs the best overall.

Some studies further discuss the effect of hyperparameters on the proposed approach

and suggest appropriate values that provide overall good results. This is especially the

case of approaches that require several user-defined hyperparameters (e.g., A-SUWO, NI-

MWMOTE, IA-SUWO) [323, 457, 458]. Still, the discussion is given as a high-level view

of the approach, rather than providing recommendations based on data characteristics.

An exception can be highlighted for Douzas et al. [119], where some hyperparameter rec-

ommendations for G-SMOTE are given based on the imbalance ratio, and the ratio of the

number of samples to the number of features of the datasets. Another important exception

are evolutionary-based approaches that, by resorting to multiobjective algorithms, are able

to simultaneously consider both the classification performance and data characteristics in

the refinement of the approaches [140, 352].

Nevertheless, there are still several approaches where hyperparameters are defined ac-

cording to the default values of existing software packages or set to common values

for consistency with other works in the literature that used the same approaches or

datasets [61, 63, 175]. All in all, in what concerns imbalanced and overlapped data, hy-

perparameter tuning remains a neglected subject and it constitutes a challenge for further

research. New perspectives regarding hyperparameter tuning are given in Section 6.5.4.

Finally, as previously discussed, we may argue that this topic also falls onto the scope of

Meta-learning and Deep Learning.

In what concerns Meta-learning, hyperparameters themselves may be seen as meta-data

that describes the learning tasks [439]. Overall, the idea of defining appropriate param-

eters for classification or preprocessing depending on the data characteristics has been

the subject of previous work in the field, where meta-models are designed to recommend

specific configurations of hyperparameters, based on some meta-features. The reader is
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referred to [366, 439], which constitute two comprehensive surveys on the topic. Existing

work mostly focuses on traditional meta-features (e.g., simple, statistical, information-

theoretic), and there is not, to our knowledge, any study that focuses specifically on

hyperparameter tuning for imbalanced and overlapped datasets. Nevertheless, there is

some relevant related work in the field of Meta-learning in what concerns the use of data

complexity measures, and therefore we extend our discussion to this field (Section 6.4.4).

With respect to the Deep Learning field, some recent research is starting to study the

behaviour of deep learning systems in imbalanced domains which may be further affected

by additional complexity factors, such as class overlap. The reader is referred to [167] for

the first novel thoughts on the subject, although some core issues persist in deep learning

systems as for their classical counterparts: class overlap remains a challenging factor

even for deeper architectures, and, to this point, model parametrisation follows the same

principle of experimenting with several hyperparameters to report optimal classification

results. As the body of literature is still scarce in what concerns the application of deep

learning to class imbalance and overlap, this field is out of the scope of this work.

6.4.4 Meta-learning

In Meta-learning (MtL), the characteristics of a dataset (named meta-features or meta-

characteristics) are extracted and associated to the classification performance obtained

over it. By compiling meta-information on a collection of datasets with associated per-

formance results (thus creating a meta-dataset), it is possible to build a recommendation

system that infers on the behaviour of a technique (or suggests the application of an

appropriate one) based on the characteristics of a new dataset.

Traditionally, there are five categories of meta-features discussed within MtL frameworks:

simple, statistical, information-theory, landmarking, and model-based meta-features [367].

However, although they were not originally proposed for meta-learning, complexity mea-

sures have been used extensively in the MtL and AutoML literature [215, 314, 388, 479].

For that reason, authors have started to refer to them as an extra category of meta-

features [366], and recent research has been showing that they may prove equally or more

informative than traditional meta-features [215]. In particular, class overlap measures have

stood out as highly accurate indicators of classification performance [58, 176]. Indeed,

some class overlap measures are related to the landmarking category of meta-features.

Landmarking meta-features characterise datasets based on the classification performance

of simple and fast learners, such as kNN and linear discriminants, therefore highly associ-

ated with the instance overlap measures (N3) and feature overlap measures associated to

class separability (F1, F1v).

In the context of imbalanced and overlapped domains, common applications of MtL sys-

tems are related to the recommendation of classifiers and preprocessing techniques or
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to the study of their domains of competence. Most often, related research focuses on

obtaining a high level view of MtL frameworks rather than discussing informative mea-

sures [314, 388, 479]. Nevertheless, some works have attempted to connect the insights

derived from complexity measures to the recommendation provided by the systems, which

we discuss in what follows.

Classifier Recommendation

In the scope of classifier recommendation, Garćıa et al. [338] use regression techniques to

recommend the best classifier (ANN, DT, SVM, kNN) for a given dataset, based on their

data complexity. The top most informative measures were N3 and N1, followed by N2,

Density and T1. Luengo and Herrera [277] discuss an automatic extraction method to

determine the domains of competence of classifiers (DT, SVM, and kNN). The complexity

measures regarded as most informative were N1, N3, L1, and L2. Apart from the top

informative measures, additional information may be useful depending on the nature of

classifiers. That however, remains an underinvestigated topic. Open avenues regarding

classifier recommendation will be discussed in Section 6.5.5, along with ensemble learning,

as they are related topics that suffer from similar limitations.

Recommendation of Resampling Approaches

Complexity measures are also often used to guide the choice of appropriate resampling

techniques. Depending on the complexity of a domain, a suitable resampling strategy

can be chosen by taking into account its intrinsic behaviour (i.e., how it works inter-

nally), and to what extent it can alleviate certain data problems. Luengo et al. [278]

analyse the usefulness of complexity measures to evaluate the behaviour of resampling

approaches. F1, N4, and L3 proved informative to establish significant intervals of good

and bad behaviour for different preprocessing approaches. Santos et al. [387] perform a

thorough comparison of oversampling approaches for imbalanced datasets, supported by a

data complexity analysis. The best oversampling techniques seemed to include structural

information (cluster-based synthetisation), instance overlap information (use of cleaning

procedures), and instance hardness information (adaptive weighting of examples). Costa

el al. [215] use Exceptional Preferences Mining to extract interpretable rules to guide the

recommendation of oversampling strategies for imbalanced datasets. Similarly to the pre-

vious work, class overlap measures were the most informative, namely measures related to

structural and instance overlap (N1, N4) and instance hardness (proportion of borderline

examples). Zhang et al. [479] propose an instance-based learning recommendation algo-

rithm to determine the most suitable strategy to handle imbalanced datasets. They use

complexity, landmarking, model-based, and structural meta-features, although they only

present a high-level view of the results, without discussing specific measures.
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Ensemble Learning

Current ensemble frameworks often incorporate one of two solutions. One is the coupling

of ensembles with resampling and cleaning methods: recent approaches include CluAD-

EdiDO [88], SPDM [85], and SPE [269]. The other is the simultaneous use of evolutionary

approaches to handle the peculiarities of the domains. Most often, this involves the in-

corporation of some data complexity information in the objective criteria of evolutionary

algorithms, in order to optimise the final performance of the ensemble. For instance,

Fernandes et al. [352] discuss EVINCI, an evolutionary ensemble-based method that in-

corporates the N1 measure in the workflow to optimise instance selection. Fernández et

al. [140] propose EFIS-MOEA, which incorporates both feature and instance selection.

The first strategy requires the understanding of which resampling/cleaning approaches

are most suited to different domains, and may be supported by previous meta-learning

studies on resampling approaches. The second strategy is more closely related to algorithm

design, focusing on the development of specialised approaches and hyperparameter tuning

to improve classification performance. Note how both strategies do not specifically focus

on ensemble learning from a meta-learning perspective, i.e., using complexity measures to

define an appropriate set of base classifiers for the ensemble framework. That requires the

choice of a pool of adequate classifiers to form the ensemble, which comprises both the

analysis of how classifiers with different learning biases respond to the joint-effect of class

imbalance and overlap, and the assessment of their combination (creating ensembles) for

optimal solutions. However, as discussed in the previous section, the link between data

characteristics (i.e., complexity measures) and classifier recommendation is not yet well-

established. Consequently, although some ensemble-based techniques have been discussed

within the scope of imbalanced and overlapped domains, ensemble learning is still an open

avenue for research, and will be discussed in Section 6.5.5.

6.5 Open Challenges and Future Directions for Research

In what follows, we revisit the topics identified as open challenges throughout Section 6.4,

elaborating on possible future research directions.

6.5.1 Multi-class Problems

As discussed in Section 6.4.1, the standard approach for multi-class problems consists of

formulating several binary sub-problems, using One-Versus-One (OVO) or One-Versus-All

(OVA) decomposition. On the one hand, these strategies allow the application of binary

classifiers without additional modifications. Also, and especially when handling class

overlap, they may simplify the original domain by focusing on sub-problems individually,
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thus easing the separation between classes [369]. On the other hand, this simplification

is achieved at the cost of distorting the inner structure of individual classes (and original

decision boundaries), and neglecting the mutual relations between classes. For instance, a

given class can either be considered the minority or majority class, depending on the size

of the class it is being compared to. Some classes can also be more closely related (more

similar) than others. With respect to class overlap, there can be a class or a subset of

classes that is mainly responsible for overlapping regions, whereas other classes may have

clear decision boundaries among each other. Classes may also have distinct overlapping

regions with respect to each other. Regarding data typology, examples will be categorised

in different types, depending on the classes considered to define their neighbourhood.

By manipulating the data internally, via OVA or OVO, the information on the intrinsic

characteristics of each class is lost, which may lead to the application of methods that

are not appropriate for the domain as a whole, i.e., they may hurt one class while trying

to improve the representation of another. OVA can additionally introduce artificial class

imbalance [88, 369] whereas OVO suffers from the non-competence problem [153], i.e.,

when classifying new data, the predictions of all constructed OVO classifier are considered,

even those of classifiers that have not been trained with examples belonging to the real

class of that data. The following directions could be analysed to fully understand and

explore multi-class domains:

• An interesting future direction is the exploration of cluster-based techniques. The

domain is divided into several regions, where data complexity can then be assessed.

For instance, clusters containing examples of only one class will not contribute to

class overlap. In turn, clusters containing examples of multiple classes will be eval-

uated maintaining the original relationship between classes. A starter point for the

investigation of this line of research is [88], where multi-class imbalanced and over-

lapped datasets are first clustered, before any cleaning and oversampling procedures;

• Another alternative to take into account the relationships between classes is to in-

corporate additional information on the data typology of different classes. Rather

than considering each class in isolation and producing its typology (OVA approach)

[8], recent research suggests to incorporate a similarity factor when determining the

safety level of each example in data [252]. A major drawback in [252] is that it

considers that similarity should be provided by the user (via domain knowledge or

consulting a domain expert). As this is most often not possible, an alternative to

overcome this issue could be to estimate a similarity coefficient via similarity/dis-

tance functions. Another similarity heuristic based on the imbalance ratio between

class concepts has also been recently proposed [209]. It suggests that concepts with

lower class imbalance are more similar to each other. We argue that associating class

similarity to the imbalance ratio between classes might be too simplistic and suggest

that the overlap degree between classes could be used in alternative, to produce a
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more realistic measure of class similarity.

6.5.2 Missing Data Imputation

As pointed out in Section 6.4.2, in the presence of class imbalance, data imputation – the

most commonly used approach to handle missing data [78, 202, 203, 384] – becomes a

more difficult task due to the known bias of models towards the most represented classes.

If the domains are further affected by class overlap, the problem is even more complex.

The synergetic effects of missing data, class overlap, and class imbalance should therefore

be a topic for discussion in future work.

• One possible direction concerns studying the behaviour of data imputation tech-

niques on imbalanced and overlapped domains. Due to the existence of ambiguous

regions where the number of examples from each class is disproportionate, it is ex-

pected that some imputation techniques output estimate values that are more similar

to well-represented concepts, thus exacerbating class overlap (e.g., introducing fea-

ture overlap) and consequently further complicating classification tasks;

• Another possibility is to determine whether the combination of class overlap, class

imbalance, and more complex missing mechanisms, such as Missing At Random

(MAR) or Missing Not At Random (MNAR) [384], may give rise to additional com-

plications for data imputation. As an example, MAR mechanism occurs when the

probability of missing values depends on some observed information in the data (e.g.,

on the values of a particular feature, i.e., a determining feature). The determining

feature may encompass ranges where the values of different classes overlap which,

in the presence of class imbalance, may lead to a situation where the minority class

is greatly affected by missing data, further exacerbating the bias in the process of

data imputation;

• Focusing on data typology, it is not known to what extent missing data may affect

the categorisation of different types of examples. Originally, data typology considers

the possibility of missing data, and deals with this issue by using the Heterogeneous

Value Difference Metric (HVDM) [356], that handles missing values internally. How-

ever, no studies have been performed regarding the effect of increasing amounts of

missing data in data typology. A possibility is that the complexity added by miss-

ing values is reflected in the typology of examples, i.e., leading to the occurrence

of more complicated examples (borderline, rare, and outlier examples). Similarly,

another line of research is to determine the effect of using distance functions that

handle missing values differently in the definition of data typology. It is possible that

some distances may reflect better the complexity added by missing data, leading to

typologies that are more aligned with the classification difficulty;
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• Also regarding data typology, a possible research direction could be to explore a

typology-based imputation strategy, i.e., different types of examples could be im-

puted in different ways. Much like data typology is used to guide resampling pro-

cedures, new algorithms could be developed so that data imputation can be better

adjusted to the data characteristics.

6.5.3 Data Resampling

In the previous chapter, we provided an extensive discussion of the limitations and op-

portunities for future research regarding class overlap-based methods (Sections 5.7.5 and

5.8). As outlined in Section 6.4.2, herein we summarise some of the current main empir-

ical limitations of class overlap-based approaches, including data resampling, while also

referring to additional open directions that are crucial to address for the development of

new approaches dedicated to handle imbalanced and overlapped datasets:

• The comparison of class overlap-based methods is currently very limited to well-

established approaches, which have been frequently outperformed. Class overlap-

based approaches are also often compared with their analogous distribution-based

approaches, rather than with approaches developed for the same purpose (i.e., reduc-

ing both class imbalance and overlap). It would be crucial to compare new methods

with emergent, state-of-the-art approaches to provide a more accurate evaluation of

results;

• There is still a clear lack of information on how datasets are affected by class over-

lap (there is often no quantification of the problem). The question of whether the

applied methods provide true improvements with respect to class overlap therefore

remains. Most often, approaches are evaluated in terms of classification performance,

which may not be sufficient to validate the approach. It is important that future

research considers a deeper characterisation of domains, especially if the purpose of

an approach is to alleviate some data-related issue. New studies in the field should

provide a more insightful characterisation of datasets beyond the number of sam-

ples, features, and imbalance ratio. It is important to guarantee that a testbed is

representative of the desired data issue to sustain the improvements introduced by

a proposed approach;

• Additionally, since there is no standard measure of class overlap, in the cases where

class overlap is quantified, related research resorts to different measures, capturing

distinct facets of the problem. This further complicates the comparison and evalu-

ation of approaches. Future research should move towards the development of new

measures of class overlap, that aggregate multiple dimensions, or explore a more

broad spectrum of measures while performing experiments. In this regard, exploring

our taxonomy is a good starting direction;
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• A large amount of class overlap-based methods is based on handling conflicting

examples (e.g., borderline, noisy examples), whose identification relies almost exclu-

sively on instance hardness measures (kDN rules). Similarly to the previous point,

future research could simultaneously explore other vortices of class overlap while

performing this assessment;

• Class overlap measures can also be used to provide specialised data preprocessing

so that the representation of minority examples is increased in overlapping regions.

In this regard, the generation of new synthetic examples may be guided in order to

optimise a given complexity measure;

• Class imbalance should also be explored beyond both the characterisation of the dis-

proportion between classes, and the definition of the undersampling/oversampling

amount necessary for preprocessing techniques. Instead, it could be considered to-

gether with class overlap to produce new measures of complexity, and further em-

bedded in the operations of methods. Some recent work is already searching for

solutions along this line, at the level of algorithm design (Section 6.4.3), which we

believe to be one of the directions with the highest potential for future developments

in the following years;

• Improved weighting schemes are also worth studying to adjust the complexity profile

of training examples. This rationale can also be applied to data preprocessing ap-

proaches to provide a specialised resampling, depending on the difficulty of a given

example.

6.5.4 Hyperparameter Tuning

As discussed in Section 6.4.3, the configuration of hyperparameters (of classifiers or re-

sampling approaches) is most often guided by the results obtained from the classification

stage. Besides time consuming, this type of approach does not take advantage of informa-

tion on data complexity, which can be obtained, often at a lower cost than running entire

experiments. The following directions may be explored in order to devise more insightful

ways to guide hyperparameter tuning:

• Regarding resampling approaches - undersampling, oversampling, and cleaning - a

possibility is to guide the tuning of hyperparameters based on complexity measures.

For imbalanced and overlapped domains, the hyperparameters of resampling pro-

cedures can be adjusted in a way that they alleviate class imbalance and minimise

class overlap, by assessing the effects of given hyperparameters on suitable complex-

ity measures. This can be thought out by addressing data complexity as a whole, for

instance, focusing on minimising feature, instance, and structural overlap simultane-

ously. Alternatively, it is possible to address data complexity selectively, depending
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on the classification paradigm to be used after the preprocessing stage, i.e., focusing

only on the most complicated factors for the classier at state. As an example, since

SVMs can handle rather complex structures [462], one can focus solely on addressing

instance overlap, removing harmful examples;

• Regarding classifier hyperparameterisation, it is possible to achieve a reduced range

of hyperparameters to test by exploring data complexity at an intermediate stage.

For instance, for SVMs, more appropriate combinations of C and γ can be explored

depending on the characteristics of data. An obvious advantage of considering hy-

perparameter tuning based on data complexity is that complexity measures are often

faster and simpler to compute than performing full classification experiments. Also,

choosing more insightful ranges of hyperparameters allows the algorithm to converge

faster, avoiding the need to test an extended set of possible combinations. In this

regard, some interesting approaches have studied meta-models to determine whether

or not to tune SVMs [150], or how to define appropriate sets of default hyperparam-

eters [168]. Both research works consider general real-world domains and rely on

the study of several data characteristics (meta-features), including some complexity

measures (the former exploring imbalanced datasets in more detail). Although they

do not focus particularly on the joint-effect of class imbalance and overlap, they may

serve as a starting point to further explore hyperparameter tuning in these domains,

across several learning paradigms and methods, including preprocessing approaches;

• At the level of class overlap complexity measures, a large number of measures relies

on finding a k-neighbourhood, where the value of k is routinely set to a pre-defined

value (k = 5 is a common hyperparameter). The same is true for data typology, and

several class overlap-based methods. This strategy obviously neglects the character-

istics of the domains, although estimating k for each domain may be computationally

expensive. Therefore, defining more insightful heuristics for setting k is a interesting

direction for future work. Regarding complexity measures, some approaches suggest

incrementally increasing k until the complexity stabilises [35]. On data typology,

recent work discusses the possibility of tuning k and the used distance metric based

on classification results of a kNN classifier [298]. On data resampling, some recent

heuristics for defining suitable k-neighbourhoods are based on the degree of class

overlap or the class imbalance of datasets [326, 444, 445];

• Similarly, adaptive methods for finding k should also be explored, where k could be

adjusted to the local minority class densities. Traditionally, smaller values of k are

more successful to recognise the less represented concepts in the overlap region. In

turn, larger values of k benefit the more represented concepts in that region [157].

Future research could pursue the proposal of a framework able to select an optimal k

value based on the local characteristics of data. In that regard, hypersphere coverage

metrics could be informative to define optimal k values. For instance, examples with
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lower LSC require smaller values of k for correct classification;

• Future research may also focus on the investigation and optimisation of distance

functions (both for specialised approaches and complexity measures). Although pre-

vious studies have shed some light on the different behaviour of complexity measures

and data typology depending on the used distance function [35, 80, 103, 298], this

remains a poorly studied topic.

6.5.5 Classifier Recommendation and Ensemble Learning

As discussed throughout Chapter 5 and highlighted in Section 6.4.4, although previous

studies have shown that the combination of class imbalance and overlap creates a chal-

lenging scenario for classifiers, independently of their learning paradigms (i.e., the nature

of the learned decision boundaries) [107], there is no study that thoroughly discusses this

topic, focusing specifically on establishing its effects on distinct learning biases with respect

to real-world domains. Related research has established some insights regarding the be-

haviour of local versus global classifiers [157], symbolic and non-symbolic classifiers [462],

and classifiers with different learning paradigms [309]. However, these comprise artifi-

cially generated data domains, where class overlap, class imbalance, and other factors

(data typology, data structure and class decomposition, local data densities, and data

dimensionality) are defined apriori. Transposing these studies to real-world scenarios is

now possible due to the increasing number of complexity measures proposed and revisited

in the last few years, and it would be of major interest to the research community. This

would lay the foundation for the choice of baseline approaches for imbalanced and over-

lapped domains (i.e., classifier recommendation), as well as guide the selection of ensemble

approaches. SVM and kNN have perhaps been the most studied classifiers under varying

degrees of complexity [114, 157, 246, 462], whereas establishing the behaviour of other

learning paradigms should be investigated in future work.

6.6 Open Source Contributions

In this section, we highlight further directions for future research that are complementary

to those identified in the previous section and may contribute to their more rapid and

effective advancement.

6.6.1 Benchmark Datasets

Popular public repositories (e.g., UCI [115], Kaggle [223], KEEL [24], OpenML [330])

offer a diverse collection of datasets in what concerns their extrinsic complexity (number

of instances, dimensionality, missing values, number of classes), though not focusing on
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their intrinsic complexity (class imbalance, class overlap, small disjuncts, noisy data and

other data-related issues). Therefore, they lack diversity, i.e., their are not representative

of a great span of complexity problems [6, 295]. Regarding specific applications or data

characteristics, KEEL is perhaps the most popular repository. It provides a collection of

both standard datasets as well as datasets targeted to imbalanced learning, detection of

noisy and borderline examples, as well as singular problems (multi-instance and multi-label

datasets). Nevertheless, other data complexity factors remain overlooked. An important

contribution to research would be the creation of an open repository representative of

data complexity problems. This would establish a benchmark for studies regarding the

domains of competence of classifiers, as well as the development of specialised approaches

and AutoML pipelines. The following directions could be taken in order to develop data

benchmarks targeted to complexity analysis:

• Providing a complete characterisation of datasets comprised in well-known reposi-

tories and grouping datasets according to their complexity. Varying degrees of data

complexity could be determined, and in particular for class overlap, our taxonomy

could be helpful to divide datasets based on their dominant overlap representation.

For instance, some datasets can be structurally intertwined (structural overlap),

whereas others may include a great amount of difficult examples (identified with

instance overlap measures). Combinations of these factors could also be considered;

• On this note, it is important to refer to the computational complexity associated to

the computation of some complexity measures. Despite the fact that they have been

used extensively in MtL applications, their widespread usage may be compromised

by the fact that some are computationally expensive. In this regard, an open chal-

lenge relies on the optimisation of complexity measures. As an alternative, recent

research has shown that it is possible to predict data complexity measures of a given

dataset using simpler, low cost meta-features as input [339], which could also be an

interesting direction to explore;

• Complementary to the characterisation of datasets, a possible strategy to guide re-

searchers on the choice of appropriate datasets to evaluate their proposed approaches

could be the creation of a meta-dataset which could then be explored via clustering

analysis to define groups of datasets with similar complexity. Another interesting ap-

proach is the the one taken in [6] where datasets are projected onto a 2-dimensional

instance space where their complexity and diversity can be visualised;

• Enhancing existing repositories with artificial data is also a possibility, where arti-

ficial datasets can be used as a benchmark to improve the behaviour of approaches

with respect to a particular aspect (e.g., presence of borderline examples, class-

skews). The main advantage is that artificial datasets can be tailored to the needs of

the experimental setup, i.e., covering specific sources and ranges of data complexity,
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or gradually increasing data complexity. A recent line of research in this direction

is [351], where a many-objective optimisation algorithm is used for complexity-based

data generation.

• In alternative, previous work suggests enhancing data repositories with thoughtful

modifications of real-world datasets. The approach in [295] uses an evolutionary

multi-objective algorithm to sample a real-world dataset so that the resulting set of

examples optimises a set of data complexity measures. A similar approach based

on class label modification is introduced in [434]. Another strategy is presented

in [6], where datasets are evolved to fall onto target regions of the complexity space.

Similarly, a recent and interesting line for future development is the exploration of

data morphing, where a real-world dataset can be gradually manipulated to display

certain meta-characteristics [97]. In this case, it would be possible to select a high

complexity dataset with respect to certain properties (e.g., both structural and in-

stance overlap) and iteratively transform a less complex dataset to exhibit gradual

variations of those properties. Although manipulating the datasets artificially, these

strategies aim to enrich their data characteristics while attempting to maintain the

essence of real-world domains. With respect to class overlap, a scheme to generate

overlapping regions in real-world datasets is discussed in [369].

6.6.2 Software and Open Source Implementations

• Code availability is a crucial aspect for the reproducibility of results. Long-established

methods are implemented in several open-source software. Some of the most pop-

ular are KEEL Software Tool [23, 24, 423], WEKA workbench [144], among other

R [96, 102, 281, 396] and Python [238, 254] packages. However, most recent research

work does not frequently provide open-source implementations of novel approaches

on imbalanced and overlapped data. We have identified all existing resources (data

and code) regarding class overlap-based approaches in imbalanced domains, so that

researchers may consider them in future experiments9, and further encourage future

researchers to make their code and obtained results publicly available;

• Existing open-source implementations of complexity measures include the DCoL, im-

plemented in C++ [334], and ECoL [80], ImbCoL [177], SCoL [339], and mfe [25]

packages in R. There is also pymfe [25] in Python. Regarding the class overlap

measures included in our taxonomy, these packages consider the implementation of

the following: F1, F1v, F2, F3, F4, N1, N2, N3, N4, T1 and LSC. ImbCoL provides

a decomposition by class of the original measures and SCoL focuses on simulated

complexity measures. In order to foster the study of a more comprehensive set of

measures of class overlap, we provide an extended Python library – Python Class

9https://github.com/miriamspsantos/open-source-imbalance-overlap

208

https://github.com/miriamspsantos/open-source-imbalance-overlap


A Unifying View of Class Overlap and Imbalance: Key Concepts, Multi-View Panorama,
and Open Avenues for Research

Overlap Library (pycol)10 – comprising all the class overlap measures included in

the previous packages, plus the remaining measures described in Chapter 5 and re-

visited in Section 6.3: F1, F1v, F2, F3, F4, IN, Purity, Neighbourhood Separability,

MRCA, C1, C2, N2, NSG, ICSV, T1, DBC, ONB, Clst, N1, IPoints, LSC, kDN,

Borderline Examples, degOver, SI, R-value, Raug, N3, N4, D3, CM, wCM, and

dwCM. We are currently conducting a large experimental study over imbalanced

and overlapped datasets, focusing on distinct representations of class overlap, and

the ability of the identified groups of class overlap complexity measures to effectively

characterise them;

• Within the scope of artificially generated data, we also recommend the use of data

generator described in [462], for which we provide the documentation in English

so that more researchers are able to understand and configure it. Additionally, we

include our example collection of generated artificial datasets, as well as visualisation

modules for data typology.11 We welcome other researchers to contribute with their

own research data in order to move towards the creation of a representative repository

regarding data complexity factors, beyond imbalanced and overlapped datasets;

• With respect to Instance Space Analysis discussed in Section 6.4.2, exploring MATILDA

(Melbourne Algorithm Test Instance Library with Data Analytics)is an interesting

direction [6]. It allows the visualisation of the distribution, diversity and complexity

of existing benchmark and real-world instances, the generation of new synthetic test

instances at specific locations of the instance space, and the analysis of algorithm

footprints. Another recent tool is PyHard, which allows to assess the complexity of

individual examples within a dataset [474].

6.7 Concluding Remarks

Among several data issues that can harm imbalanced learning tasks, class overlap has

systematically been recognised as the most harmful. Naturally, real-world applications

need to account for both problems when devising suitable solutions for domains affected

by both issues.

However, whereas class imbalance is simpler to characterise and measure, referring to the

disproportion of examples between classes, class overlap stands as a confounding con-

cept, due to the multitude of representations, i.e., specific types of overlap problems, it

comprises. For instance, some authors may characterise overlap as the overlap between

individual feature values, associating class overlap to the discriminative power of features.

Others may characterise the problem by searching for complicated examples located in

10https://github.com/miriamspsantos/pycol
11https://github.com/miriamspsantos/datagenerator
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borderline regions between classes, in which case class overlap refers to instance complex-

ity. The lack of a standard and well-formulated characterisation of class overlap in real-

world domains is currently preventing the research community to move towards improved

approaches since, due to the lack of consensus and standardisation, the evaluation (and

consequently, the comparison) of existing solutions and associated results (and insights)

becomes extremely difficult.

In this work, we aim to promote the discussion among the research community towards

a unified view of the problem of class overlap in imbalanced domains, essentially dividing

this chapter into two parts: a conceptual discussion of the problems (Sections 6.2 and

6.3) and a muti-view panorama of the current state of knowledge and open avenues across

several fields of Machine Learning (Sections 6.4 to 6.6).

In the first part of this work, acknowledging class overlap as the overarching problem,

we start by discussing the concepts associated with its definition across related research.

We reason towards the idea that class overlap comprises multiple sources of complexity

and that it needs to be characterised accordingly. Indeed, we argue that the class overlap

measures currently used in the literature are not representative of the class overlap problem

as a whole, but that they rather provide an estimate of a specific type (representation) of

class overlap.

In this regard, in order to systematise the understanding of the problem of class overlap,

we identify three main components underlying its characterisation: (1) the decomposition

of the domains into regions of interest, (2) the identification of problematic regions (over-

lapped regions), and (3) the quantification/measurement of the class overlap problem.

Depending on the approaches followed within each component, the obtained characterisa-

tion may refer to distinct class overlap representations, reflecting different insights on the

problem.

Accordingly, we conceptualise a taxonomy of class overlap complexity measures, estab-

lishing four main class overlap representations: i) Feature Overlap, ii) Instance Overlap,

iii) Structural Overlap, and iv) Multiresolution Overlap. Each group is characterised in

what concerns the insight its measures provide regarding the class overlap problem, as well

as existing limitations. In other words, we explain how each group is able to capture a

given representation of class overlap, while failing to perceive others. Besides establishing

the association between complexity measures and their class overlap representations, our

taxonomy evidences the core properties of the measures and provides an overview of the

relationships between them. Additionally, it includes a comprehensive set of complexity

measures, beyond the well-known measures initially proposed by Ho and Basu [220], and

discusses whether they account for class imbalance, or how they can be extended to do so.

All in all, the concepts and ideas explored within the first part of this work are somewhat

reminiscent of the ideas introduced in the previous chapter, yet they lay the foundation
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for a unified view of the problem of class overlap, and may serve as a stepping stone for

the design of improved measures and the characterisation of the problem as a whole in

real-world domains.

Having laid out our conceptualisation of the problem of class overlap and its challenging

aspects, we move towards the second part of the work, offering a multi-view panorama

regarding the synergy of both issues across four important areas of Machine Learning:

Data Analysis, Data Preprocessing, Algorithm Design, and Meta-learning. Regarding

ongoing research directions, a few recent trends can be identified:

• A great amount of related work is currently focused on analysing the complexity of

imbalanced classification tasks, either to establish the baseline difficulty of the learn-

ing process (data analysis) or to develop recommendation systems that compile this

information and produce new inferences with various applications (meta-learning).

Among existing data complexity measures, those associated to class overlap have

provided the most perceptive insights. Nevertheless, due to the known biases in-

troduced by the class imbalance problem, recent research is currently investigating

adaptations of complexity measures to imbalanced domains, or focusing on the de-

velopment of new measures that can take both issues simultaneously into account;

• Addressing multiple vortices of class overlap, i.e., considering distinct sources of

complexity where class overlap may have synergetic effects (e.g., local, structural,

density information), has proven to be a successful approach, both in data prepro-

cessing and the development of specialised approaches. Simultaneously incorporating

several sources of information into the solutions seems to be key to produce improved

results, which endorses our understanding of class overlap as a heterogeneous concept

with distinct representations, and shows that there is an advantage in considering

their combination;

• Another emergent line of research is the creation of instance spaces where the class

overlap problem can be assessed in a lower dimensional feature space, through data

visualisation. This strategy resorts to dimensionality reduction techniques, where

projections can be optimised in order to reveal linear trends between data complexity

and classification performance.

Finally, we complemented the revision of the state of the art by incorporating our thoughts

regarding several lines of future research. We consider the following as the most pressing:

• The development of approaches to address other learning tasks beyond binary-

classification problems. Most of existing work on class imbalance and overlap is

devised for binary-classification domains, whereas the issues identified for multi-class

problems are yet to be faced;

211



Chapter 6

• More extensive comparison of approaches to handle imbalanced and overlapped do-

mains. In experimental studies, proposed methods are often evaluated against well-

established approaches. New experiments should include emergent methods devel-

oped during most recent years. Additionally, a deeper characterisation of datasets

and standardisation of performance metrics is necessary to guarantee representative

testbeds and a fair comparison of approaches;

• Optimisation of hyperparameters for preprocessing and specialised approaches, based

on the evaluation of data complexity measures. In imbalanced and overlapped do-

mains, hyperparameters are often defined according to heuristic solutions, or tuned

based on classification results. Although previous research in related fields (Meta-

learning) has produced an interesting body of work on the topic of hyperparameter

recommendation (although most often using traditional meta-features), further re-

search on imbalanced and overlapped domains is required, and should explore the

possibility of incorporating complexity measures into the tuning process;

• In addition to the previous point, despite the fact that the Deep Learning com-

munity has invested in addressing the class imbalance problem in the latest years,

deep learning systems are rarely discussed in more challenging scenarios, namely

those comprising additional difficult characteristics, such as class overlap. It would

be important to strengthen the understanding we currently have on the behaviour

of deep learning models, given that despite their growing interest in the machine

learning community, they seem to suffer from the save handicaps as their classi-

cal counterparts, namely in what concerns the combination of class imbalance and

overlap;

• More thorough studies on the effect of class imbalance and overlap on distinct learn-

ing biases. Existing studies comprise artificially generated data, with controlled

parameters, to create distinct complexity factors. New insights are needed for real-

world domains;

• The creation of a comprehensive benchmark of datasets and their characterisation

should also be prioritised in future research. The same applies to the development

of open-source implementations of state-of-the-art approaches for imbalanced and

overlapped domains, as well as data complexity measures beyond those established

by Ho and Basu [220], which are mainly the focus of existing libraries.

In sum, the purpose and contribution of this chapter is two-fold. First, it establishes the

theoretical foundations of the problem of class overlap and its implications for real-world,

imbalanced domains. It is our belief that, despite the increasing amount of proposals for

new methods and approaches to address imbalanced and overlapped domains, the lack of

understanding regarding the class overlap problem (i.e., the lack of a precise definition,
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measurement, and characterisation of the problem) is preventing the development of opti-

mal solutions. In this regard, we hope that the concepts and resulting taxonomy discussed

throughout this work, acknowledging the heterogeneity of the class overlap problem, may

encourage the dialogue among researchers towards a consensus on the matter. Secondly,

beyond providing a comprehensive identification of open avenues for research, this work in-

corporates our thoughts and suggestions on how to address them, aiming to guide machine

learning researchers through their future research in this field.
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Chapter 7

Generating Synthetic Missing

Data: A Review by Missing

Mechanism

The performance evaluation of imputation algorithms often involves the generation of miss-

ing values. Missing values can be inserted in only one feature (univariate configuration)

or in several features (multivariate configuration), at different percentages (missing rates)

and according to distinct missing mechanisms, namely Missing Completely At Random

(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR). Since the

missing data generation process defines the basis for the imputation experiments (config-

uration, missing rate, missing mechanism) it is essential that it is appropriately applied;

otherwise, conclusions derived from ill-defined setups may be invalid or biased. The goal

of this work is to review the different approaches to synthetic missing data generation

found in the literature and discuss their practical details, elaborating on their strengths

and weaknesses. Our analysis reveals that creating MAR and MNAR scenarios in datasets

comprising qualitative features is the most challenging issue in related work and should

therefore be the focus of future work in the field.
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7.1 Introduction

Missing Data (MD) consists of the existence of absent observations (values) in data and

is a common obstacle researchers face in real-world contexts [189, 202, 378]. MD occurs

in a variety of domains, for several different reasons, and regardless of whatever they

might be, has serious implications for knowledge extraction and classification performance.

When datasets are incomplete, pattern classification turns into a more complex task;

therefore, over the years, researchers have invested in developing effective strategies to

replace the missing values by plausible substitute values, a process generally designated

by data imputation [100].

A classical approach to data imputation studies follows 4 mains steps (Figure 7.1):

1. Collection of several complete datasets to perform the experiments. Depending

on the nature of the domain, these datasets may encompass several feature types

(e.g., qualitative/quantitative) and different dimensionality (number of features and

number of patterns);

2. Synthetic generation of missing data. Missing values can be generated in only one

feature (univariate configuration) or several features (multivariate configuration),

at several percentages (missing rates). Furthermore, the generation may follow 3

different underlying mechanisms: Missing Completely At Random (MCAR), Missing

At Random (MAR), and Missing Not At Random (MNAR) [67];

3. Data imputation using several strategies. Common choices rely on statistical-based

methods (e.g., mean/mode imputation) or machine learning-based methods (e.g.,

KNN imputation) [203];

4. Evaluation of imputation algorithms, either in terms of classification performance

(e.g., AUC values) [202] or quality of imputation (e.g., RMSE values) [386], by

comparing the substitute values with the ground truth (known original values).

This review focuses on Step 2 – Missing Data Generation – by discussing the existing

approaches found in the literature. Over the years, a great effort has been done in what

concerns the comparison of different approaches to handle MD (deletion, imputation,

model-based approaches) [203, 448, 449], with a special emphasis on the evaluation of new

machine learning methods for imputation (Steps 3 and 4) [205]. However, the process of

missing data generation (Step 2) strongly conditions the validity of the conclusions derived

from the following steps. If the MD generation approach is ill-defined, some hitches may

arise during the experimental setup (e.g., the desired missing rate may not be achieved for

some scenarios, or the mechanisms under which data should be missing may be broken).

Thus, the established missing data setup may deviate from what was intended by the

researcher, causing the derived conclusions to be biased or invalid. In sum, although the
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Figure 7.1: Classical experimental setup used in data imputation studies.

evaluation of different methods to synthetically generate MD remains an understudied

topic, it is of crucial importance since they define the working ground for the missing

data experiments. The goal of this work is to illustrate several approaches to missing data

generation, thoroughly analyse their practical details, and discuss their application in real-

world contexts from a theoretical and empirical perspective. The detailed contributions

of this work are as follows:

• Providing a thorough analysis of the practical details of each approach and uncov-

ering some issues that may arise during their application;

• Discussing the limitations and restrictions of each approach (e.g., maximum possible

MR that they are able to generate);

• Explaining the MR assumptions of each approach (i.e., whether MR is defined for the

entire dataset or for a single feature) and presenting the necessary MR adjustments

accordingly;

• Suggesting some modifications to the original approaches and elaborating on some

implementation details left undiscussed in the original papers.

Considering the contributions given above, this review could prove instrumental for re-

searchers from the Machine Learning field as well as for researchers far from this field.

Researchers familiarised with the missing data topic may learn from an extensive anal-

ysis on missing data generation algorithms (their benefits, flaws and limitations) while

researchers outside of this topic encounter a complete review where the key concepts on
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missing data theory, as well as several approaches to missing data generation, are well

described and illustrated, resorting to schemas and practical examples.

This chapter is therefore structured as follows: Section 7.2 starts by introducing some

important notation that will be used throughout this work, whereas Section 7.3 formally

describes and illustrates the existing missing data mechanisms. Then, in Sections 7.4

and 7.5, we review several univariate and multivariate implementations for missing data

generation that are generic and applicable in several domains, and thoroughly analyse

and compare them (by missing mechanism and configuration) in Section 7.6. Section 7.7

discusses some domain-specific missing data generation approaches, tailored to the pe-

culiarities of a given context, while Section 7.8 summarises the key issues one may face

when performing experiments using the reviewed generic approaches, and discusses the

advantages/disadvantages of domain-specific approaches. Finally, Section 7.9 concludes

the work and outlines some potential directions for future research.

7.2 Preliminary Notation

In order to provide a formal description of the missing data mechanisms, it is first necessary

to establish some basic notation and terminology. Let us assume a dataset X represented

by a n× p matrix, where i = 1, · · · , n patterns and j = 1, · · · , p features. The elements of

X are denoted by xij , each individual feature in X is denoted by xj and each pattern is

referred to as xi = [xi1, xi2, · · · , xij , · · · , xip]. In classification and missing theory domains,

each pattern is also assigned a target class ti ∈ {C1, C2, · · · , Cc} and a missing indicator

mi = [mi1,mi2, · · · ,mij , · · · ,mip], which indicates the features that are missing for each

pattern xi. We can now define a missing data indicator M as a n × p binary matrix,

defined as follows [317]:

M = {mij}n,pi,j=1 =

 mij = 1, if xij is missing

mij = 0, if xij is observed
(7.1)

M indicates the locations of the missing values in the dataset and X may be divided into

two components, X = (Xobs,Xmiss). Xobs and Xmiss represent, respectively, the observed

and missing values in X, i.e., Xobs contains all elements xij where mij = 0 while Xmiss

contains all elements xij where mij = 1. Rubin’s missing data theory [41, 263] establishes

that the probability distribution of M may depend on X = (Xobs,Xmiss), and that this

relationship describes the missing data mechanisms, p(M | X, ξ), whose parameters are

herein denoted by ξ [219, 435]. In practice, ξ cannot be determined with certainty; however,

it is not important to know these parameters in detail, it is only necessary to understand

whether there is or there is not a relation between M and the X components Xobs and

Xmiss.
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A dataset X can suffer from different percentages of missing data, which are referred to

as missing rates and they can be defined for each feature individually or for the entire

dataset. Consider Table 7.1, which illustrates the concepts presented above. Table 7.1a

represents the matrix of data X, where the number of patterns is n = 20 (20 records/lines

in the table), and the number of features is p = 2 (“Age” and “Number of Cigarettes”).

Only feature x2 (“Number of Cigarettes”) has missing values, denoted by “⊗”, but there

are several patterns that contain missing values, {x2, x3, x8, x10, x13, x15, x17, x18}. Ta-

ble 7.1b represents the missing data indicator matrix M, where positions xij of Table 7.1a

are coded as 0/1 values according to their presence/absence. As an example, m21 = 0

since “Age” is observed in pattern x2, while m22 = 1 since “Number of Cigarettes” is

missing in x2. Regarding the Missing Rate (MR), feature x1 has a MR of 0% (there are

no missing values in “Age”), and feature x2 has a MR of 40% (out of 20 values, 8 are

missing in “Number of Cigarettes”, 8
20 = 40%). We may also define the MR considering

the entire dataset, that is, the total of xij elements that are missing. In this case, there

are a total of patterns × features elements (20 × 2 = 40 elements), and 8 of them are

missing, thus giving a MR of 8
40 = 20%, if the entire dataset is considered.

Age Number of cigarettes

15 2
15 ⊗
15 ⊗
16 2
16 2
16 4
16 3
17 ⊗
17 6
17 ⊗
17 5
17 5
18 ⊗
18 6
18 ⊗
19 3
19 ⊗
19 ⊗
20 9
20 2

(a)

Age Number of cigarettes

0 0
0 1
0 1
0 0
0 0
0 0
0 0
0 1
0 0
0 1
0 0
0 0
0 1
0 0
0 1
0 0
0 1
0 1
0 0
0 0

(b)

Table 7.1: Example of an adolescent tobacco study: (a) matrix of data X, (b) response
indicator matrix M.
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7.3 Missing Data Mechanisms

We now formally characterise the different missing data mechanisms, p(M | X, ξ) [99], il-

lustrating each one with an example. For this purpose, consider Table 7.2 which represents

a simulated dataset of a study regarding adolescent tobacco use, with 20 participants. Fea-

ture “Age” is completely observed while the “Number of Cigarettes”, is missing according

to different mechanisms, as explained in what follows.

Table 7.2: Missing mechanisms example, using a simulated dataset of a study in adolescent
tobacco use. The daily average of smoked cigarettes is missing under different mechanisms
(MCAR, MAR, and MNAR).

Age
Number of cigarettes

Complete MCAR MAR MNAR

15 2 2 ⊗ 2
15 9 ⊗ ⊗ ⊗
15 4 ⊗ ⊗ 4
16 2 2 ⊗ 2
16 2 2 ⊗ 2
16 7 4 ⊗ ⊗
16 3 3 ⊗ 3
17 9 ⊗ 9 ⊗
17 6 6 6 ⊗
17 4 ⊗ 4 4
17 5 5 5 5
17 5 5 5 5
18 7 ⊗ 7 ⊗
18 6 6 6 ⊗
18 7 ⊗ 7 ⊗
19 3 3 3 3
19 8 ⊗ 8 ⊗
19 3 ⊗ 3 3
20 9 9 9 ⊗
20 2 2 2 2

In Missing Completely At Random (MCAR) mechanism, M is completely unrelated to

the input data X – completely unrelated to both Xobs and Xmiss (Equation 7.2). For

MCAR, the probability of missingness depends only on parameters ξ, or in other words, the

probability of missing values in a feature xj is completely random. Considering Table 7.2,

MCAR values were produced by random deletion: the missing values are not located

in a particular range of “Age” or “Number of Cigarettes” values. This mechanism can

therefore be due to unexpected events occurring during the study: a participant had a flat

tire and could not attend the appointment, or the person responsible for registering the
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participants’ responses accidentally skipped a question of the survey.

p(M = 1 | X, ξ) = p(M = 1 | ξ) (7.2)

Missing At Random (MAR) mechanism occurs when the probability of missingness de-

pends on the observed information Xobs, but not on Xmiss (Equation 7.3). In other words,

the probability of missing values in a feature xj may depend on the observed values of

other features in the dataset, but not on the values of xj itself. In Table 7.2, MAR scenario

is created by the missing values of “Number of Cigarettes” for younger participants (aged

between 15 and 16 years). It could be the case that younger adolescents are less likely

to fill in their number of smoked cigarettes per day because they do not want to admit

that they are regular smokers. However, the missingness is unrelated to the number of

cigarettes smoked by these teenagers, had it been reported (note the “Complete” column,

where a low and high number of cigarettes would be found among the missing values,

had they been observed). The probability of missing values in “Number of Cigarettes” is

therefore a function of the observed information Xobs only, unrelated to the missing values

in the study, Xmiss.

p(M = 1 | X, ξ) = p(M = 1 | Xobs, ξ) (7.3)

Finally, in Missing Not At Random (MNAR) mechanism, the missingness may depend

on both observed and unobserved information – both Xobs and Xmiss – and the general

expression of the missing data model cannot be simplified (Equation 7.4). In a simple

manner, this means that the probability of missing values occurring in a feature xj may

be related to the observed values of other features in the dataset (Xobs), as well as the

underlying, unknown values of xj itself (Xmiss). In Table 7.2, MNAR values are missing

for higher values of “Number of Cigarettes”: the probability of missing values in “Number

of Cigarettes” is related to the missing values themselves, had they been observed (note

the “Complete” column). This would be the case of teenagers that refused to report their

number of smoked cigarettes per day since they smoked a very large quantity.

p(M = 1 | X, ξ) = p(M = 1 | Xobs,Xmiss, ξ) (7.4)

7.4 Univariate Configurations

Univariate configurations, herein designated by univa configurations, refer to those where

only one feature in the study suffers from missing data. These univa configurations con-

trast with the unifo configurations (explained in the next section), where the missing

values affect several (if not all) features in the dataset. The terms univa and unifo were
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taken from the research of Twala et al. [428], one of the first works regarding the syn-

thetisation of missing data mechanisms. We therefore begin this section with the univa

implementations of MCAR, starting with the algorithm proposed by Twala et al. [428].

7.4.1 Univariate MCAR implementations

The MCAR univa implementation of Twala et al. [428] (MCAR1univa) considers that

the feature to be missing, xmiss, should be the one most correlated with the class labels

t. Furthermore, Twala et al. [428] considered the definition of MR as the percentage of

missing values over the entire dataset, as explained in Section 7.2. To respect the overall

MR specified, the individual percentage of missing values in the chosen feature must be

adjusted: for an overall percentage of MR% (over the entire dataset), an individual feature

must have p × MR% of missing values, with p being the number of features in X.

To determine which elements should be missing in xmiss, a Bernoulli distribution is used.

The Bernoulli distribution is a discrete distribution that has outcome 1 with probability

prob and outcome 0 with probability 1 − prob, as shown in Equation 7.5. The missing

elements of xmiss are chosen by performing n Bernoulli trials with probability of success

prob, with n being the number of patterns in the dataset, and prob being the expected

MR. Thus, each pattern is associated with a probability of success (probability of being

missing) equal to MR (Figure 7.2a).

f(k, prob) =

1− prob for k = 0

prob for k = 1
(7.5)

A different MCAR univa implementation (MCAR2univa) was proposed by Rieger et

al. [365] and Xia et al. [466], where random locations of xmiss are chosen (using a random

number generator) and their values are deleted (Figure 7.2b).

Finally, Garćıa-Laencina et al. [203, 205] consider a MCAR univa implementation where

xmiss is either chosen randomly or according to its relevance for classification (MCAR3univa).

In this implementation, the “relevance” of a feature is determined by the Normalized Mu-

tual Information (NMI) between such feature and the classification target [205]. The

missing values are randomly introduced in the feature of interest, xmiss, and the missing

rate is specified for that feature only.

7.4.2 Univariate MAR implementations

Regarding MAR univa, five different implementations are reviewed, namely MAR1univa,

MAR2univa, MAR3univa, MAR4univa, and MAR5univa, following the research works of

Twala et al. [428], Rieger et al. [365], and Xia et al. [466]. All MAR implementations make
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Figure 7.2: Schemes describing missing data patterns of MCAR1univa and MCAR2univa.
The shaded observations represent the location of missing values in the dataset. In (a),
the randomness is defined by the Bernoulli distribution, represented by vector b.

use of an observed, determining feature, xd or xobs (also referred to as a causative feature

in some works [163]), which defines the missing locations in xmiss. An example is given

in Figure 7.3, where the missing positions in xmiss are influenced by the corresponding

values of xobs.

MAR1univa refers to the research work of Twala et al. [428], and similarly to the MCAR

univa implementation, the feature most correlated with the class labels is chosen as xmiss.

Then, among the remaining features, the one most correlated with xmiss is chosen to be

the determining feature, xobs. As explained for MCAR1univa, the individual feature xmiss

must have p × MR% of missing values, since in the implementations suggested by Twala

et al. [428] the MR is defined for the entire dataset.

After the pair of correlated features {xmiss, xobs} is found, the locations where xmiss will

be missing are then defined according to the values of xobs. Let us define a variable k

that represents the necessary MR adjustment, k = p × MR. The value of k% will define

the percentile of xobs that must be found in order to produce the missing values in xmiss:

values of xmiss lower than the k% percentile of xobs are set to be missing. In other words,

the percentile of k% returns the cut-off value for which k% of xobs are lower than that

cut-off. As an example, consider an overall MR of 45% and the pair of features {x1, x2},
where xobs is x1 and xmiss is x2. The missing locations in x2 will be determined by the

p ×MR% = 90% percentile of x1. Imagine that the 90% percentile of x1 is 3.4: values

of x2 where the corresponding values x1 are lower than 3.4 will be set to missing values.

Thus being, x2 will have a total of 90% of missing values, resulting in an overall (0+90)/2

= 45% MR, as specified. Figure 7.3 shows a pictorial example of MAR1univa where the

light green positions represent the lowest values of xobs, where xmiss is missing.
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MAR1 univa

<

x1 xmiss x3 xobs . . . xp

Figure 7.3: Missing data pattern of MAR1univa implementation. Shaded observations
represent the location of missing values in xmiss, whereas the magnitude of xobs values
is represented by different shades of green, with dark green indicating higher values and
light green indicating lower values. In MAR1univa, values of xmiss are missing for lower
values of xobs.

Rieger et al. [365] propose implementations MAR2univa to MAR5univa. MAR2univa is

based on the ranks of xobs (robs): the probability of an element xi,miss to be missing is

computed by dividing the rank of xi,miss in the determining feature xobs by the sum of all

ranks of xobs (Equation 7.6). This is also the implementation proposed by Xia et al. [466].

P (xi,miss = missing) =
ri,obs∑n
i=1 ri,obs

(7.6)

The patterns to have missing values in xmiss are then sampled according to their resulting

probability P (xi,miss). The choice of xmiss and xobs is arbitrary and can either be random

or specified by the researcher. Furthermore, the definition of MR is not described in the

original paper and one might consider a MR for the entire dataset or for each feature

individually.

In MAR3univa, the patterns are divided into two groups according to the median of the

determining feature xobs, so that the probability of missingness is different among groups

according to Equation 7.7 (nG1 and nG2 are the number of patterns in Group 1 and Group

2, respectively). Again, the patterns are sampled according to the established probability

of missingness (Equation 7.8).

 if xi,obs ≥ median(xobs), then xi,obs ∈ G1

if xi,obs < median(xobs), then xi,obs ∈ G2

(7.7)
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 if xi,obs ∈ G1 =⇒ P (xi,miss = missing) = 0.9
nG1

if xi,obs ∈ G2 =⇒ P (xi,miss = missing) = 0.1
nG2

(7.8)

In MAR4univa, the locations of xmiss that will be missing are chosen according to the

positions where xobs assumes its highest values (Figure 7.4a). MAR5univa considers both

the highest and lowest values of xobs: given the necessary number of elements to have

missing values for the specified MR, call it N , MAR5univa sets N/2 elements to have

missing values according to the highest values of xobs, and N/2 according to the lowest

(Figure 7.4b).

MAR4 univa

<

x1 xmiss x3 xobs . . . xp

(a) MAR4univa.

MAR5 univa

x1 xmiss x3 xobs . . . xp

(b) MAR5univa.

Figure 7.4: Schemes describing missing data patterns of MAR4univa and MAR5univa.
The shaded observations represent the location of missing values in the missing feature.
For the observed feature, the values are represented with different shades of green: darker
shades are used to represent higher values while lighter shades represent lower values.

7.4.3 Univariate MNAR implementations

For MNAR mechanism, we refer to the implementations of Twala et al. [428] (MNAR1univa)

and Xia et al. [466] (MNAR2univa). These approaches are similar: in MNAR1univa,

the lowest values of xmiss are set to be missing, until the desired MR is achieved; in

MNAR2univa, the same procedure is applied, although the highest values are considered

instead. MNAR1univa is illustrated in Figure 7.5, where missing locations of xmiss (Fig-

ure 7.5b) are conditioned by the values of xmiss itself (Figure 7.5a): missing values are

inserted where xmiss assumes lower values (light green). Similarly to previous approaches

by Twala et al. [428], xmiss is the feature most correlated with the class labels. Then, xmiss

itself is used as a determining feature; the k% percentile of xmiss is determined and values

lower than the cut-off value are set to be missing. In turn, in MNAR2univa, the highest

227



Chapter 7

xmiss values are deleted until the desired MR is achieved (Figure 7.6). Additionally, xmiss

can either be randomly chosen or specified by the user, and the MR is defined for each

individual feature.

MNAR1 univa

<

<<<

x1 xmiss x3 x4 xn
<

x1 xmiss x3 x4 . . . xp

(a)

MNAR1 univa

x1 xmiss x3 x4 xn
<

<<<

<

x1 xmiss x3 x4 . . . xp

(b)

Figure 7.5: Missing data pattern of MNAR1univa implementation: (a) represents the
dataset before missing data generation, where dark and light green shades represent higher
and lower xmiss values, respectively; (b) represents the dataset after missing data genera-
tion, where the shaded observations represent the location of missing values in the missing
feature.

MNAR2 univa

<<<

x1 xmiss x3 x4 xn
<

x1 xmiss x3 x4 . . . xp

(a)

MNAR2 univa

x1 xmiss x3 x4 xn
<

<<<

<

x1 xmiss x3 x4 . . . xp

(b)

Figure 7.6: Missing data pattern of MNAR2univa implementation: (a) represents the
dataset before missing data generation, where darker shades of green are used to represent
higher values, while lighter shades represent lower values; (b) represents the dataset after
missing data generation, where the shaded observations represent the location of missing
values in the missing feature.

228



Generating Synthetic Missing Data: A Review by Missing Mechanism

7.5 Multivariate Configurations

In multivariate configurations, which we denote by unifo configurations, the missing values

may be generated in all features, with the exception of MAR mechanism. For MAR

there are two common approaches, as will be illustrated in Section 7.5.2: i) choosing one

determining feature xobs that will define the missing positions in the remaining features

or ii) creating pairs of features {xobs, xmiss} where the missing values in xmiss are defined

by the corresponding xobs feature.

7.5.1 Multivariate MCAR implementations

MCARunifo implementations are an extension of MCARuniva implementations, where

all elements xij are eligible to be deleted, instead of focusing only on a feature xmiss.

Herein, we refer to two MCARunifo implementations that follow naturally from the univa

configurations.

We start with MCAR1unifo, proposed by Twala et al. [428]. In MCAR1unifo, all features

will have the same percentage of missing values, specified by MR: n Bernoulli trials are

generated for each feature p in the dataset, and the missing elements xij are determined

accordingly. In other words, xij is missing if bij = 1, where b indicates the 1/0 outcome

for each trial (Figure 7.7).

MCAR2unifo follows from the research works of Garciarena et al. [163], Zhu et al. [483],

Pan et al. [342], and Ali et al. [1]. In MCAR2unifo, N elements xij are randomly deleted

(Figure 7.8). The MR is defined for the entire dataset and therefore N = n × p × MR.
MCAR1 unifo

b x1 b x2 b x3 b x4 b xp
0

<

1 0 0 1

0 0 1 0 1

1 1 1 0 1

1 0 0 0

1 0 0 1 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 0

1 0 1 0 0

0 0 1 1 0

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

0 0 0 0 0

0 0 0 1 0

0 0 0 1 1

1 0 0 1 1

1 1 0 0 0

0 0 1 0 0

0 0 1 0 0

1

. . .

Figure 7.7: Missing data pattern of MCAR1unifo implementation, where b represents the
Bernoulli distribution for each feature.
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MCAR3 unifo

<

x1 x2 x3 x4 . . . xp

Figure 7.8: Missing data pattern of MCAR2unifo implementation.

However, unlike MCAR1unifo, the features are not required to have the same number

of missing values, given that all xij are eligible for missing data generation and they are

chosen randomly across all features. Given the variability of possible missing datasets

that can be generated with this approach (more than for MCAR1unifo), it is fundamental

that missing data experiments using it perform several runs [386], as further discussed in

Section 7.6.

7.5.2 Multivariate MAR implementations

As stated at the beginning of Section 7.5, there are two main approaches in what concerns

MARunifo implementations:

• Consider a determining feature xobs that will determine the missing pattern of the

remaining features (p−1 features or a subset of nxmiss features), which is the approach

proposed by Garciarena et al. [163];

• Consider several pairs of features {xobs, xmiss}: for each pair, there is a determining

feature xobs that defines the missing pattern of its corresponding xmiss, which is the

approach of Twala et al. [428], Ali et al. [1], Zhu et al. [483], and Pan et al. [342].

We start by the simplest MARunifo approach, the one proposed by Garciarena et al. [163],

which we designate by MAR1unifo. MAR1unifo considers the desired MR percentage and

number of features nxmiss losing their values and starts by randomly choosing the determin-

ing feature xobs and the missing features xmiss. Then, similarly to MAR1univa, elements

of the xmiss features corresponding to lower values of xobs are deleted (Figure 7.9a). Due

to the freedom of choosing a given number of nxmiss , the missing rates that are possible
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to generate are restricted by the number of existing features p and chosen features nxmiss ,

as will be further explained in Section 7.6.

We follow to the MARunifo implementation by Twala et al. [428], MAR2unifo. As a

natural extension of MAR1univa, MAR2unifo considers the creation of several correlated

pairs {xobs, xmiss} (Figure 7.9b). As an example, for X = {x1, x2, · · · , x8}, we could

define the pairs {x1, x2}, {x3, x4}, {x5, x6}, and {x7, x8}, assuming that x1 is highly

correlated with x2, x3 with x4, and so forth. Although Twala et al. [428] do not specify

the procedure for an odd number of features (say, 9 features in the previous example),

we assume the creation of triples, where the remaining feature (e.g., x9) is added to the

pair that includes its most correlated feature. Following the example, assuming that the

feature most correlated with x9 is x3, then the triple {x3, x4, x9} is created. After the pairs

are created, the feature of each pair most correlated with the class labels t is selected to

have its values missing; for triples, the two most correlated features with the class labels

are chosen. The desired MR is defined for the entire dataset, but since only one feature

will be missing in each pair (or two features in case of triples), the MR must be adjusted

for the individual xmiss features (Equation 7.9).

For an overall MR%

k = 2×MR% for pairs

k = 1.5×MR% for triples
(7.9)

The positions where each feature xmiss will be missing are defined according to the values

of xobs: for each pair/triple, the k% percentile of xobs is determined. Then, values of xobs

lower than the k% percentile are set missing. Similarly to MAR1univa, the k% percentile

of xobs returns the cut-off value for which k% of xobs are lower than that cut-off. As

an example, consider an overall MR of 45% and 5 features already paired: {x1, x2} and

{x3, x4, x5}, where x2, x4, and x5 are the most correlated with the class labels t. The

missing positions in x2 will be determined by the 2 × MR = 90% percentile of x1 and the

missing positions in x4 and x5 will be determined by the 1.5 × MR = 67.5% percentile

of x3. Imagine that the 90% percentile of x1 is 3.4: values of x2 where the corresponding

values of x1 are lower than 3.4 will be set missing and x2 individually will have 90% of

missing values. The same is performed for x4 and x5. Thus, x1 and x3 will be complete,

x2 will have 90% of missing values and x4 and x5 will have 67.5% of missing values each,

resulting in an overall (0 + 90 + 0 + 67.5 + 67.5)/5 = 45% missing rate.

Ali et al. [1] propose a similar approach to the above, herein referred to as MAR3unifo. In

this approach, the dataset X is first divided into pairs/triples of correlated features, and

one feature in each pair/triple controls the missing pattern of the remaining. However,

authors do not elaborate on the choice of which features should be missing and which

should be observed; therefore, we assume that the choice may be performed randomly.

For each pair/triple, one feature is randomly chosen to be the determining feature xobs
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MAR3 unifo

xmiss_1 x2 xmiss_3 x4 xobs . . . xmiss_p

(a) MAR1unifo.

MAR1 unifo

xobs_1 xmiss_1 xobs_2 xmiss_2 xobs_p . . . xmiss_p

(b) MAR2unifo.

Figure 7.9: Schemes describing missing data patterns of (a) MAR1unifo and (b)
MAR2unifo.

and the remaining are therefore the missing features, xmiss. Another difference of this

approach in comparison to MAR2unifo is that it considers the median of each xobs to

define the missing pattern of xmiss. Given a pair of features {xobs, xmiss}, the median

of xobs is determined and two groups are defined: one that contains the positions of xobs

whose values are lower than (or equal to) its median, and the other containing the positions

whose values are higher than its median. Then, one of those groups is randomly selected

and will define the missingness of xmiss in the following way: given a missing rate MR%,

4 × MR% (or 3 × MR% for triples) of missing positions are randomly chosen from the

group, and the corresponding positions in xmiss are set missing.

The MARunifo approach by Zhu et al. [483] and Pan et al. [342] (MAR4unifo) handles

features according to their type. If xobs is continuous or ordinal, the median of xobs is

determined and two groups are created, as in the previous approach: one where the values

of xobs are lower or equal to the median and other where values of xobs are higher than the

median. Otherwise, if xobs is nominal, the existing categories are assigned to two groups

of equal size. According to the original paper [483], this assignment is performed by

randomly dividing the categories of xobs into two parts, although this does not guarantee

that two equally-sized groups are formed, as further detailed in Section 7.6. After creating

the groups, one is randomly chosen and their corresponding values in xmiss are set missing

with 4 × MR (pairs) or 3 × MR (triples).

7.5.3 Multivariate MNAR implementations

MNARunifo implementations follow from the MARunifo implementations discussed in

the previous section, proposed in the same research works – Garciarena et al. [163], Twala

et al. [428], Ali et al. [1], Zhu et al. [483], and Pan et al. [342]. Similarly, we start by the
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approach presented in Garciarena et al. [163], herein referred to as MNAR1unifo.

Garciarena et al. [163] propose two MNAR approaches designated MIV and MuOv in the

original paper. MIV stands for Missingness depending on its Value Itself and directly

illustrates the mechanism explained in Section 7.3, where the probability of a value to be

missing depends on the value itself. MuOv (Missing depending on unobserved Variables)

is somewhat a domain-based MNAR approach, and therefore we will illustrate it in Sec-

tion 7.7. MIV approach (herein designated MNAR1unifo) is an extension of MAR1unifo,

where xobs = xmiss. In other words, there is not a determining feature xobs that affects

the missingness of xmiss. Instead, the probability of a value to be missing in each feature

xmiss is determined by the values of each xmiss itself. In MNAR1unifo, as illustrated

in Figure 7.10, the lowest values of each xmiss are found and deleted, according to the

specified MR. Similarly to MAR1unifo, the MR is specified for the entire dataset and the

number of features losing their values can be chosen by the researcher.

x1 x2 x3 x4 xp x1 x2 x3 x4 xn
<

MNAR3 unifo

. . .

(a)

x1 x2 x3 x4 xn
<

x1 x2 x3 x4 xp

MNAR3 unifo

. . .

(b)

Figure 7.10: Missing data pattern of MNAR1unifo implementation: (a) represents the
dataset before missing data generation, where darker shades of green represent higher
values, while lighter shades represent lower values; (b) represents the dataset after missing
data generation, where the shaded observations represent the location of missing values in
the missing feature.

The MNARunifo approach proposed by Twala et al. [428], MNAR2unifo, follows the same

pairing logic as MARunifo. However, the values that are set missing in feature xmiss of

each pair/triple are defined by the values of xmiss itself: lower values of xmiss are deleted.

Contrariwise, the MNARunifo approaches by Ali et al. [1] (MNAR3unifo), and Zhu et

al. [483] and Pan et al. [342] (MNAR4unifo) do not require the creation of pairs/triples,

since the missing values are generated directly in all features, according to their respective

medians. In MNAR3unifo, two groups are defined for each feature, one with values lower

or equal to its median and the other with values higher than its median. Then, one group
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is randomly chosen to have 2 × MR% of missing values, so that the overall MR% over the

entire dataset is respected. In MNAR4unifo, as performed for MAR4unifo, if the feature

is continuous or ordinal, two groups are created using its median, whereas if the feature is

nominal, the existing categories are divided into two equally-sized groups. Then, for each

feature, one of those groups is selected to have 2 × MR% of missing values.

7.6 Critical Analysis and Discussion

In this section, we provide a thorough analysis of some details that were left undiscussed

in the original papers previously reviewed, also referring to non-obvious issues that may

arise in each implementation.

7.6.1 MCAR univa implementations

Table 7.3 refers to some issues/restrictions in MCAR univa implementations. In what

concerns MCAR1univa, three main issues need to be considered:

• Definition of MR: By defining the MR over the entire dataset, the possible highest

MR that is possible to simulate is dependent on the number of features comprised in

the dataset. As an example, if dataset X has 2 features, the highest possible MR is

limited to 50%, and ideally should be lower, since for 50% xmiss would be completely

missing, given the p × MR adjustment;

• Usage of Bernoulli trials: To generate the missing values, n Bernoulli trials are

performed, each with probability of success p = MR. According to the Law of Large

Numbers (LLN), as the number of Bernoulli trials increases (as n, the number of

patterns in X increases), the empirical probability of success (the real MR generated)

will converge to the theoretical probability of success (the specified MR). As the name

implies, the LLN applies when a large number of experiments is performed (large

n). Therefore, for small datasets, there is no guarantee that the generated MR will

coincide with the desired MR (it will be approximate, though not precise). As an

example, for a desired MR of 30%, a certain run of MCAR generation could provide

a real MR of 28% while another could return a real MR of 32%. Naturally, there is

frequently a small bias in the generated missing percentages in several approaches,

due to the rounding performed for the calculation of the number of missing positions

to generate. However, this bias seems to be more significant when considering the

usage of Bernoulli trials (for small datasets);

• Correlation between features: In all of the implementations by Twala et al. [428,

429], xmiss is the feature most correlated with the class labels. Furthermore, in some

approaches, there is also the need to define pairs of correlated features. In the original
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papers, Twala et al. [428, 429] consider datasets composed by both quantitative and

qualitative features, yet the computation of the correlation between different types

of features is not specified. Possible solutions to measure the correlation between

different feature types are the computation of mutual information between features

or the calculation of different coefficients according to each feature type (e.g., Pearson

coefficient for two continuous features, phi coefficient for two binary features, point-

biserial for a continuous and a binary feature, and so forth). The latter solution,

however, would have to be looked at as an approximation, since there is no proper

way to compare different coefficients.

MCAR2univa implementation allows the definition of MR for the entire dataset or for a

single feature, and depending on that choice, there are different restrictions to the allowed

missing rates (Table 7.3). Regarding xmiss, it can be randomly chosen or defined by the

researcher. To provide a consistent experimental setup, one could choose the same feature

xmiss to be missing at several MRs (e.g., 5, 10, 20%) and study the effects that higher

MRs have in classification performance.

Choosing xmiss according to the highest mutual information (MI) with the class labels t

(MCAR3univa) might be problematic for quantitative/continuous features. The MI for

two qualitative/categorical features is straightforward since the probability densities can

be estimated using a histogram [342]. However, for quantitative/continuous features, the

estimation of probability densities is more complicated. Frequent solutions include the

discretisation of continuous features [342], or applying Parzen-windows estimation [245],

which is the method chosen for MCAR3univa. The computation of Parzen windows can,

however, be computationally expensive.

Among all approaches, MCAR2univa is an efficient method, straightforward to understand

and implement, and thus we recommend it for standard MCAR univa experiments.

Table 7.3: Reviewed implementations for MCAR univa configurations: main characteris-
tics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [428]
MCAR1univa

Missing locations of xmiss are derived from
a Bernoulli distribution. xmiss is the feature
most correlated with the target class t. MR is
defined for the whole dataset. MR for xmiss =
p× n× MR.

Bernoulli distribution may
not guarantee the neces-
sary missing rate. MR <
(100/p)%. Correlation be-
tween features not addressed
in the original paper.

Rieger et al. [365]
Xia et al. [466] MCAR2univa

Random locations of xmiss are deleted. xmiss
may be chosen randomly or by the researcher.
MR definition may be chosen by the researcher.

MR < (100/p)% if it is de-
fined for the entire dataset
and MR < 100% if it is de-
fined only for xmiss.

Garćıa-
Laencina
et al. [203]

MCAR3univa

Random locations of xmiss are deleted. xmiss
can be chosen randomly or according to its rel-
evance for classification (highest or lowest mu-
tual information). MR is defined for a single
feature.

MR < 100%. Estimation of
continuous probability den-
sity functions is challenging.
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7.6.2 MAR univa implementations

The limitations found for MAR univa implementations are summarised in Table 7.4.

MAR1univa is based on finding a k% percentile of xobs to define a cut-off value: values of

xmiss lower than such cut-off are set missing. Using this k% percentile might be problem-

atic for nominal features (for which only mode applies) and ordinal features with several

repeated values. Imagine xobs = [1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3].

If we were to consider k = 50%, the percentile of xobs would be 3. However, setting

values lower to 3 to missing would only return a 5/15 = 33% missing rate. In practice,

the percentile should not be applied directly, and a simpler approach could be considered:

deleting the lowest k% values, to guarantee that the desired missing rate is respected. For

unordered features (nominal), however, the issue remains.

In MAR2univa, higher ranks of xobs control the missing positions in xmiss. According

to Equation 7.6, the missing positions should correspond to the highest ranks of xobs.

Nevertheless, Equation 7.6 only defines the probability of each position in xmiss to be

deleted, which does not mean that a value with a low probability cannot be chosen to be

deleted. From a pessimistic perspective, this means that values in xmiss corresponding

to both low and high ranks of xobs can be missing (although higher ranks are preferred)

which could slightly break MAR assumption.

This issue is also shared by MAR3univa, where xobs values higher than its median should

define the missing positions in xmiss, although there is no guarantee that only xmiss

values corresponding to xobs values higher than the median are chosen. Besides, the

objective of dividing two groups according to their median in MAR3univa is to create

two approximately equally-sized groups, which might not be possible for ordinal features

(similarly to MAR1univa) and does not apply to nominal features. This could affect the

nG1 and nG2 values and, in an extreme case, could lead to having the same probabilities for

all values in xmiss, if nG1 = 9×nG2. An example would be a feature xobs = “Status” = [1,

2, 2, 2, 2, 2, 2, 2, 2, 2], where all values would have the same probability (0.1) of

generating missing positions in xmiss. This, however, traduces a MCAR mechanism, not

MAR.

MAR4univa follows a standard approach for MAR generation, where the values of xobs are

ordered and the N highest values (according to the specified missing rate) are set missing.

MAR5univa, by generating N/2 missing values where xobs assumes its highest values and

N/2 where it assumes the lowest, may create a rather blurred MAR mechanism for ordinal

features. As an example, for xobs = [1, 2, 2, 2, 2, 2, 3, 3, 3, 3] a MAR5univa

approach with MR = 60% would delete values of xmiss corresponding to the subsets [1,

2, 2] (lowest) and [3, 3, 3] (highest). The MAR assumption would be hard to verify

since it would seem that the values of xobs were not related to missing positions in xmiss.

In turn, a 60% MAR4univa would delete values of xmiss corresponding to the subset [1,

2, 2, 2, 2, 2] where the relation between xobs and xmiss would be more clear: lower

236



Generating Synthetic Missing Data: A Review by Missing Mechanism

values in xobs control the missingness of xmiss.

Considering all approaches, MAR4univa, although simple, seems the most robust. Nev-

ertheless, for nominal features as the determining features (xobs), both MAR4univa and

MAR5univa would require some adjustments, since values cannot be ordered.

Table 7.4: Reviewed implementations for MAR univa configurations: main characteristics
and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [428]
MAR1univa

Values of xmiss corresponding to the

lowest values in xobs are deleted. xmiss

is the feature most correlated with the

target class t and xobs is the feature

most correlated with xmiss. MR is de-

fined for the whole dataset.

MR < (100/p)%. Correlation between

features not addressed in the original

implementation. Computation of per-

centiles k% considered in the original im-

plementation could be problematic for

qualitative data.

Rieger et al. [365]

Xia et al. [466] MAR2univa
Missingness on xmiss depends on the

ranks of xobs.
MR < (100/p)% if it is defined

for the entire dataset and MR

< 100% if it is defined only for

xmiss. MAR mechanism could

be weakened in some situations.

Random choice of xobs and

xmiss could weaken the

consistency of experiments.

MAR3univa

Values of xmiss where corresponding

values of xobs are equal to or higher

than its median have a missing proba-

bility 9 times higher than the remaining

values.

Rieger et al. [365]
MAR5univa

For a total number of missing values N ,

N/2 locations of xmiss are deleted for

the highest values of xobs and N/2 for

the lowest values.

MAR4univa
Values of xmiss corresponding to the

highest values of xobs are deleted.

MR < (100/p)% if it is defined for the

entire dataset and MR < 100% if it is

defined only for xmiss. Random choice

of xobs and xmiss could weaken the con-

sistency of experiments.

7.6.3 MNAR univa implementations

Table 7.5 summarises the characteristics of MNAR univa approaches. MNAR1univa suf-

fers from the same restrictions as MAR1univa, although the issues derived from the usage

of the cut-off defined by the k% percentile may be attenuated by an ordering of values.

After this modification, MNAR1univa and MNAR2univa are equivalent, except for three

small differences: MNAR1univa chooses xmiss as the most correlated with the class la-

bels (MNAR2univa chooses randomly), MNAR1univa considers the lowest values of xmiss

(MNAR2univa chooses the highest), and MNAR1univa considers the MR for the entire

dataset (MNAR2univa considers the MR for a single feature).

MNAR1univa strives for consistency due to the choice of xmiss while MNAR2univa strives

for simplicity and flexibility: the definition of MR is not subjected to so much restrictions

and the input of xmiss can be easily adapted to consider a user-defined feature index. We
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Table 7.5: Reviewed implementations for MNAR univa configurations: main characteris-
tics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [428]
MNAR1univa

Lower values of xmiss are deleted.
xmiss is the feature most correlated
with the target class t. MR is defined
for the whole dataset.

MR < (100/p)%. Correlation between
features is not addressed in the origi-
nal implementation. Computation of
percentiles k% considered in the orig-
inal implementation could be problem-
atic for qualitative data.

Xia et al. [466] MNAR2univa

Higher values of xmiss are deleted.
xmiss can be chosen randomly or by the
user. MR is defined for a single feature.

MR < 100%. Random choice of xmiss
could weaken the consistency of exper-
iments.

therefore select MNAR2univa as the go-to implementation.

7.6.4 MCAR unifo implementations

The characteristics of MCAR unifo approaches are presented in Table 7.6. Given the use

of Bernoulli trials, MCAR1unifo suffers from the same limitation of its univa analogous,

where for small datasets (small n) the desired MR may not be guaranteed.

In MCAR2unifo, since all xij are eligible to be missing, this approach generates a great

amount of different missing datasets. Therefore, several runs should be considered when

using this approach.

MCAR1unifo and MCAR2unifo are rather different, therefore the choice between them

depends on the objectives and needs of the experiments. Nevertheless, MCAR2unifo is a

popular implementation [378, 386].

Table 7.6: Reviewed implementations for MCAR unifo configurations: main characteris-
tics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Twala et al. [428] MCAR1unifo

Missing locations in each feature are

derived from a Bernoulli distribution.

All features will have missing data in

the same percentage.

Bernoulli Distribution may not

guarantee the necessary missing

rate. MR < 100%.

Garciarena et al. [163]

Zhu et al. [483]

Pan et al. [342]

Ali et al. [1]

MCAR2unifo
Random locations xij are chosen to be

missing.

Features may have very different

percentages of missing data. High

variability between runs of the al-

gorithm. MR < 100%.

7.6.5 MAR unifo implementations

Table 7.7 summarises the main characteristics and pitfalls of MAR unifo approaches. The

flexibility given by MAR1unifo in what concerns the choice of the number of features to
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be missing leads to the restriction of possible missing rates according to Equation 7.10.

MR <
100× nxmiss

p
and nxmiss ≤ p− 1 (7.10)

This means that, for a given number of missing features nxmiss , it may not be possible

to generate the desired MR and, conversely, that the number of chosen nxmiss may not

be enough to guarantee the desired MR. As an example, consider a dataset X with n =

303 patterns and p = 5 features. To produce a MR of 60%, n × p × MR / 100 =

303 × 5 × 60/100 = 909 values need to be missing. If only nxmiss = 2 features are

considered, that would mean that 909/2 = 455 patterns would have to be missing in each

feature, which is impossible. In this case, to guarantee that the MR would be respected,

nxmiss ≥ 4 features should be considered.

MAR2unifo is subjected to the same issue as MAR1univa in what concerns the definition

of k% percentiles. This issue may be surpassed in the same way as for MAR1univa:

instead of directly applying a cut-off value defined by k, one could consider the lowest

k% values, to guarantee that the desired missing rate is achieved. A less obvious issue

with MAR2unifo resides in the definition of MR and the creation of pairs/triples. Since

the MR is defined for the entire dataset, the percentage of missing values in xmiss needs

to be adjusted accordingly: 2 × MR for pairs and 1.5 × MR for triples. Therefore, the

maximum MR that can be specified to guarantee that the overall MR is achieved and that

the xmiss features are not completely deleted is MR = 100/2 = 50%.

Regarding MAR3unifo, using the median to define two groups and, more importantly,

sampling missing values from only one of those groups, may be problematic in some cases.

Given the restriction of sampling from one of the groups, the MR generated in xmiss is

adjusted to 4 times higher (or 3 times higher for triples) so that the overall missing rate is

respected. In some scenarios where xobs is qualitative, there might not be enough samples

in one of the groups to choose from.

For instance, imagine a dataset composed of features {“Status”, “Age”}, where xobs =

“Status”, contains 1/2 values that encode “High” (70% of values) and “Low” (30% of

values) status. Since the median of xobs will be 1, values lower or equal to 1 are put in one

group (70%) and values higher than 1 are put in the other group (30%). If a MR of 10%

is desired, then 4 × MR = 40% of missing values need to be generated in the positions of

“Age” (xmiss) that correspond to the group chosen in “Status”. If the group “Status” = 2

(30%) is chosen to sample from, there are not sufficient samples to guarantee the desired

MR. In another scenario, if “Status” values were coded as 1/0, then one of the groups

would be empty since all values are lower or equal to the median: if that empty group

was chosen to sample from, no missing data would be generated at all; if the other group

(containing all data) is chosen instead, then 40% of the samples are randomly chosen

considering all possible values. In this case, the MAR mechanism may not be respected
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given that missing values in “Age” would not be related to values of “Status”: since all

values are possible to choose from, this would more likely traduce a MCAR mechanism.

Similarly to MAR2unifo, some adjustments need to be performed for the MR in each

xmiss for pairs/triples. Accordingly, the maximum MR that can be specified is MR =

100/4 = 25%.

MAR4unifo is the only approach that considers both quantitative and qualitative features.

However, i) qualitative features with several repeated values can still weaken MAR as-

sumption, as previously discussed and ii) the definition of two groups according to the

median can still be problematic for quantitative features, if some values are repeated often.

Besides, the generic strategy of creating two groups according to the median may not work

well for high missing rates, since the adjustment of 4 × MR or 3 × MR that is required in

each xmiss may easily require the deletion of more values than the ones that exist in the

defined groups.

Given the stronger restrictions in MR of MAR2unifo, MAR3unifo, and MAR4unifo im-

plementations, we consider that MAR1unifo is the most adequate MAR unifo generation

algorithm.

Table 7.7: Reviewed implementations for MAR unifo configurations: main characteristics
and pitfalls.

Publication Algorithm Description Issues/Restrictions

Garciarena

et al. [163]
MAR1unifo

Values of the nxmiss features correspond-

ing to the lowest values in xobs are set

missing. nxmiss is specified by the re-

searcher.

MR < (100 × nxmiss/p)%. Ran-

dom choice of xobs and xmiss may

weaken the consistency of experi-

ments.

Twala et al. [428]
MAR2unifo

Pairs of correlated features {xobs, xmiss}
are defined. Values of xmiss correspond-

ing to the lowest values in xobs are

deleted. For each pair, xmiss is the fea-

ture most correlated with the target class

t.

Correlation between features and

formation of triples not addressed

in the original paper. Computa-

tion of percentiles k% considered in

the original implementation could

be problematic for qualitative data.

MR < 50%.

Ali et al. [1] MAR3unifo

Pairs of correlated features {xobs, xmiss}
are randomly defined. Two groups in

xmiss are defined according to the median

of xobs. One of those groups is randomly

chosen to have missing values. In each

pair, xmiss is randomly chosen.

Correlation between features and

formation of triples is not addressed.

Median may not always guarantee

two equally-sized groups. MAR

mechanism could be weakened in

some situations. MR ≤ 25%.

Zhu et al. [483]

Pan et al. [342] MAR4unifo

Random pairs of features {xobs, xmiss}
are defined. For continuous or ordinal fea-

tures, two groups in xmiss are defined ac-

cording to the median of xobs; for nom-

inal features, values are divided into two

equally-sized groups and one is randomly

chosen to have missing values. In each

pair, xmiss is randomly chosen.

MR ≤ 25%. In extreme scenarios,

the median may not always guar-

antee two equally-sized groups for

quantitative features or the neces-

sary number values to delete. Divi-

sion of qualitative values may also

be problematic. MAR mechanism

could be weakened in some situa-

tions.
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7.6.6 MNAR unifo implementations

MNAR unifo implementations are characterised in Table 7.8. Since they are very similar

to their MAR unifo analogous, the same restrictions apply. MNAR1unifo suffers from the

same restrictions as MAR1unifo, due to the flexibility of choosing a given number nxmiss
of missing features (Equation 7.11).

MR <
100× nxmiss

p
and nxmiss ≤ p (7.11)

MNAR2unifo suffers from the same restrictions as MAR2unifo, given that for MNAR,

the pairs/triples of correlated features are also defined and, therefore, the respective ad-

justments to the MR need to be applied.

MNAR3unifo and MNAR4unifo do not require the formation of pairs/triples since all the

features will have missing values. Nevertheless, due to the formation of two groups for

each feature, the MR needs to be adjusted as well. For a specified MR, each feature xmiss

needs to have MR% of missing values. However, since two groups are defined for each

feature (with approximately 50% of data, which is the objective of using the median) and

only one of those groups is used to generate missing values, then the maximum possible

MR is 50%. As in previous approaches, the use of the median might be problematic in

some scenarios. First, it may not guarantee two equally-sized groups and, therefore, the

desired MR might not be achieved; secondly, and especially in the case ofMNAR3unifo, for

Table 7.8: Reviewed implementations for MNAR unifo configurations: main characteris-
tics and pitfalls.

Publication Algorithm Description Issues/Restrictions

Garciarena
et al. [163]

MNAR1unifo
Lower values of xmiss are deleted. nxmiss

is defined by the researcher.

MR < (100 × nxmiss/p)%. Random
choice of xmiss may weaken consis-
tency of experiments.

Twala et al. [428]
MNAR2unifo

Pairs/Triples of correlated features are de-
fined. For each pair, the feature most cor-
related with the target class t is chosen to
be missing (xmiss): lower values of xmiss
are deleted.

Correlation between features and for-
mation of triples is not addressed in
the original paper. Computation of
percentiles k% considered in the orig-
inal implementation could be prob-
lematic for qualitative data. MR <
50%.

Ali et al. [1] MNAR3unifo

For each feature, two groups are defined
according to its median. One of the
groups is randomly chosen to have missing
values.

MR < 50%. Median may not always
guarantee two equally-sized groups.
MNAR mechanism could be weak-
ened in some situations.

Zhu et al. [483]
Pan et al. [342] MNAR4unifo

For continuous or ordinal features, two
groups are defined according to its me-
dian; for nominal features, values are di-
vided into two equally-sized groups. For
each feature, one of these groups is ran-
domly chosen to have missing values.

MR < 50%. In extreme scenarios,
the median may not always guarantee
two equally-sized groups for quanti-
tative features or the necessary num-
ber of values to delete. Division of
qualitative values may also be prob-
lematic. MNAR mechanism could be
weakened in some situations.
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qualitative features with several repeated values, the MNAR assumption may be weakened,

as explained for MAR mechanism.

Again, given the stronger restrictions in the MR of MNAR2unifo, MNAR3unifo, and

MNAR4unifo implementations, we consider that MNAR1unifo is the most adequate

MNAR unifo generation algorithm.

7.7 Domain-based missing data generation approaches

The implementations presented in the previous sections are rather generic approaches to

missing data generation. They were developed for general domains, with no particular

focus on the peculiarities of a given domain and without assuming any apriori knowledge

of the domain (e.g., known relationships between features in the study). However, some

missing data generation approaches found in the literature are adapted to the domain

at hand. In this section, we review some domain-specific approaches to missing data

generation. Some, although uncommon, may be generalised to different domains; others

are not generalisable but may contain interesting details to consider for some real-world

domains (e.g., healthcare domains).

Song and Shepperd [402] focus on evaluating imputation methods for project effort data

sets. In this domain, MAR data is generated according to the size of the project. First,

records are ordered by project size; then, the dataset is divided into 4 parts with different

percentages of missing data: for each part d, its missing percentage is proportional to
Md∑4
d=1Md

× MR, where Md is the mean of project size of the dth part.

Josse et al. [216] use synthetic data to generate two different MAR scenarios, “MAR easy”

and “MAR difficult” for a simulated dataset comprising 9 features that could be divided

into two blocks of correlated features: {x1, x2, x3, x4, x5} and {x6, x7, x8, x9}. Then, “MAR

easy” consists of deleting values of x2 to x5 according to values of x1 and deleting values of

x6 to x8 according to values of x9. This illustrates a situation where the missing values are

easier to recover given the known existing correlation between features. “MAR difficult”

works by deleting values of x6 to x9 according to values of x1 and deleting values of x1 to

x5 according to values of x9, so that the available information to predict missing values is

very limited.

Johansson and Karlsson [285] focus on strategies to handle missing values in clinical data.

A pharmacokinetic model was used to generate a synthetic dataset where missing values

were generated in feature “Sex”. For MCAR, values of “Sex” were randomly deleted; for

MAR missing values in “Sex” were generated according to the “Weight” of the subjects;

finally, for MNAR, missing values in “Sex” were deleted for male subjects.

Olsen et al. [69] study the effects of handling missing data in clinical trials of knee os-

teoarthritis. Missing data was generated in two MNAR scenarios: Scenario A, where the
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MCAR2 unifo

<

x1 x2 x3 x4 . . . xp

Figure 7.11: Missing data pattern of the MCAR implementation by Nanni et al. [318].

probability of missing data was dependent on changes of pain, physical function and pa-

tient’s global assessment, and Scenario B, where the missingness was dependent on the

type of treatment and consequent effects.

Nanni et al. [318] focus on discovering an imputation method that would perform well

in medical domains. Authors generate MCAR data in a different fashion: instead of

generating MR% of missing values in each feature or in the whole dataset directly (deleting

MR% of xij elements), the missing values are generated in each pattern xi. In other words,

each pattern xi will have MR% of missing values, where different features can be missing

for different patterns (Figure 7.11). This illustrates a context where all patients have at

least one missing observation.

Deb and Liew [111] study missing value imputation for the analysis of traffic accident

data and generate missing values in a similar way to Nanni et al. [318]: missing values

are generated by pattern, rather than by feature. This generation method follows from

the research of Rahman and Islam [164, 166] and considers four main configuration types:

Simple, Medium, Complex, and Blended. In the Simple generation, each pattern xi has

at most one missing value; in Medium generation, each pattern xi has a minimum of 2

missing values and at most 50% missing values, and in Complex generation, each pattern

xi has between 51% and 80% missing values. Finally, Blended generation considers a

mixture of the remaining types – 25%, 50% and 25% of patterns according to Simple,

Medium, and Complex generation types, respectively. Furthermore, two different models

for missing data generation are used: Uniformly Distributed (UD) and Overall models. In

the UD model, it is guaranteed that all features have the same amount of missing values,

whereas in the Overall model missing values can be scattered across several features (in

the worst-case scenario, they can all appear in a single feature).

Garciarena et al. [163], as mentioned in Section 7.5.3, propose another version to generate
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MNAR2 unifo

<

x1 x2 x3 x4 . . . xp

Figure 7.12: Missing data pattern of the MuOv implementation by Garciarena et al. [163].

MNAR data, called MuOv (Missing depending on unobserved Variables). MuOv repre-

sents a MNAR scenario where the probability of missing values in a feature is related to

some other feature that was not considered in the study. In this case, N patterns are

randomly chosen to be missing (according to the desired MR) and their values on each

feature to be missing are deleted (Figure 7.12). Although MuOv does not consider the

application to a specific domain, we have included it here since it is rather an uncommon

MNAR approach, as previously discussed.

Valdiviezo et al. [81] introduced missing values in real-world datasets according to different

mechanisms and schemes. In general, two schemes are followed for each mechanism: either

considering all features (first scheme) or considering only one-third of features, which are

randomly chosen (second scheme). Regarding MCAR mechanism, the first scheme inserts

MR% of missing values in each feature while in the second scheme, since only one-third

of features will have missing data, each of those features will have 3 × MR% of missing

values. In the original paper, this adjustment is not mentioned, but we have decided

to discuss it so that the overall MR is respected. In MAR mechanism, the first scheme

randomly selects one feature to be the determining feature, xobs, and the remaining p− 1

features will have their values missing according to the values of xobs. To that end, the

values of xobs are transformed into probabilities by a logistic function, and the missing

locations for the remaining features are sampled according to such probability. Finally, in

MNAR mechanism, the first scheme deletes the highest or lowest values of each feature

in the dataset, while the second scheme proceeds in the same way but only for one-third

of features.

Soares et al. [347] study how different methods behave when imputing data from different

continuous distributions. To that end, each feature is fitted against a comprehensive

set of continuous distributions and missing values are generated according to 7 distinct
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methods, T1 to T7. Method T7 is a standard MCAR approach (MCAR2univa), where

the same amount of missing values are randomly inserted in each feature. The remaining

methods are MNAR approaches, where the missing values are removed according to each

feature’s probability density functions or frequency histograms. Methods T1 to T3 are pdf-

based while methods T4 to T6 are freq-based. For each method, three different scenarios are

considered: removing from the outer areas, inner areas, or both. Outer and inner areas

correspond to low and high values of the pdf and frequency histogram, respectively.

7.8 Discussion

Overall, we may divide the issues of reviewed approaches into three different types: The-

oretical flaws, Empirical flaws and Experimental Setup hazards. Theoretical flaws refer

to design flaws in the approaches: problems that may arise in some of the key ideas of

the approach. Empirical flaws refer to some issues that may occur not (solely) due to

the rationale behind each approach, but generated by specific conditions that may arise in

some domains (e.g., different feature types), often discussed throughout this work. Finally,

Experimental Setup hazards are not considered flaws inherent to the approaches per se,

but refer to some details that should be taken into account: they are considered hazards

in the sense that they are risks, but can easily be surpassed by a careful experimental

design.

• Theoretical flaws:

◦ Usage of Bernoulli trials: For datasets with a small number of patterns

(small n), Bernoulli trials may not provide the desired MR. To surpass this

issue several algorithms use random permutations of xij positions instead;

◦ Definition of pairs/triples and consequent MR adjustments: Defining

pairs/triples of features is an interesting approach since we guarantee that there

is a relation between the features. In MAR and MNAR, for each missing feature,

there is another highly correlated with it (completely observed) that, in theory,

possesses information that may be relevant when imputing the missing values.

However, defining these pairs/triples may condition the MR greatly, due to

the necessary adjustments: depending on the implementation, the MR may be

limited from less than 50% to less that 25%.

• Empirical flaws:

◦ Usage of the median to define groups: Using the median generally aggra-

vates the MR restrictions, especially for MAR unifo implementations. Further-

more, if the dataset comprises qualitative features, the use of the median can,

in some situations, weaken the mechanisms or fail to provide the specified MR
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(e.g., MAR3univa, MAR3unifo, MAR4unifo, MNAR3unifo, and MNAR4unifo,

among others);

◦ Usage of cut-off values defined using percentiles: Defining a cut-off value

and deleting values accordingly might fail to provide the desired MR, especially

if qualitative features are at state, as explained throughout the work. Among

all implementations, cut-off values based on percentiles are only considered

in Twala et al. [428], which could be replaced by a sorting of the values to

guarantee that the necessary MR is respected. Nevertheless, the sorting requires

that a feature can be ordered, which is not always the case.

• Experimental Setup hazards:

◦ Random choice of determining and missing features: If we consider

a typical experimental setup where n datasets are chosen to generate missing

values, one important aspect is to make the experiments as consistent as pos-

sible. As an example, consider a dataset X where MAR values are generated

in MRs of 10%, 20%, 30% and so on. If missing values are generated according

to MAR1unifo, for instance, where the determining and missing features are

randomly chosen, there are several factors (besides the increase of the MR)

that affect the final results. These type of assumptions and limitations need to

be established apriori, according to the objectives of the experiments. In some

cases, the presented domain-based approaches might be worthy of consideration

(e.g., Nanni et al. [318]), adapting the missing value generation to the context

and objectives of the study;

◦ Variability of generated missing datasets: In some cases, especially in

MCAR approaches, the possibilities of obtaining different outcomes is enor-

mous and therefore several runs should be performed. As an example, two

different runs of MAR2unifo might provide datasets with different difficulty for

imputation algorithms. Nevertheless, this is not an issue of the approach per

se, and should be bypassed by the design of experiments.

7.9 Conclusions and Potential Research Directions

This chapter reviews a considerable number of missing data generation approaches, for dif-

ferent configurations (univariate and multivariate) and missing data mechanisms (MCAR,

MAR, and MNAR). Their limitations are discussed from a theoretical and empirical view,

and some modifications are suggested in order to surpass them. Additionally, we refer

some less common approaches – herein named “domain-based” approaches – in order to

illustrate existing missing data generation approaches in specific contexts.

The theoretical flaws may compromise/constraint the possible MRs to generate; never-
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theless, this problem is easy to diagnose and, although the desired percentage of missing

values may not be achieved, there is no risk of breaking the assumptions of the missing

mechanisms. Regarding the identified empirical flaws, it is important to state that they

are mostly related to the existence of qualitative features with no order (nominal features),

which is very common across several domains [191, 378]. This is the most challenging topic

to solve in related work and is most often neglected. With the exception of Zhu et al. [483]

and Pan et al. [342], which distinguish between ordered and nominal features, no other

work refers to this issue. This limitation becomes more evident when using the median

or percentiles/quantiles, which require that the features have an order, although in any

implementation that requires values to be ordered (independently of the use of median

or percentiles), this problem exists. These empirical flaws are more serious since they

may bias the missing mechanism. The experimental setup hazards are unrelated to the

described approaches, but they might be induced inadvertently by the researcher during

the study. Therefore, they will not affect certain aspects of the implementation (faulty

MR rate, broken missing mechanism), but they may compromise the derived insights for

certain implementations, if there is not a careful experimental design (e.g., overlooking

the stochastic process inherent to the MCAR unifo approaches).

Domain-based approaches are mainly developed in order to adapt to given contexts: they

arise when there is a need to study specific situations/properties in data (Josse et al. [216],

Soares et al. [347]), to map known relationships in data (Johansson and Karlsson [285],

Olsen et al. [69]), or to reflect the reality of certain domains, such as healthcare domains

(Nanni et al. [318]), software management (Song and Shepperd [402]) and traffic data

(Deb and Liew [111]). A standard approach in this case is to generate missing values

per pattern, rather than per feature. This is a way to illustrate the reality in these

domains: as an example, in medical datasets, it is not expected that certain features are

absent for all patients, but instead, that several patients have absent observations in some

features [378]. Although some of these approaches are not generalisable, we have decided

to present them since they represent valid approaches in certain contexts and might inspire

other approaches for similar domains.

Finally, we shall refer to some potential research directions in the field:

• Generating MAR and MNAR with nominal features: The definition of ap-

propriate strategies to generate MAR and MNAR data with nominal features would

be important, since most strategies proposed so far may fail under certain circum-

stances;

• Generating MAR through data modelling: In the reviewed works, MAR either

makes use of one determining feature, or pairs of features where one in the pair is the

determining feature. Future research could explore the effects of generating MAR

via the combination of all features in data (except for the missing features);
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• Investing in software development: Nowadays, a great number of statistical

software (SPSS, R, MatLab) considers the development of models with missing data

and procedures for MD imputation. Nevertheless, strategies for MD generation are

most often neglected;

• Experimenting over real-world datasets: Investigating the reliability and con-

sistency of the methods outlined in this work on a large benchmark of real-work

datasets (available from UCI or Kaggle repositories [115, 223]), comprising different

domains, number of samples, number (and type) of features and distributions could

prove beneficial to the literature.
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The Influence of Data Distribution

in Missing Data Imputation

In data imputation problems, researchers typically use brute-force approaches, where sev-

eral machine learning techniques are used to impute all missing features in data, and

the best technique is chosen based on the classification error obtained with the imputed

data. This strategy, however, neglects the nature of data (data distribution) and makes

impractical the generalisation of the findings given that for new datasets, a huge number

of new and time-consuming experiments need to be performed. To overcome this issue,

this work aims to understand the relationship between data distribution and the perfor-

mance of standard imputation techniques, providing a heuristic on the choice of proper

imputation methods, and avoiding the need to test a large set of methods in future ex-

periments. Several datasets were collected considering different sample sizes, number of

features, distributions and contexts. Missing values were inserted at different percent-

ages and scenarios, and imputation methods were evaluated in terms of predictive and

distributional accuracy. Our findings show that there is a relationship between features’

distribution and algorithms’ performance, and that this performance seems to be affected

by the combination of missing rate and scenario at state, and also by other less obvious

factors such as sample size, goodness-of-fit of features and the ratio between the number

of features, and the different distributions comprised in the dataset.
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8.1 Introduction

Most often in missing data works, imputation is performed using a brute-force strategy,

where a set of algorithms is used to impute all the features in a dataset. Then, the

imputed datasets pass to the classification stage, where the imputation performance is

evaluated trough the classification error (CE). The “best” imputation method is chosen

as the one that minimises the CE. Although this is a standard approach to the missing

data problem, it raises some important hitches. First, since all of the techniques must be

implemented for all features, its computational cost is high. Secondly, it assumes that the

same technique should perform well for all or the great majority of features, which could

be an over-assumption for features with different characteristics. Finally, it uses the CE

to evaluate the imputation quality, which for contexts other than classification, could be

inappropriate.

In general classification scenarios, the objective is to efficiently solve a classification prob-

lem, and therefore imputation is considered a required step to produce quality data. When

imputation, rather than classification, is the focus, the use of CE is controversial. Some

authors strongly defend that “imputation is not prediction”, and that the imputation

method that minimises the classification error may produce biased estimates and affect

the original data distribution [435].

The accuracy of imputation methods varies depending on the type of data, its missing

mechanism, and missing rate. Nevertheless, all methods should ideally be able to repro-

duce the true values in data (i.e., imputed values should be as close as possible to the

original values), and preserve the distribution of those true values [82]. The former prop-

erty is referred to as Predictive Accuracy (PAC) and the latter as Distributional Accuracy

(DAC), and they evaluate the quality of imputation in contexts outside classification tasks.

In the great majority of data imputation works, the nature of data (data distribution) is

completely neglected, and the above-mentioned properties are disregarded in favour of

CE. However, studying the distribution of data could be relevant to guide the choice of

an appropriate imputation method: it considers the intrinsic characteristics of data and

avoids the need to test a large set of methods for datasets where the features’ distributions

are known.

In several real-life contexts, data follows a certain distribution, and if some heuristics exist

for data imputation in the presence of specific distributions, handling missing data would

be easier and less time-consuming for researchers. As an example, gamma distributions are

used to produce several queuing, climatology, and financial models [243, 472]; lognormal

distributions model stock prizes [142]; weibull, rayleigh, and extreme value distributions

are commonly found in models for wind speed analysis [335, 346]; and exponential dis-

tributions can model earthquake magnitudes [358]. Thus, studying the influence of data

distribution in imputation presents a new challenge for missing data research and may
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provide some insights on the most appropriate imputation strategy for each feature in the

study, allowing researchers to address missing data problems more easily and effectively.

In this work, we aim to assess which imputation techniques can efficiently reproduce the

original values in data without causing a distortion of their distribution, and investigate

whether there is a relationship between the imputation methods and a particular distribu-

tion. To achieve this goal, we started by collecting several complete datasets comprising

different contexts, sample sizes, number of features, and number of different distributions.

Then, we artificially generated missing data at several rates and scenarios, affecting spe-

cific ranges of features’ probability density functions and histograms with 5, 10, 15, 20,

and 25% of missing values. The missing values were imputed with the most commonly

used methods in related work: Mean imputation (MMimp), Decision Trees (DTimp),

k-Nearest Neighbours (kNNimp), Self-Organizing Maps (SOMimp) and Support Vector

Machines imputation (SVMimp), and the quality of imputation is measured regarding

two important properties of imputation techniques: their predictive and distributional

accuracy.

Our experiments show that the imputation methods are in fact influenced by data distri-

bution, with the exception of SVMimp, that does not seem to be significantly affected.

Aside for SVMimp, that achieves the best PAC and DAC results for the great majority of

distributions, SOMimp is overall winner in both metrics. However, the choice of the best

imputation method also depends on the scenario and missing rate at hand.

The reading of this chapter may be conducted as follows: Section 8.2 discusses related

work on data imputation, whereas Sections 8.3 and 8.4 describe the experimental setup

used in this work and report on the achieved results. Finally, Section 8.5 presents the

conclusions and suggests some possibilities for future work.

8.2 Related Work

Missing data imputation is a standard procedure to increase the data quality for classifi-

cation studies in a wide range of contexts. Table 8.1 summarises the key aspects of the

reviewed works.

Jerez et al. [212] used a real incomplete healthcare dataset (with missing rates of 0-43% per

feature and an average missing rate of 6%), and studied the enhancement of classification

tasks through the use of standard imputation techniques (including MMimp, kNNimp,

and SOMimp). According to the Area Under the ROC Curve (AUC) results, kNNimp

was the top performing approach.

Garćıa-Laencina et al. [203] studied the influence of imputation (including kNNimp and

SOMimp) on classification accuracy, using synthetic and real datasets. The authors started

by evaluating the imputation quality using PAC (Pearson’s r) and DAC (Kolmogorov-
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Smirnov distance) metrics, although only over kNNimp (with different k values) and con-

sidering the first feature of synthetic datasets (missing rates of 5-40%). The approach

was discarded in favour of CE metrics, since the main objective of the experiments was to

solve a classification problem.

Table 8.1: Summary of related work on missing data imputation.

Algorithms Datasets

Publication Imputation Classifiers Metrics Context Features Samples

Jerez
et al. [212]

MMimp; MLP;
MI; SOM;
kNN; Hot-deck

ANN AUC Health 8 3679

Garćıa-Laencina
et al.[203]

kNN Not Applied r; DKS; MSE Synthetics Unknown 1500

MLP; SOM;
kNN; EM

ANN CE Various 3 to 28 871 to 2800

Nanni
et al. [318]

Dissimilarity;
EM; MMimp;
ANN; kNN;
BPCA;
InPaint;
Learn++MF

IDE; SVM Rank; AUC Health 8 to 32 155 to 768

Rahman
and Davis [313]

MMimp; RDR;
DT; SVM;
FURIA

KMC
ACC; SEN;
SPEC

Health 26 832

Rahman
and Islam [165] DT; EM; LLS; Not Applied

r; MAE; d2;
RMSE

Various 2 to 11
398 to
32561

Kang [226]

MMimp;
Hot-deck;
kNN; ECM;
KMC; MoG;
LLRc

kNN; LLR;
ANN; LR;
CART

ACC; RMSE Various 4 to 60
150 to
14429

Aisha
et al. [19]

MMimp; EM;
SVM; kNN;
KMC; SVD;
LLS

NB; TAN;
BAN; GBN

ACC Health 19 155

Garćıa-Laencina
et al. [202]

MMimp; EM;
kNN

kNN; CART;
LR; SVM

ACC; SEN;
SPEC; AUC

Health 16 399

Rahman
and Davis [315]

MMimp; DT;
RDR; SVM;
kNN; FURIA;

DT; KMC;
kNN; ANN;
FURIA

ACC; SEN;
SPEC

Health 22 823

Amiri
and Jensen [30]

Fuzzy-Rough;
KMC;
MostCommon;
EM; kNN;
BPCA; SVD;
SVM; LLS

Not Applied RMSE Various 3 to 60 106 to 2201

Kumar
et al. [244]

kNN;
RandomForest;
Zero; Proposed

SVM
ACC; SEN;
AUC; SPEC;
CE; RMSE

Meta-bolomics 57 500 to 1388

ACC (Accuracy); ANN (Artificial Neural Networks); BAN (Boosted Augmented Naive Bayes); BPCA (Bayesian
Principal Component Analysis); CART (Classification and Regression Trees); EM (Expectation–Maximization);
FURIA (Fuzzy Unordered Rule Induction Algorithm); GBN (General Bayes Network Classifiers); IDE (Input
Decimated Ensemble); KMC (K-Means Clustering); LLR (Local Linear Regression); LLRc (Locally Linear
Reconstruction); LLS (Local Least Squares); LR (Logistic Regression); MI (Multiple Imputation)); MLP
(Multi-Layer Perceptron); RDR (Ripple-Down Rules); SEN (Sensibility); SPEC (Specificity); SVD (Singular Value
Decomposition); TAN (Tree Augmented Naive Bayes);

Nanni et al. [318] compared the performance of standard imputation techniques (including

MMimp and kNNimp) and their proposed imputation method for classification purposes,

by generating missing values on five health-related datasets at different missing rates (10-
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50%). The evaluation of techniques considered CE-related metrics – AUC and Rank.

The researchers concluded that their proposed approach, based on clustering and ran-

dom sub-spaces, showed a better behaviour than the remaining, achieving a satisfactory

performance for missing rates higher than 30%.

Rahman and Davis [313], investigated the classification performance of several imputation

methods (such as SVMimp, MMimp, and DTimp) using accuracy, sensitivity, and speci-

ficity, on a real incomplete medical dataset with a missing rate of 0-30% per feature. The

results showed that all machine learning-based imputation methods improved the sensi-

tivity of the classification task, in comparison to MMimp. In a later study with another

medical dataset [315], authors additionally studied kNNimp. However, the sensitivity re-

sults were low (an average of 20%), which authors associated to the class imbalance of the

dataset.

Kang [226] performed a similar investigation with the addition of analysing the per-

formance of regression algorithms. Authors assessed the accuracy and the Root Mean

Squared Error (RMSE) across different missing rates (1 to 50%) on thirteen classification

datasets and nine regression datasets, considering different contexts (health, industry, and

economy). All imputation methods improved classification accuracy, although kNNimp

and Locally Linear Reconstruction performed the best.

Aisha et al. [19] studied the effects of data imputation (including MMimp, kNNimp, and

SVMimp) on the classification of an incomplete health dataset (with a missing rate of

48%), and evaluated the imputation results using classification accuracy. SVMimp, along

with Local Least Squares, outperformed the remaining techniques.

Rahman and Islam [165] propose several imputation techniques based on decision trees and

compare them in terms of PAC – coefficient of determination (R2), Mean Squared Error

(MSE), and Mean Absolute Error (MAE). DAC metrics are, however, neglected. This

work used nine real datasets from different contexts, where missing values were artificially

generated (1-10%). The proposed imputation techniques outperformed the others.

Garćıa-Laencina et al. [202] evaluate the classification performance of datasets imputed

with different techniques, considering an incomplete medical dataset (missing rate of 0

to 87% per feature, and an average missing rate of 18%), using accuracy, sensitivity,

specificity, and AUC. The results showed that kNNimp and MMimp had the best and

worst outcome, respectively.

Amiri and Jensen [30] introduced three imputation methods based on Fuzzy Rough Sets

and compared their performance with eleven standard techniques (including kNNimp and

SVMimp), in terms of RMSE (PAC analysis). Authors used twenty seven complete and

real datasets from different contexts, and inserted missing values varying from 5 to 30%.

The simulations showed that SVMimp, kNNimp, and the three proposed techniques ob-

tained the best results.
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Kumar et al. [244] proposed an imputation technique based on singular value decomposi-

tion, to be applied in biomarker identification datasets. Authors used a real dataset and

one hundred synthetic datasets where missing values (10-20%) and some outliers (3-15%)

were introduced. The proposed method was compared with standard methods (including

kNNimp) and its performance was assessed using RMSE for a PAC analysis, and accuracy,

sensitivity, specificity, and AUC for the analysis of classification performance. For the syn-

thetic datasets without outliers, kNNimp was the best performing method, although for

the remaining scenarios, the winner was the proposed method.

As illustrated in Table 8.1, in related work imputation techniques are frequently evaluated

in terms of classification error, and the effects they may have in data distribution are most

often ignored. Moreover, in these approaches, the same technique is used to impute all

features, without considering the possibility that different features may be more properly

imputed with different techniques. This work conducts a study on the influence of data

distribution in missing data imputation, aiming to assess how different imputation tech-

niques perform across different feature distributions, which to the extent of our knowledge,

as never been performed.

8.3 Experimental Setup

Our experimental setup encompassed four main stages: Data Collection, Distribution

Fitting and Missing Data Generation, Data Imputation, and Evaluation (Figure 8.1). Data

Collection involves the selection of several public datasets with different characteristics

(Section 8.3.1). After the datasets were collected, the Distribution Fitting and Missing

Data Generation follows: each feature in each dataset is fitted against a comprehensive set

of data distributions, and missing values are inserted in different rates, following 7 distinct

methods (Section 8.3.2). The missing values are then imputed with several well-known

imputation algorithms (Section 8.3.3), and their behaviour is analysed according to two

main criteria, predictive accuracy and distributional accuracy (Section 8.3.4).

8.3.1 Data Collection

The first stage of this work consisted of selecting several publicly available datasets, from

UCI Machine Learning Repository [115] and Kaggle Datasets [223], so that future re-

searchers can easily replicate the conducted experiments. All datasets are complete, con-

tinuous, and were selected attending to different contexts, sample sizes, number of features,

and number of different distributions. Table 8.2 shows the main characteristics of the col-

lected datasets, where we have also included the ratio of variables per distribution for each

dataset (Ratio). Ratio is estimated from Equation 8.1, where a greater weight is given to
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Distribution 
Fitting 

Missing Data 
Generation

Data 
Imputation

Evaluation 
Metrics Data Collection 

ctgbupa

redwine

letter

backpain breast

hillvalley

iris

leaf

parkinson

pen

relax

spectf

wdbc

whitewine

For each 
feature

KNN

Mean

DT

SOM

SVMT6: freq-both

MR {5%,10%, 
15%, 20%, 25%}

T1: pdf-outer

T2: pdf-inner

T3: pdf-both

T4: freq-outer

T5: freq-inner

T7: randomly

Figure 8.1: Experimental setup architecture, comprising Data Collection, Distribution
Fitting and Missing Data Generation, Data Imputation, and Evaluation.

the number of distributions comprised in the dataset.

Ratio =
No. of features

No. of distributions2 (8.1)

Regarding data distributions, the datasets are rather heterogeneous, with the most com-

mon distributions being generalized extreme value (12 datasets), generalized pareto (9

datasets) and birnbaum-saunders (7 datasets). On the other hand, beta and lognormal (3

datasets), and rayleigh and exponential (2 datasets) are the least common distributions. In

terms of features, birnbaum-saunders, generalized extreme value, and extreme value rep-

resent the highest number of features (102, 62, and 32, respectively), while exponential,

rayleigh, and lognormal represent the lowest number of features (2, 3, and 4, respectively).

Considering all datasets, ctg has the largest number of different distributions (10 different

distributions) and the lowest ratio (0.210). Contrariwise, hillvalley has the lowest number

of different distributions (only 2), and produces the highest ratio (25). Only hillvalley and

spectf have ratios higher than 1.

8.3.2 Distribution Fitting and Missing Data Generation

Before inserting missing data, each feature of each dataset is fitted against a compre-

hensive set of continuous distributions (beta, birnbaum-saunders, exponential, extreme

value, gamma, generalized extreme value, generalized pareto, inverse gaussian, logistic,

loglogistic, lognormal, nakagami, normal, rayleigh, rician, t location-scale, and weibull).
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Table 8.2: Characteristics of collected datasets: dataset name, context, sample size, num-
ber of features, ratio of features per distribution, and distribution of features.

Dataset Context
Sample

Size

No. of

features
Ratio Distributions

(no. of features)

backpain Detect abnormal

back pain
310 12 0.333

Beta (1), Gamma (2), Generalized Pareto (5),

Normal (1), Nakagami (1), tLocationScale (2)

breast Identify breast

carcinomas
106 9 0.563

Birnbaumsaunders (2), Generalized Extreme

Value (4), Generalized Pareto (2), Lognormal

(1)

bupa Detect alcoholism

problems
345 6 0.240

Birnbaumsaunders (1), Exponential (1), Gen-

eralized Extreme Value (1), Inverse Gaussian

(1), Loglogistic (2)

ctg Detect pathologic

fetal cardiotocograms
2126 21 0.210

Birnbaumsaunders (1), Gamma (4), General-

ized Extreme Value (3), Generalized Pareto

(2), Inverse Gaussian (1), Logistic (2), Normal

(3), Nakagami (1), tLocationscale (2), Weibull

(2)

hillvalley Detect hills

and valleys
1212 100 25

Birnbaumsaunders (94), Generalized Extreme

Value (6)

iris
Distinguish between

different types of

iris plants

150 4 0.444
Extreme Value (1), Generalized Extreme

Value (2), Inverse Guassian (1)

leaf
Distinguish between

different species of leafs 340 14 0.286

Beta (3), Birnbaumsaunders (1), Generalized

Extreme Value (2), Generalized Pareto (5),

Nakagami (1), Lognormal (1), Rayleigh (1)

letter Identify the alphabet

letters (A-Z)
5000 16 0.640

Exponential (1), Gamma (9), Generalized

Pareto (2), Normal (2), Rayleigh (2)

parkinson Diagnose cases of

parkinson’s disease
195 22 0.449

Beta (1), Gamma (1), Generalized Extreme

Value (14), Generalized Pareto (2), Inverse

Gaussian (2), Loglogistic (1), Weibull (1)

pen Identify handwritten

digits (0-9)
3498 16 0.640

Extreme Value (1), Gamma (2), Generalized

Extreme Value (4), Generalized Pareto (1),

Logistic (8)

redwine Classify red wine

quality
1599 11 0.306

Birnbaumsaunders (2), Generalized Extreme

Value (4), Logistic (1), Loglogistic (1), Nak-

agami (1), tLocationScale (2)

relax
Distinguish between

relaxed state and

motor imagery state

182 12 0.750
Generalized Extreme Value (1), Logistic (3),

Normal (1), tLocationScale (7)

spectf Detect abnormal

SPECTF images
267 44 4.889 Extreme Value (30), Logistic (3), Weibull (11)

wdbc Diagnose breast

cancer cases
569 30 0.469

Birnbaumsaunders (1), Gamma (5), General-

ized Extreme Value (17), Generalized Pareto

(1), Inverse Gaussian (1), Loglogistic (2), Log-

normal (2), tLocationScale (1)

whitewine Classify white wine

quality
4898 11 0.440

Generalized Extreme Value (4), Generalized

Pareto (1), Loglogistic (3), Nakagami (2), tLo-

cationScale (1)
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To determine the most proper distribution to fit the data, we have used the Goodness-

of-Fit (GoF) statistics, with the normalized root mean square error (NRMSE) as cost

function, where the GoF values vary from −∞ (bad fit) to 1 (perfect fit). Figure 8.2a

shows an example of the fitting procedure for the first feature of backpain dataset. Our

algorithm runs the empirical cumulative density function (cdf ) of the reference values

(original feature values) against several distributions, and selects the one with the highest

GoF. For all datasets (344 features), the average GoF is 0.89±0.10, although some features

(11 features, 3%) achieve poor GoF values: 8 features with GoF values between [0.3, 0.5]

in datasets ctg, leaf, and pen, and 3 features between [0.2, 0.3] in datasets ctg and pen.

After finding the distribution that best fits the data (and its respective parameters), the

probability density function (pdf ) of such distribution is determined (Figure 8.2b), and

used to define several scenarios according to which the missing values are introduced.

(a) (b)

Figure 8.2: Distribution fitting example for the first feature of backpain dataset: a) cdf
fitting, b) pdf fitting. Gamma distribution outputs the highest GoF (0.92) while the
Exponential distribution outputs the lowest (0.24).

Missing values were inserted at several rates (5, 10, 15, 20, and 25%), following 7 distinct

methods. The simplest method (T7) consists of randomly selecting values to remove from

each feature. The remaining methods are based on the probability density function (pdf -

based methods: T1 to T3) and on the frequency distribution (freq-based methods: T4 to

T6) of each feature. For each of these methods, the missing values are selected considering

3 different scenarios: removing from the inner areas, outer areas, or both. Inner and outer

areas refer to high and low values of the pdf and freq histograms, respectively. Figure 8.3

depicts each of these methods and variations.
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(a) T1: pdf -outer (b) T2: pdf -inner (c) T3: pdf -both

(d) T4: freq-outer (e) T5: freq-inner (f) T6: freq-both

Figure 8.3: Strategies for missing data generation: T1 to T3 are pdf -based methods, while
T4 to T6 are freq-based methods.

Let us start by describing the generation of scenarios T4 to T6 (freq-based methods). After

the wanted missing rate n% is defined, our algorithm searches for the required number

of bins to include the double of the percentage of values to remove, 2n%. Creating an

interval of 2n% of values increases the variability of the values to remove. In the example

given in Figure 8.3, if the missing rate is set to 10%, the algorithm looks for the required

number of bins so that at least 20% of values are included. Then, the removal of 10%

of values is performed randomly within the defined interval(s). The algorithm searches

for high-frequency bins or low frequency-bins, depending on the strategy (T4 or T5). For

T6, the algorithm is forced to look for the same percentage of values in high and low

frequency bins: 10% in low frequency bins and 10% in high frequency bins. Again, 10%

of values are removed, attending to the stratification of high and low frequency regions

(the same proportion must be removed in each region). For the pdf -based methods (T1

to T3), the insertion of missing values is based on the definition of a probability density

function (Equation 8.2). When the distribution is fitted, the points of fx are known, and

therefore the different scenarios are created by looking to either high or low values of fx

and attending to the required missing rate n% (Figure 8.4). Our algorithm iteratively

looks for the interval [a, b] that considers 2n% of examples. After this interval is defined,

n% of the examples are randomly removed. The same constraints of T6 are valid for T3.

Since there is a random factor associated with the generation of these approaches, we
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performed several simulations for each approach. From our preliminary simulations, 30

runs proved sufficient to obtain stable conclusions.

P (a < X < b) =

∫ b

a
fxdx (8.2)

a b

10%

a’ b’
5% 5%

a’’ b’’

Figure 8.4: Example of pdf -based method T6, where the objective is to remove 10%
of values. The pdf -based strategies look for the intervals [a, b] for which the necessary
percentage of examples is achieved.

8.3.3 Data imputation

After analysing the most frequently studied imputation algorithms in previous research,

we have chosen the top five most frequently used strategies, attending also to different

paradigms: statistical-based (Mean imputation - MMimp), tree-based models (Decision

Trees - DTimp), neural networks-based (Self-Organizing Maps - SOMimp), similarity-

based methods (k-Nearest Neighbours - kNNimp), and kernel-based methods (Support

Vector Machines - SVMimp).

MMimp imputes the missing values with the mean of the complete values on the respective

features, and is the most common and simple of imputation techniques. Although more

sophisticated procedures exist, MMimp is used in almost every study concerning missing

data [205, 318, 397]. There are, however, a few issues with this approach: the natural

variation in the data and the overall correlation between features may be attenuated [263].

kNN imputes the incomplete patterns by finding its k nearest neighbours, found by min-

imising a distance measure. Once those k neighbours are found, the missing values are

imputed according to the type of feature [378]. In this work, since only continuous fea-

tures are considered, kNN implementation uses a weighted average of the k neighbours to

determine the substitute value to impute. In this way, a greater contribution is given to

the closest neighbours. The major disadvantage of kNN is its computational cost – it has

to search the entire dataset for the closest neighbours for each missing pattern. Also, find-

ing the optimal value of k and an appropriate distance function requires a careful study
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to achieve the best results. This work considers the Heterogeneous Euclidean-Overlap

(HEOM) distance function [356] and a range of 1 to 20 closest neighbours.

In DTimp, each incomplete feature is used as target, while the remaining features are used

to fit the model: missing values are determined as if they were class labels [59]. Decision

tress are interpretable and explainable models, robust to outliers, and can fit non-linear

relations. However, as they work by recursively dividing the data into smaller subsets,

they may perform poorly in datasets where many complex interactions exist [435].

SOM creates a network of nodes, where each node is a weight vector of the same dimension

as the feature space. SOMimp determines each incomplete pattern’s Best Matching Unit

(BMU) and imputes its missing values according to the BMU’s weights on the incomplete

features [236]. Through the projection of the input data onto a low-dimensional grid

(generally 2-dimensional), SOM allows a non-linear interpolation for missing values, which

potentiates a robust behaviour [403]. Several network sizes were tested for SOMimp: 10

to 100 nodes.

Support Vector Machines are one of the state-of-the-art approaches to pattern classification

and regression, due to their ability to fit the data without compromising the model’s

complexity [377]. SVMs can also be used for imputation (SVMimp), considering the

feature to be imputed as the target. The main issue regarding their implementation is

to decide on their parametrisation (e.g., kernel functions and coefficients). In this work,

SVMimp was implemented considering both a linear (SVMlinear) and a Gaussian (radial

basis function, RBF) kernel (SVMrbf) [203]. For the linear kernel, we considered a value

of C = 1, while for the Gaussian kernel, different values of C and γ were tested (1e-5 to

1e5, increasing by a factor of 10).

8.3.4 Evaluation metrics for missing data imputation

Rather than classification error, we are interested in performance measures that provide

information of the effects of imputation in data distribution. For that reason, we study two

imputation properties proposed that are more appropriate for our study [82]: Predictive

Accuracy (PAC) and Distributional Accuracy (DAC). The former refers to a technique’s

efficiency on retrieving the true values in data, while the latter refers to its ability to

preserve the original data distribution. PAC properties were assessed using the well-known

coefficient of determination (R2) and the Mean Squared Error (MSE) [218], whereas DAC

was assessed using the Kolmogorov-Smirnov distance (DKS) [270].

R2 is the square of Pearson’s Correlation Coefficient (R) and varies from 0 to 1. It provides

a measure of the correlation between the original and imputed values, where an efficient

imputation should have a value closer to 1. R is given by Equation 8.3, where x are the

original values of a feature, x̂ are the corresponding imputed values, and n is the number

260



The Influence of Data Distribution in Missing Data Imputation

of missing values.

R =

∑n
i=1 (xi − x̄)(x̂i − ¯̂x)√∑n

i=1 (xi − x̄)2
∑n

i=1 (x̂i − ¯̂x)2
(8.3)

MSE measures the average squared deviation of the imputed values from the true values,

for which values closer to 0 suggest a more accurate imputation. Considering a complete

feature x and its imputed version x̂, MSE is given according to Equation 8.4, as follows:

MSE =
1

n

n∑
i=1

(xi − x̂i)2 (8.4)

Finally, DKS measures the distance between the cumulative distribution functions of the

imputed values of a feature (x̃) and its original values (x̂) and is given by Equation 8.5,

where better imputations are represented by smaller distance values.

DKS = max
(
||Fx̂ − Fx̃||

)
(8.5)

8.4 Experimental Results and Discussion

Considering all imputation methods (Mimp, DTimp, kNNimp, SOMimp, and SVMimp),

our experiments have shown that SVMimp is the winning method for the great majority

of distributions (see Total and Total SVM in Table C.1, Appendix C), with an overall

ratio of victories over 80%, regarding both PAC and DAC metrics. Considering all the

distributions, SVMimp obtains the highest average R2 – 0.765 versus 0.723 obtained with

the remaining methods – and the lowest average values for MSE and DKS – 0.015 and 0.106

versus 0.019 and 0.136 of the remaining methods, for the respective measures. However, a

preliminary analysis of the results indicated that the remaining methods performed differ-

ently across different distributions, metrics, scenarios, and missing rates. Table C.1 shows

the winning methods with respective means and standard deviations for all distributions,

across several scenarios (T1 to T7), missing rates (5% to 25%), and metrics (R2, DKS,

and MSE), for MMimp, DTimp, kNNimp, and SOMimp. “Total SVM” shows the overall

winning configuration, considering also SVMimp.

As illustrated in Table C.1, SVMimp does not seem to be considerably affected by data

distribution, with good performance indicators in all distributions, often surpassing the

remaining methods. The standard formulation of support vector machines does not handle

missing values. In fact, in most popular implementations of SVM (e.g., LibSVM, SVM-

Light), missing values are treated as zero-valued observations. In this work, we have also

used such strategy to avoid that a pattern with at least one missing value was completely
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discarded. Thus, our SVM implementation takes advantage of the general properties of a

standard SVM used for classification: the feature to be imputed is set as the target value.

Because they rely on kernel functions, regression SVMs can generate nonlinear boundaries

which allows them to handle high-dimensional domains and grants them an exceptional

generalisation behaviour, as confirmed through the simulation results.

When SVMimp is left out of the analysis, the results are more heterogeneous. Therefore,

we have pursued our research to understand how the remaining methods behave in different

configurations. Since the work comprises an extensive set of simulations, this section is

divided into three main parts to ease the discussion and simplify the analysis by the reader:

“Overall Analysis”, focusing on the general results by scenario and missing rate, and

“Distribution Analysis”, focusing on data distributions, and “Heuristic Model” discussing

the construction of a model to provide meaningful rules to guide researchers when choosing

the best imputation methods according to the characteristics of their particular set of

features.

8.4.1 Overall Analysis

Figure 8.5a summarizes the victories and draws of MMimp, DTimp, kNNimp, and SOMimp,

considering all metrics. It is clear that kNNimp and SOMimp are responsible for the high-

est performance results, with a percentage of wins of 29.5% and 26.3%, respectively.

Regarding each metric in specific, this tendency is maintained for R2 (Figure 8.5b), al-

though it is slightly different for MSE and DKS, where SOMimp is responsible for the

best MSE values (Figure 8.5c), while kNNimp is more appropriate to maintain the data

distribution (Figure 8.5d).

Figure 8.6a shows the victories and draws, altogether1, for each range of considered missing

rates (5-10, 15-20, and 25%). SOMimp and MMimp show a similar behaviour, performing

better for increasing percentages of missing data. Contrariwise, DTimp and kNNimp tend

to perform worse when the missing rate increases.

To further study this behaviour, Figure 8.6b shows the overall victories and draws (alto-

gether) of each method, considering each specific metric (R2, DKS, and MSE). For lower

percentages of missing data (5-10%), kNN outperforms all other methods in terms of both

PAC and DAC, being considered the most frequent winner in all metrics (50%, 75.2%, and

68.6% for MSE, R2, and DKS, respectively). When the missing rate increases (15-20%),

kNNimp loses its podium to SOMimp in terms of PAC (R2 and MSE), though not DAC,

where kNN appears as a winner in 57.2% of times. When the missing rate increases to

25%, the previous behaviour is respected, although the differences between SOM and kNN

become more accentuated.

1Victories and draws are summed.
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Figure 8.5: Performance results obtained for each imputation method (excluding SVM):
(a) overall results considering all metrics, (b) R2, (c) MSE, (d) DKS.
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Figure 8.6: Overall results (wins and draws altogether) for each imputation method: (a)
divided by missing rates, (b) specified for each metric.
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In terms of PAC, SOMimp’s superiority becomes more clear (66.9% and 59.6% of wins/-

draws for MSE and R2), while kNNimp’s dominance in terms of DKS decreases to 49%.

The observed results are in agreement with the characteristics of the considered algorithms.

Although MMimp is a rapid and simple solution to impute missing data, it is known to

ignore the relationships between features, disturbing the original data variance [67]. As

such, MMimp tends to have a poor performance compared to the other methods, in terms

of DAC. Previous work has shown that kNNimp has a robust behaviour even for large

amounts of missing data [46, 424]. The fact that it uses the information of the most

similar cases rather than all the cases makes it superior to MMimp, being more suited to

maintain the distribution of data (DAC). DTimp is resilient to outliers and has the ability

to cope with skewed distributions; however, the greater the amount of missing data, the

more difficult it is to have a good decision tree to estimate the missing values [435]. SOM

imputation somehow approximates a clustering solution, in the sense that the imputations

are made in clusters, activation groups constituted by the k-closest BMUs of a given

incomplete pattern. This type of mapping allows SOM to preserve the data topology,

which is one of the factors that may contribute to its robust behaviour [403].

Out of these four methods, MMimp serves as a baseline, and behaved as expected, de-

teriorating the data distribution. DTimp does not seem to be a general good approach

for imputation in terms of PAC and DAC: it estimates missing values based on the in-

formation of the remaining features and therefore it produces good estimates when the

correlation between them is high. However, for low correlations between features, it can

lead to poor performances, which could be on the origin of its discouraging behaviour.

Finally, imputation algorithms that approach a clustering-based solution (kNNimp and

SOMimp) seem to be generally appropriate to keep the PAC and DAC properties of data:

this behaviour could be related to the fact that both of these methods properly address

the similarity between patterns, using only resembling data points to impute the missing

values.

Figure 8.7 shows the overall victories and draws (altogether) of each method, considering

specific ranges of missing data and specific missing generation types. It can be observed

that the overall tendency reported for Figure 8.6 is maintained: SOMimp and MMimp

achieve their superiority for increasing percentages of missing data, while, conversely,

kNNimp and DTimp achieve less and less victories/draws as the missing rate increases.

For lower percentages of missing data (5-10%), kNN is the winner for all scenarios, while

SOM is the overall winner for percentages of 15 and 20%. However, in this missing data

range, there is an exception for T2 and T5 generation types, where kNN is superior. For

a missing rate of 25%, SOM is again the winner for all scenarios.
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Figure 8.7: Overall results (wins and draws altogether) for each imputation method, di-
vided by missing rates and generation scenario (T1 to T7).

Figure 8.8 specifies the overall wins and draws of each imputation by metric (MSE, R2,

and DKS), for each scenario. It is clear that kNNimp achieves the best results for DAC,

regarding all generation types. In terms of PAC, SOMimp seems to be the preferable

approach for all scenarios except T2, where the superiority of kNN is noticeable both in

terms of MSE and R2. For its analogous frequency-based generation type, T5, kNN is also

considered the overall winner for MSE values, although SOM’s results are not considerably

lower than kNNimp’s and also, SOM wins in terms of R2.

Figure 8.9 compares the analogous pairs of freq-based and pdf -based generation types, to

study the influence of the type of missing data generation (either based on the histogram

or based on the probability density function). There are not relevant differences to point

out, except for the imbalance between SOM’s and kNN’s results for PAC metrics in T2

versus T5 pairs. T2 generation is most often better imputed with kNN for all metrics,

gaining a clear advantage over SOM. In T5, this gap is not so clear, as previously stated.

8.4.2 Distribution Analysis

Table 8.3 shows the results for PAC and DAC metrics, regarding each scenario. It shows,

for each imputation method, the distributions for which they were top winners (i.e., re-

sponsible for 100% of victories), divided by generation scenario (T1 to T7).
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Figure 8.8: Overall results (wins and draws altogether) for each imputation method, di-
vided by generation scenario (T1 to T7).
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Figure 8.9: Comparison between analogous pairs: freq-based versus pdf -based generations
types.

Table 8.3: Best imputation algorithms for each distribution, regarding both predictive and
distributional accuracy metrics. Distributions for which an imputation approach achieves
the best results for both properties are marked in bold. N.A.: Not Applicable.

Strategy Method Prediction Accuracy Distributional Accuracy

T1
kNN generalized pareto, exponential

generalized pareto, normal, nak-

agami, beta, generalized extreme

value, logistic, extreme value

SOM
weibull , inverse guassian, logistic,

gamma
weibull , birnbaum-saunders

kNN

generalized extreme value, expo-

nential , normal, nakagami, logistic,

gamma, log-logistic

generalized extreme value, expo-

nential , logistic, t-locationscale, beta,

generalized pareto, birnbaum-saunders

T2 SOM N.A.
weibull, log-normal, nakagami, inverse

gaussian, extreme value, log-logistic

MM log-normal N.A.

T3
kNN N.A.

gamma, birnbaum-saunders, gener-

alized pareto, exponential, extreme

value, logistic, t-locationscale, normal,

beta, generalized extreme value

SOM

weibull , generalized extreme value,

birnbaum-saunders, logistic, gamma,

log-logistic

weibull

T4
kNN t-locationscale

t-locationscale, generalized pareto,

inverse gaussian, log-logistic, extreme

value, logistic, normal, nakagami,

beta, generalized extreme value

SOM

weibull , generalized extreme value,

birnbaum-saunders, logistic, gamma,

log-logistic

weibull

To be continued on the next page. . .
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Table 8.3: Continued from previous page.

Strategy Method Prediction Accuracy Distributional Accuracy

T5
kNN normal , inverse guassian , logistic

normal , inverse gaussian , logistic,

generalized extreme value, generalized

pareto, exponential, extreme value,

log-logistic

SOM

weibull , log-normal , birnbaum-

saunders, generalized extreme value,

generalized pareto

weibull , log-normal , birnbaum-

saunders, nakagami

T6
kNN N.A.

t-locationscale, normal, rayleigh, beta,

generalized extreme value, generalized

pareto, exponential, inverse gaussian,

logistic, log-logistic

SOM

weibull , birnbaum-saunders, nor-

mal, log-normal, generalized extreme

value, inverse guassian, extreme value,

logistic

weibull , birnbaum-saunders

kNN N.A.

extreme value, logistic, log-logistic,

generalized extreme value, general-

ized pareto, inverse gaussian, t-

locationscale, normal, nakagami, beta

T7 SOM

extreme value, gamma, weibull, gen-

eralized extreme value, birnbaum-

saunders, generalized pareto, inverse

guassian

N.A.

DT log-normal log-normal

In terms of PAC, SOMimp seems to be the most robust approach, achieving the best

results across several distributions and scenarios. Regarding DAC, kNNimp is the preferred

approach for the great majority of scenarios.

Focusing on data distributions, and considering both PAC and DAC metrics, weibull and

birnbaum-saunders distributions are generally better imputed with SOM for the great

majority of scenarios. In T1 scenarios, kNN is the best approach for generalized pareto

distributions, while for T2 scenarios, kNN is suitable for generalized extreme value and

exponential distributions. T3 scenarios are not conclusive, where different methods are

more appropriate according to a specific metric; however, for T4, kNN seems to be a

feasible approach for t-location scale, and for T5, it also seems to be the best approach for

normal, inverse gaussian, and logistic distributions. Additionally, for T5, SOMimp is also

considered the best approach for lognormal distributions. T6 scenario clearly shows the

good behaviour of SOM for weibull and birnbaum-saunders distributions. For T7, there

is not a method that provides the best results for the same distributions in both metrics,

except for DTimp, that seems to be the best method for lognormal distributions.

As an important remark, Table 8.3 only includes the distributions for which each method is

the single winner in each specified property (PAC or DAC). Notwithstanding, other meth-

ods have shown a robust behaviour in the sense that, although they were not single winners
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(i.e., obtaining 100% of victories), they have often appeared as winners as well. This is the

case of DTimp, especially for the T7 generation type, frequently considered a winner for

logistic, normal, nakagami, weibull, and t-location scale distributions. Variations of these

results with increasing missing rates are negligible, except for generalized extreme value

and generalized pareto distributions, where the previously detected tendency is observed:

kNN produces the best results in both PAC and DAC for lower percentages of missing

data (5-10%), although loses its dominance to SOM for increasing missing rates.

8.4.3 Heuristic Model

Since this work considers an extensive set of configurations (several methods, data dis-

tributions, missing rates, scenarios, and metrics), summarising its observations in order

to provide insightful recommendations for researchers is not a trivial process. Further-

more, each dataset contains additional information that is not studied when performing

the previous investigations, given that such a detailed analysis its complex to the naked

eye. For that reason, we have decided to build a meta-dataset to include important

information not analysed so far. Specifically, the produced meta-dataset considers the

name of the distributions (Distribution class), missing rates (MissingRate), metrics

(Metric class), generation type (GenType class), feature ratio (FeatureRatio), number

of features (FeatureNo), number of features with the same distribution included in the

dataset (SameFeature), sample size (SampleSize), goodness-of-fit of the feature (GoF),

and the best imputation method as the target class (bestMethod class). An excerpt of

such meta-dataset is shown on Listing 8.1, as follows.

1 @relation LowLevelInfoT1T2T3T4T5T6T7

2

3 @attribute Distribution_class {Beta ,BirnbaumSaunders ,Exponential ,ExtremeValue ,Gamma

,GeneralizedExtremeValue ,GeneralizedPareto ,InverseGaussian ,Logistic ,Loglogistic

,Lognormal ,Nakagami ,Normal ,Rayleigh ,Weibull ,tLocationScale}

4 @attribute MissingRate {5 ,10,15,20 ,25}

5 @attribute Metric_class {ksdistance ,mse ,pearson}

6 @attribute GenType_class {T1,T2,T3,T4,T5 ,T6,T7}

7 @attribute FeatureRatio numeric

8 @attribute FeatureNo numeric

9 @attribute SameFeature numeric

10 @attribute SampleSize numeric

11 @attribute GoF numeric

12 @attribute bestMethod_class {DT,kNN ,Mean/Mode ,SOM}

13

14 @data

15 Gamma ,5,mse ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM

16 Gamma ,5,pearson ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 , SOM

17 Gamma ,5,ksdistance ,T1 ,0.33333 ,12 ,2 ,310 ,0.91288 ,DT

Listing 8.1: Produced meta-dataset considering additional information.
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With a more complete set of information to study, we used the Waikato Environment for

Knowledge Analysis (WEKA) software to start analysing simple rule induction algorithms

(ZeroR and OneR) that allowed a general classification of the data.

ZeroR suggested classifying all instances as SOM (AUC of 0.5), and OneR used GoF to

produce a larger set of rules for classification (AUC of 0.608). These results show that

SOM is generally the overall winner for the great majority of configurations and suggest

that GoF has a high discriminative power.

Motivated by these results, we performed an attribute selection based on Information

Gain, which revealed that GoF (0.229), Sample Size (0.165), and Feature Ratio (0.158)

are the top three most discriminative features.

Consequently, we ran a sequential forward selection to determine the subset of character-

istics that more accurately identified the best imputation method for each input feature.

This search returned a subset including GenType, SampleSize, and GoF, for which a 10-

fold cross-validation of a C4.5 decision tree returned an average AUC of 0.725 (please refer

to Table C.2, Appendix C), decreasing only by 0.027 in comparison to the AUC results

obtained by including all information (0.752).

However, these features did not provide any insights regarding the different distributions.

Therefore, we have tested several decision trees in order to obtain a model that included

as much information as possible, without compromising its interpretability: we looked

for subsets of features that enabled the creation of a clear and interpretable decision tree

model, with a minimum performance drop, in order to produce meaningful insights (Table

C.2).

The subset of features that enables the most clear decision tree model includes the distribu-

tion of the feature (Distribution class), the missing rate (MissingRate), the considered

metric (Metric class), and the type of generation of missing data (GenType class), pre-

senting a mean AUC of 0.675, and showing a decrease of 0.077 in comparison to the best

AUC achieved (considering all features). Despite this drop in performance, this model

allows the construction of general, heuristic rules that may be useful for researchers: an

example branch of the obtained decision tree model is shown in Figure 8.102. From this

model, some imputation methods stood out for particular data distributions and genera-

tion types, such as SOMimp for birnbaum-saunders (T1,2,3,4,5,6), extreme value (T1,2,3,6),

and weibull (T1,3,4,6) distributions, and kNNimp for logistic (T1,2,3,4,5) distributions.

Nevertheless, despite the fact that the obtained model eases the visualisation and inter-

pretation of results, the rules generated by models with higher AUC values should also

be analysed. Thus, we have evaluated the rules generated by all of the models presented

in Table C.2, and retrieved the most common and accurate rules (an example is shown in

Listing 8.2).

2A more detailed illustration of this decision tree model is shown in Figure C.1, Appendix C.
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Figure 8.10: Example of a branch of the decision tree generated from the con-
sidered subset of features. An example of a rule extracted from the obtained
model is: If Generation Type = T3 and Metric = MSE and Distribution = Gamma

and Missing Rate <= 10: kNN(46,21).

1 SampleSize <= 2126 and FeatureRatio > 4.88 and GenType = T1: SOM (1500 ,0)

2 SampleSize <= 2126 and FeatureRatio > 4.88 and GenType = T4 and and MissingRate

<=10: SOM (600 ,0)

3 SampleSize <= 2126 and GenType = T4 and 0.79 < GoF <=0.87: SOM (1660 , 336)

4

5 % GenType = T3

6 If GenType = T3 and Metric_class = R2

7 Distribution_class = BirnbaumSaunders: SOM (510.0/21.0)

8 Distribution_class = ExtremeValue: SOM (160.0/29.0)

9 Distribution_class = GEV and MissingRate <= 10: kNN (124.0/47.0)

10 Distribution_class = GEV and MissingRate > 10: SOM (186.0/65.0)

Listing 8.2: Set of best and most common rules found. This listing shows the general rules

found most frequently, as well as the most common rules found for an example scenario:

T3 generation, regarding R2 metric.

8.5 Conclusions and Future Work

In this work, a set of comprehensive experiments were conducted in order to study the

effect of several data distributions on well-known imputation algorithms. To this end,

we collected several datasets with different characteristics, fitted the data to determine

the distribution that best describes each feature in the datasets, and then inserted miss-

ing values in all features according to two different methods (freq-based and pdf -based

methods) and three different scenarios, resulting in six different approaches (T1 to T6).

Furthermore, a random insertion of missing values was defined for the seventh approach,

T7. After the insertion of missing values, five imputation methods were used to repro-

duce the original values, namely SVMimp, DTimp, SOMimp, kNNimp, and MMimp. The

results were evaluated in terms of PAC (R2 and MSE) and DAC (DKS) metrics.

From the experimental data, the following main conclusions may be derived:

• SVMimp is the winning method for nearly all distributions regarding both PAC and

DAC metrics, mostly unaffected by data distributions. Aside from SVMimp, the
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remaining methods behave differently across several scenarios;

• Overall, imputation algorithms based on distance metric learning (kNNimp and

SOMimp) seem to be generally the most appropriate to keep the PAC and DAC

properties of features;

• Considering all distributions, scenarios, and missing rates, SOMimp and kNNimp

achieve the best performance results: kNNimp seems more appropriate in terms of

DAC, whereas SOM seems preferable in terms of PAC;

• When the missing rates are taken into account, kNNimp outperforms all methods

regarding both PAC and DAC metrics for missing rates of 5 and 10%. For higher

missing rates, SOM is generally the best approach for PAC (though for DAC, kNN

still maintains its superiority);

• Regarding the missing data generation types (T1 to T7), kNN is the winner approach

for lower percentages of missing data (5-10%), while SOM is the chosen approach

for higher missing rates, with the exception of T2 and T5 for 15-20%, where kNN is

superior.

With more detail on the conducted heuristic analysis, the following conclusions can be

gathered:

• GoF, Sample Size, Feature Ratio, and Generation Type seem to be relevant features

to suggest appropriate imputation approaches, although they do not provide insights

regarding the different distributions;

• It was possible to obtain a more descriptive decision tree model that allows the

extraction of general rules comprising Generation Type, Metric, Distribution, and

MR;

• Overall, SOM is a robust approach across several distributions and scenarios. It

is generally suited for birnbaum-saunders, extreme value, and weibull distributions.

Logistic distributions tend to be better imputed with kNN.

There are several directions for future work. One is the extension of this methodology for

datasets comprising also discrete features, fitting discrete distributions and investigating

how the studied imputation techniques perform in each scenario. Also, from a classification

perspective, it would be interesting to assess whether the best imputation techniques

regarding PAC and DAC metrics would also achieve good results in terms of classification

error. Additional research could focus on a sensibility analysis of SVMimp, studying the

best set of parameters that achieve the highest PAC and DAC results, and looking for the

absolute most missing rate for which SVMimp is still able to reproduce the original data

values and maintain the data distribution.
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How distance functions influence

missing data imputation with

k-nearest neighbours

In missing data domains, k-Nearest Neighbours (kNN) imputation has proven beneficial

since it takes advantage of the similarity between patterns to replace missing values. When

dealing with heterogeneous data, defining a suitable distance function to handle pattern

similarity seems a straightforward way of achieving optimal results. However, this remains

often neglected in related work. This chapter begins an in-depth study of the impact of

distance functions on kNN imputation of heterogeneous datasets, that will be further

conducted throughout Chapters 10 and 11. Herein, we mainly focus on i) unfolding the

motivation to address this topic, ii) summarising its potential and engineering applica-

tions, iii) reviewing previous work, and iv) discussing the heterogeneous distance functions

evaluated throughout this study. We then perform a set of preliminary experiments over

a benchmark of real-world datasets, aiming to determine whether distance functions truly

impact kNN imputation, and whether their internal operations are aligned with some

characteristics of the datasets, namely the nature of their features. The obtained results

show that distance functions significantly kNN imputation, especially for higher missing

rates, and that differences in performance between distance functions seem to rely on their

treatment of missing values.

273



Chapter 9

9.1 Introduction

Real-world domains are often afflicted by Missing Data (MD), i.e., absent information

in datasets for which the respective values are unknown. This severely compromises the

performance of most classification models, which either i) cannot internally handle missing

information, or ii) struggle with the definition of unbiased decision boundaries [260]. Over

the years, several approaches have been discussed to surpass this issue, among which

machine learning-based imputation stands out as the most popular [203]. It consists of

replacing the absent values with plausible estimates taken from the complete training data

portion and, contrary to other approaches, it does not require the elimination of instances

with missing values, is model-agnostic (i.e., it does not require that data distributions are

modelled by some procedure), and is independent of the final classification task, i.e., past

the imputation stage, the classification task can be addressed by any classifier.

Among machine learning-based imputation strategies, k-Nearest Neighbours Imputation

(kNNI), since its proposal in the yearly 00’s [424], remains one of the most popular and

competitive approaches [260], and is a widely-used solution across several application do-

mains [15, 148, 196, 409, 410], especially those that require a strong notion of pattern

similarity, such as healthcare domains [197, 202, 212, 378]. Essentially, kNNI is based on

the intuitive principle of associating the distance between two patterns to the likelihood of

their values being similar. Accordingly, for a given pattern with missing information, the

imputation process involves finding its most similar neighbours and use their information

to produce an estimate for the missing values. Beyond its simplicity, kNNI possesses other

desirable traits: it is a non-parametric method that does not require any assumptions on

the data [427], can predict both continuous and categorical features [47], has proven to

preserve the data distribution [386], and allows for a great interpretability and explainabil-

ity [336]. Also, on contrary to most machine learning-based imputation strategies, kNNI

is a lazy learner, i.e., it does not require the creation of an explicit predictive model for

each missing feature [47]. Therefore, it can directly handle instances with multiple missing

values and the adjustment to new training data is performed continuously, without the

need to retrain predictive models. Provided with thoughtful adaptations, it even has the

potential to accommodate more complex problems (e.g., concept drifts [476]).

Nevertheless, the efficiency of kNNI is largely conditioned by certain challenging fac-

tors (Figure 9.1). One relies on the definition of suitable donor neighbours, which in

turn implies the choice of both an appropriate number of neighbours, k, and a dis-

tance function, D. Other impactful decisions concern the definition of the imputation

framework, i.e., kNNI variants (e.g., iterative, sequential, cluster-based, incomplete case-

based [193, 233, 337, 437]) and/or the strategy to weight the contribution of each neigh-

bour to the final missing value estimate, i.e., kNNI adaptations or weighting schemes

(e.g., mean/mode, distance-weighted, rank-weighted [4, 196]). However, note that while

kNNI variants/frameworks and adaptations/weighting schemes can be thought as general
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modifications of the traditional kNNI formulation, the definition of both a donor set and

a distance function is a mandatory requirement. Nonetheless, and although all of these

aspects contribute to the successful behaviour of kNNI, they have not received the same

attention in related research over the past decades. Whereas tuning the optimal number

of k nearest neighbours, or experimenting with several possible values for improved re-

sults is nowadays a standard practice across most imputation papers [202, 203, 342], and

increasing research has been investigating the effect of applying different kNNI weighting

schemes and variants [22, 204, 213, 276, 427], the search for a suitable distance function

remains often neglected (related work is presented in Section 9.2).

This is true both from an imputation as well as classification perspective (kNN classifica-

tion), among other related fields (Figure 9.1), and is perhaps due to the current lack of

insight regarding the behaviour of different distance functions. Note that the chosen value

of k is directly associated to a local or global nature of kNN, as it relates to the size of the

neighbourhood considered for imputation or classification. Naturally, smaller values of k

define stricter imputation estimates or classification rules, focusing on a local perspective

of the domain. In turn, weighting functions control the impact that the patterns in the

defined neighbourhood have in determining the final imputed value or class label. Ulti-

mately, there is also some intuition on appropriate weighting functions, depending on the

characteristics of data. For instance, overlapped domains or domains presenting certain

structural biases should respond better to weighted imputation approaches: this is not

only intuitive as it is also empirical, since the fact that distance metric learning is inherent

to a broad spectrum of fields in machine learning [279] (Figure 9.1), makes it possible to

exchange empirical knowledge between different areas and applications (e.g., overlapped

domains should benefit from weighted imputation approaches in the same way that they

benefit from weighted resampling and classification approaches [323, 359]).

For distance functions, however, it has been difficult to derive some underlying principles

that motivate the choice of one distance function over another. For the most part, ex-

isting approaches – both within the scope of kNN imputation and classification – often

rely on variations of the Minkowski distance, where the Euclidean distance is the most

frequently used by default [22, 170, 276, 283]. However, note that distance functions are

not universally suited to all types of data. Variations of the Minkowski distance, such as

the Manhattan and Euclidean distances, work under the assumption of continuous data.

Other distance functions are more appropriate to handle categorical data, such as the

Jaccard or the Value Difference Metric distances.

Inevitably, heterogeneous data, comprising both continuous and categorical features, re-

quires special treatment. Essentially, there are three main solutions for heterogeneous

data. A common solution is to transform features so that they are represented on the

same scale [280]. Accordingly, continuous features may be discretized to categorical, or

categorical features may be transformed to binary, using a 1/0 encoding (one-hot encod-
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ing) for each existing category (which allows arithmetic operations over values). These

solutions are however suboptimal: on the one hand, determining an adequate number

of categories for the discretisation of continuous features is not trivial. Besides, if cate-

gories are considered nominal, the order information is lost. One the other hand, one-hot

encoding may significantly increase data dimensionality which adds time and memory

complexity to kNNI. Another possibility is to combine distance functions in order to ad-

dress the continuous and categorical portions separately. This, however, often results in

considering a binary encoding for certain categorical features (nominal) and the use of

matching coefficients between the transformed binary vectors [29]. A more refined ap-

proach is to consider heterogeneous distance functions that directly handle different types

of features, thus avoiding the problems described above [356].

Yet, there is another factor that needs to be accounted for: the incorporation of missing

data in the distance computation. Traditional implementations of kNNI require that donor

neighbours have observed values in all features. Other kNNI variants allow the donors to

have some missing information, although they are required to have the same observed

features as the pattern with missing values [437]. In other frameworks, the donors are

allowed to have missing values, although the computation of distances does not use all the

features, but only those for which observations are available in both instances [427].

One of the advantages of considering heterogeneous distance functions is that they are

flexible in incorporating operations on missing values as well. Additionally, it is possible

to handle absent values differently, depending on whether they belong to a continuous or

categorical feature. This allows that all existing information is considered for imputation,

without discarding any data patterns or values. Finally, it allows that the presence of

missing data itself is also considered in the distance computation, i.e., the uncertainty of

the missing data can be accounted for: patterns comprising missing values in the same

feature can either be thought to be closer (more similar) or farther from each other (less

similar), or evaluated according to intermediate strategies. Popular heterogeneous dis-

tance functions, such as the Heterogeneous Euclidean-Overlap Metric (HEOM) or the

Heterogeneous Value Difference Metric (HVDM) [356], consider that the distance between

two values should be maximal if either of them is missing, while other definitions are more

flexible. Intuitively, we realise that missing data, their distribution among existing classes,

percentage, and the rules that define their comparison will affect distance computation and

consequently, kNN-based approaches, independently of the end goal (imputation, classifi-

cation, clustering, resampling). In this work, we focus on distance functions that are able

to address complex scenarios comprising heterogeneous data – continuous and categorical

(nominal and binary) features – and missing data, where the absent values themselves are

incorporated in distance computation (details are given on Section 9.3).
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Figure 9.1: Distance functions are embedded in several fields of machine learning, enhancing the performance of similarity-based
algorithms, either in data classification, data analysis, data preprocessing, or data clustering. The scope of this chapter is concerned
with data imputation (kNN imputation in particular), where distance functions are used to evaluate the similarity between patterns
in order to find suitable donor neighbours to produce plausible estimates for missing values. The distance functions considered in this
work incorporate both the computation of heterogeneous data (continuous and categorical data), as well as missing data, and can be
further examined in any other domains that rely on distance metric learning.
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9.1.1 Potential and Engineering Applications

Given the heterogeneity of data associated to most real-world domains and their suscepti-

bility to missing data, data imputation becomes a central issue across several engineering

problems and applications, where kNNI is regarded as the most representative algorithm

among machine learning-based techniques [260, 420, 422].

One of its most common applications is perhaps in the field of medical informatics and

biomedical engineering [191, 202, 260, 385], where erroneous predictions may have serious

implications in people’s lives, and therefore is its crucial to guarantee the quality of data.

In addition, in these contexts it is also fundamental to guarantee data representativeness,

particularly if data suffers from additional complicating factors (e.g., if the data is scarce

or imbalanced [378]). In such scenarios, it is important that expert systems analyse the

similarity between cases (here, patients), so that the estimate values obtained from the

imputation process are not biased towards the most represented concepts. In other words,

it is important that the imputation process is adjusted to each patient’s characteristics,

by analysing the information available from the most similar clinical cases, rather than

considering the entire dataset. It comes therefore as no surprise that kNNI has become

very popular in healthcare domains.

Nevertheless, healthcare problems (e.g., survival prediction, disease diagnosis and progno-

sis) are just one of the many application domains where similarity learning is crucial to

devise optimal solutions. In fact, beyond the scope of data imputation, kNN has become

a core algorithm across a wide range of fields and applications and is ultimately one of the

most promising techniques to move towards smart data [422]. The fundamental basis of

kNN is its ability to handle pattern similarity, which primarily results from an appropriate

definition of distance functions. Accordingly, although this study is concerned with kNNI,

the derived insights may be further extrapolated and explored across other frameworks

and applications, not only in the scope of data imputation, but across a wider panorama

of machine learning fields relying on distance metric learning.

Figure 9.1 presents a plethora of machine learning fields operating with similarity compu-

tation, where the distance functions studied in this work may be investigated. To further

systematise the application potential of this study, Table 9.1 provides the reader with an

explanation of how these distance functions may be incorporated both in the scope of data

imputation, as well as across the remaining areas depicted in Figure 9.1, along with some

of their common engineering applications.

Considering data imputation, distance functions can be applied to measure pattern simi-

larity as an intermediate step to improve kNNI or other imputation approaches, namely

via instance selection [78, 197, 425]. Note that instance selection can also be used out-

side the scope of data imputation (e.g., cleaning approaches [353]), yet still resorting to

distance functions [426].
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Table 9.1: An overview of machine learning areas relying on distance metric learning.
For each of the areas, it is explained how distance functions can be incorporated in the
operations of each of the identified sub-areas, along with some examples of engineering
applications and real-world problems where they can be studied.

Machine

Learning Area
Sub-area Methodology Engineering Applications

Data

Classification

Neural

Networks

Distance functions are embedded in the oper-

ations of algorithms (e.g., radial basis func-

tions networks, self-organising maps).

Fraud detection [460], software

fault prediction [301], financial cri-

sis prediction [261], engineering risk

assessment [187].

Instance-Based

Learning

Some are referred to as nearest-neighbour

techniques, memory-based reasoning meth-

ods, or case-based reasoning methods. These

systems use distance functions to determine

the similarity between a new pattern and

the training data, and use the nearest in-

stance(s) to predict the target class.

Business failure prediction [257],

bankruptcy prediction [91], text

mining [16], geoengineering [364],

cybersecurity [127].

Data

Clustering
–

Clusters are found by identifying similar pat-

terns. A suitable cluster solution comprises

groups where its members have small dis-

tances among each other.

Financial distress [261], churn pre-

diction [297], vehicle routing prob-

lems [234], cybersecurity [127].

Data

Resampling

Resampling approaches – undersampling and

oversampling – use distance functions to

analyse the neighbourhood of training exam-

ples and determine which patterns to clean

or replicate.

Traffic accident’s severity predic-

tion [481], residential energy mod-

elling [284], identification of gang-

related arson cases [454], solar flares

forecasting [363], intrusion detec-

tion [307].

Instance

Selection

Prototype Selection and Instance Selection

methods use an instance-based classifier

(commonly kNN) with a distance function,

to find obtain a representative subset of the

original training data.

Text categorization [43], intrusion

detection systems [480].

Data

Preprocessing

Dimensionality

Reduction

Distance functions are used as input for well-

known dimensionality reduction algorithms,

such as Multidimensional Scaling (MDS) or

t-distributed Stochastic Neighbour Embed-

ding (t-SNE).

Classification and visualisation of

human genetic data [259], Parkin-

son’s disease [188], single-cell tran-

scriptomics [235], scientific visual-

isation, sports visualisation, forest

fires analysis, virus disease analy-

sis [368].

Data

Imputation

Distance functions are used in kNN impu-

tation as well as other imputation algo-

rithms that operate with distances among

patterns (e.g., NN, SOM, cluster-based im-

putation). They can also be used as inter-

mediate steps to improve other imputation

approaches (e.g., via instance selection). Ab-

sent values of a given pattern are estimated

using the available information of its closest

neighbours.

Cancer survival prediction [202,

378], disease diagnosis and prog-

nosis [212], ubiquitous comput-

ing [198], software applications

and expert systems [208], inter-

net–of–things (IoT) systems [430].

Data Analysis and

Meta-Learning

Data

Complexity

Distance functions are in the base of several

well-established complexity measures and in-

stance hardness estimators (e.g., N1, N2, N3,

T1, LSC, CM, R-value, kDN, among others).

Cancer detection [375], Curriculum

Learning [325, 482].

Data

Typology

Depending on their local neighbourhoods,

examples may be categorised into safe, bor-

derline, rare, or outlier examples [319]. Us-

ing distinct distance functions may result in

the different categorisation of examples (e.g.,

safe examples becoming borderline).

Anomaly detection [237], diabetes

prediction [324].

Another straightforward application with respect to data preprocessing is data resampling.

Considering the field of Imbalanced Data, there is a plethora of data resampling algorithms

that rely on distance computation (both undersampling and oversampling algorithms).
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Distance computation is fundamental to determine which patterns to clean/remove from

data, or which patterns are suitable candidates for synthetic data generation, respectively.

As an example, the original formulation of the well-known Synthetic Minority Oversam-

pling Technique (SMOTE) considers the Euclidean distance [433], although HEOM or

HVDM are frequently used with heterogeneous data [57, 319, 320, 378, 461]. Using a

distance function that is suited to the nature of data allows the construction of a training

set that is more representative of the domain, consequently improving the performance of

classifiers trained over it.

Regarding data classification, suitable applications comprise the modification of algorithms

operating with distances among patterns, such as instance-based learning, radial basis

function networks, or self-organising maps [322, 344, 459](which can also be used for data

imputation).

Data clustering is also a standard application domain, where finding an appropriate way

of computing similarity between patterns is key for the success of methods [181, 224].

In the field of Data Analysis and Meta-Learning, distance or similarity computation is also

the backbone of several well-known data complexity measures [80]. Another example is

the characterisation of datasets via their data typology, i.e., the categorization of examples

into several types. Originally, data typology relies on the HVDM distance [319], although

recent research has started investigating the effect of different distance functions on the

typology results [298, 299].

In sum, given the extent to which distance metric learning is used across several fields

of machine learning and the data heterogeneity encountered in most real-world domains

(comprising different types of features, missing values, and other difficulty factors), there

is a plenitude of applications and extensions that can be derived from the solutions studied

in this work, despite its focus on data imputation.

Now that we have established the significance and potential of studying distance functions

across several areas of machine learning, we will focus on data imputation and classification

in particular, and discuss previous work regarding the use of distance functions coupled

with kNN as an imputation algorithm and as a classifier, respectively. This will be the

main content of Section 9.2. Then, Section 9.3 discusses the heterogeneous functions used

throughout this study, while Section 9.4 thoroughly describes the considered experimental

setup. Finally, Section 9.5 is dedicated to the preliminary experiments on kNN imputation

with heterogeneous distance functions, and this chapter is concluded in Section 9.6, that

elaborates on the main findings of this work and the research directions to pursue in the

following chapters.
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9.2 Related Work on k-Nearest Neighbours and Distance

Functions

To provide a panorama regarding the study of distance functions coupled with the kNN

algorithm, we present an overview of two major areas where kNN is deeply investigated.

Accordingly, in this section, we discuss some related work on the use of distance functions

coupled with kNN algorithm for data imputation (Section 9.2.1) and data classification

(Section 9.2.2). Nevertheless, we focus mostly on related work concerning data imputation,

since it is the main focus of this work. For a deeper analysis on kNN classification, the

reader is referred to the work of Alfeilat et al. [36].

9.2.1 Related work on kNN imputation

In the field of kNN imputation (kNNI), there are several different approaches found among

related research.

Some related research considers only continuous or categorical features. Batista and

Monard [45] discuss kNN algorithm as an imputation method, considering a case study

comprising one continuous dataset (the used distance function is not specified, although

we assume it follows the Euclidean default). Farhangfar et al. [132] consider only discrete

data (continuous features are left out of the analysis), and therefore a simple matching dis-

tance (dO, Equation 9.2) is used. Silva and Hruschka [109] study the influence of different

variants of kNNI on classification tasks, considering only continuous features and there-

fore using the Euclidean distance. Similarly, Tutz and Ramzan [427] investigate improved

weighting functions for kNNI, using variations of the Minkowski distance and considering

solely continuous data. Eirola et al. [125] specifically touch upon the issue of estimating

distances with missing values, although considering only continuous data. Additionally,

the framework works under the assumption of multivariate normal distributions. Beretta

and Santaniello [50] study the impact of kNNI on the data structure, and inferential and

predictive statistics. Authors focus on problems comprising only continuous or binary fea-

tures, hence applying kNNI with variations of the Minkowski distance. Abnane et al. [15]

consider a set of variations of the Minkowski distance, dealing only with continuous fea-

tures (categorical features were discarded from the analysis). Jadhav et al. [207] also use

only continuous features, and distance computation is performed using dN (Equation 9.3).

Cheng et al. [89] and Fouad et al. [283] also consider only continuous features, applying

the standard Euclidean distance.

Some works perform feature transformation in order to handle categorical features. Poulos

and Valle [348], Pereira et al. [78], and Jager et al. [208] consider a one-hot encoding of

categorical features before applying the Euclidean distance. Luengo et al. [276] transform

categorical (nominal) features to a list of numeric values, and then perform similarity
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computation using also the Euclidean distance. This approach may however be biased,

since the transformation may distort the true similarity between patterns, as their numeric

values do not represent a real relationship or ordering between existing categories.

Some related research handles the imputation of heterogeneous data directly, either by

resorting to heterogeneous distance functions, or through the combination of distance

functions adapted to each type of feature. The former strategy is most often used for

application domains, where data is heterogeneous and may further incorporate missing

data. In this regard, Jerez et al. [212], Santos et al. [378], and Garćıa-Laencina et al. [202]

couple kNNI with HEOM to handle real-world healthcare domains comprising continuous,

categorical, and missing values. Zhang [477] also highlights the importance of choosing

different distance functions for features of different types: some possibilities of distance

functions are discussed for each type of feature, and one is chosen for each type, without

comparing other alternatives. Also, the distance between patterns is only determined over

observed data, i.e., missing values are not considered in distance computation. Bertsimas

et al. [51] consider a combination of the Euclidean distance with the dO (Equation 9.2)

when handling heterogeneous data. Woznica et al. [464] couple dO (Equation 9.2) with

dN (Equation 9.3) for categorical and continuous features, respectively.

Related research also resorts to Grey Relational Analysis (GRA) [195] as an alternative

to Euclidean distance function for continuous features [196], where some adaptations are

also considered for categorical features, so that the developed approaches can impute

missing values in heterogeneous datasets [342, 478]. However, these approaches are not

compared with other heterogeneous distances, and also do not incorporate any strategies

to consider missing data during distance computation. In a more recent work, Choudhury

and Kosorok [92] further modify GRA to handle missing values in similarity computation

by assigning a minimal similarity value if either of the input values is missing. Nevertheless,

a central issue with GRA is that it requires the definition of a distinguishing coefficient

ρ ∈ [0, 1], for which no convincing method has been suggested so far (it is defined as 0.5

by default) [342].

Finally, some related research seems to disregard the nature of data when studying kNNI on

heterogeneous datasets. These either fail to characterise the used distance function [46, 47],

or refer only to the Euclidean function while no feature transformation techniques are

discussed [197, 275, 425].

To summarise the contributions regarding kNN imputation over the past years, Table D.1

(Appendix D) provides an overview of related research. For each research work, we iden-

tify the objective of the study (“Behaviour”, “Benchmark”, “Application”, or “Variant”),

the details concerning the kNNI approach (k value, considered distance functions, and

whether they internally handle the computation of missing values), the experimental de-

sign (number of datasets – continuous, categorical, and heterogeneous –, missing mecha-

nisms – MCAR, MAR, and MNAR – and missing rates), and the considered downstream

282



How distance functions influence missing data imputation with k-nearest neighbours

task (classification performance or imputation performance/quality). Furthermore, we

highlight some important considerations regarding each related work, namely the intrinsic

characteristics of the kNNI implementations, or limitations of the experimental setup.

Note that, as mentioned in the Introduction, some variants/frameworks for kNNI im-

provement have been proposed over the years (e.g., SkNNI [233], KMI [193], IkNNI [337],

ICkNNI [437], among others). However, these are precursor studies focused on specific

modifications of adaptations to enhance kNNI, without a particular focus on distance func-

tions, therefore applying the Euclidean distance by default. Although some more recent

representative variants of kNNI are selected as related work and presented in Table D.1,

an in-depth discussion of kNN variants and adaptations is beyond the scope of this work

(please refer to Huang et al. [196] for a more comprehensive discussion).

From the assessment of Table D.1, several observations should be highlighted:

• The Euclidean distance is by far the most widely-used distance function across all

related research. However, in “Application” studies, where missing values often

occur naturally in data, and domains are most frequently heterogeneous, the HEOM

distance function is normally the go-to approach;

• Most related research focuses on performing “Benchmark” or “Variant” studies.

These either involve the comparison of a set of data imputation techniques, or the

comparison of a set of kNNI variants or adaptations, in order to determine the top

performing approaches. Nevertheless, they often disregard the nature of data and

the choice of appropriate distance functions: whereas finding an optimal value of k

is commonly a concern, the chosen distance function generally follows the default

applied by software implementations;

• Several works require that the donor neighbours contain observed information in all

features, or discard features with missing values when computing distances. Out of

29 research works (excluding our related research), only 6 (21%) are able to handle

missing values internally during distance computation. With the exception of Eirola

et al. [125], the computation strategy is unanimous: if either of the input values

is missing in a given feature j, the distance between patterns in that feature is 1

(maximal distance);

• The great majority of works evaluates data imputation by determining the improve-

ment only over the classification task (13/29), whereas 7 evaluate only the quality

of imputation, and only 9 works evaluate both tasks (imputation and classification).

MCAR is also the most frequently studied missing mechanism (considered in 18

works), followed by MAR (14) and MNAR (7);

• Some works either consider only continuous or categorical features, or perform fea-

ture transformation. The most frequent transformation is to perform one-hot en-
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coding for categorical features. Other considered transformations are associated to a

higher bias in distance computation: for instance, if nominal values are transformed

to a list of numeric values and handled as continuous [276], or if the distance between

numeric data is defined by simple matching [132];

• Whereas the information regarding the used value of k is available in nearly all

related research, the used distance function or feature transformation is often not

disclosed, even when studies consider heterogeneous datasets;

• The largest benchmark of datasets is collected by Bertsimas et al. [51] (84 datasets:

54 continuous, 12 categorical, and 18 heterogeneous) and Jager et al. [208] (69

datasets: 14 continuous, 5 categorical, and 50 heterogeneous). Nevertheless, datasets

are not analysed individually according to their nature.

In contrast to related studies, our work on this topic (initiated in this chapter and extended

in Chapters 10 and 11) introduces the following differences:

• It consists of the most comprehensive collection and investigation of heterogeneous

distance functions, namely HEOM, HEOM-R HVDM, HVDM-R, HVDM-S, MDE,

and SIMDIST (detailed in Section 9.3);

• All of the distance functions used in this work are able to simultaneously handle

continuous, categorical, and missing data. Accordingly, no feature transformation is

required, all patterns with missing data are available to be donors (it is only required

that they have observed information in the feature to impute), and the uncertainty

of missing data can be accounted for;

• Beyond allowing distance computation with missing data, our studied distance func-

tions further distinguish scenarios where only on input value is missing from situ-

ations where both are missing. The strategies used to handle each scenario may

additionally depend on the type of features (continuous or categorical).

Finally, contrary to previous work, our ultimate goal is to provide practical insights regard-

ing the underlying operations of heterogeneous distance functions, focusing on behaviour,

rather than globally comparing and discussing performance results.

Note, however, that in the preliminary experiments conducted in this chapter, we mainly

focus on determining whether the use of different distance functions has any impact on

kNN imputation, rather than drawing conclusions regarding the behaviour of distance

functions individually. Although we further analyse the results for specific categories of

datasets, our main goal is to primarily validate the hypothesis that distance functions play

a significant role, beyond tuning the value of k.
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In the following chapter (Chapter 10), we will address the behaviour of distance functions

more deeply, aiming to understand the results obtained for heterogeneous datasets, given

the theoretical and empirical analysis of the results obtained for continuous and categori-

cal datasets individually. Lastly, in Chapter 11, we focus on a specific application domain,

investigating kNN imputation for biomedical datasets. We focus solely on the collection

of heterogeneous datasets and perform a comprehensive comparison of heterogeneous dis-

tance functions using an extended set of missing data configurations.

9.2.2 Related work on kNN classification

In the field of data classification, there is a greater interest in the search of optimal distance

functions, with a larger number of papers experimenting with several possible choices. This

is perhaps due to the fact that in classification tasks, kNN is directly used to the endgame

objective, i.e., predicting the final class labels, whereas in data imputation, it is used as

an intermediate process, since the classification task may be addressed (and improved) by

other learning paradigms.

Batista and Silva [48] present a benchmark study in kNN classification considering the

value of k, different heterogeneous distance functions (HEOM, HVDM, and HMOM which

uses the Manhattan distance rather than the Euclidean distance as in HEOM), and dif-

ferent weighting functions. Despite the fact that some datasets comprised missing values,

there were no experiments with increasing amounts of missing data. No significant differ-

ences were found among the three studied distance functions, although the analysis was

performed overall (datasets were not analysed according to their nature), and the distri-

bution of datasets was uneven in what concerns their types of features (16 continuous, 4

categorical and 10 heterogeneous datasets).

Hu et al. [194] discuss whether the distance function may affect kNN performance over

different medical datasets. Authors use the Euclidean, Minkowski, Cosine, and Chi Square

for both continuous, categorical and heterogeneous data, neglecting the nature of features.

Ali et al. [29] investigate the performance of kNN on heterogeneous data, although compris-

ing only continuous and binary features (no nominal features are considered). Different

distance functions are defined and compared, based on the combination of well-known

distance functions for continuous and binary data.

Prasath et al. [349] present a comprehensive review on kNN classification attending to

distinct distance functions and include a through experimental study focused on defining

the best distance functions to be used with kNN classifier. However, experiments consider

only continuous and binary features (no heterogeneous distance functions are discussed)

and no missing values are allowed in the training data.

Other recent kNN classification approaches include [133, 170, 171, 451], although resorting

to variations of the Minkowski distance, most often the Euclidean distance.
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9.3 Heterogeneous Distance Functions for Missing Data

In this work, distance computation relies on the evaluation of seven distinct distance

functions: HEOM, HVDM [356], and their redefinitions (HEOM-R and HVDM-R) [217],

HVDM-S [379], SIMDIST [34], and MDE [13]. Note that HEOM and HVDM are com-

monly used in the context of heterogeneous data, across different domains [57, 202, 212,

319, 378]. In turn, HEOM-R and HVDM-R were included as alternatives to their prede-

cessors due to their considerations regarding the treatment of missing values [217]. We

further propose HVDM-S, an additional redefinition of HVDM, and explore SIMDIST and

MDE, which have not been previously studied in the context of data imputation. More-

over, we extend MDE to handle nominal data. The distance functions described in this

section have been implemented in a MATLAB library publicly available on GitHub1.

Furthermore, distances were chosen based on three main criteria. First, they were required

to handle different natures of data simultaneously (i.e., heterogeneous data) either in their

original formulation or with minimal modifications (which is the case of MDE). Secondly,

the set of chosen distance functions was required to incorporate diverse strategies to eval-

uate different types of features, as well as missing data. Naturally, HEOM-R, HVDM-R,

and HVDM-S, as redefinitions of HEOM and HVDM, use the same respective strategies to

handle continuous and categorical features, though not missing values. Otherwise, chosen

distance functions follow different mechanisms for distance computation and treatment

of missing values. Some further distinguish situations where only one or both values are

missing and/or compute distance estimates differently, depending on the feature type.

Finally, distance functions should be easy to compute. A well-known drawback of kNN-

related approaches is the need to evaluate the similarity among all patterns in data, which

may be computationally expensive and time-consuming for larger datasets [46]. Although

some strategies have been explored to surpass such limitations [113, 300], this issue falls

outside of the scope of this work.

We briefly provide some essential notation on distance computation, whereas the math-

ematical formulation of each considered distance function is discussed along this section.

Given a dataset X, represented by a n×p matrix (where n is the number of patterns and p

is the number of features), distance functions measure the distance between two patterns

xA and xB through a sum of their individual distances in each j-th feature (j = 1, . . . , p),

dj(xAj , xBj), as D(xA,xB) =
√∑p

j=1 dj(xAj , xBj)
2. However, they differ on the compu-

tation of individual dj distances and the treatment of missing values, as explained in what

follows.

1https://github.com/miriamspsantos/heterogeneous-distance-functions

286

https://github.com/miriamspsantos/heterogeneous-distance-functions


How distance functions influence missing data imputation with k-nearest neighbours

9.3.1 Heterogeneous Euclidean-Overlap Metric

The definition of dj(xAj , xBj) for Heterogeneous Euclidean-Overlap Metric (HEOM) dis-

tance [356] depends on the type of feature j (Equation 9.1). For categorical/nominal

features, dj is defined as an overlap metric, dO (Equation 9.2); while for continuous fea-

tures, the normalised euclidean distance, dN (Equation 9.3), is used instead (xj represents

all values of the j-th feature). However, dO and dN are only computed if both input values,

xAj and xBj are available; otherwise, if either of them is missing, dj(xAj , xBj) is defined

as 1. As shown in Equation 9.1, the individual dj distances vary between 0 and 1, and

therefore a missing value in the j-th feature is traduced as a maximal dj distance between

xA and xB.

dj(xAj , xBj) =


1, if j is missing in xAj or xBj

dO(xAj , xBj), if j is a categorical feature

dN (xAj , xBj), if j is a continuous feature

(9.1)

dO(xAj , xBj) =

0, if xAj = xBj

1, otherwise
(9.2)

dN (xAj , xBj) =
|xAj − xBj |

max(xj)−min(xj)
(9.3)

9.3.2 Heterogeneous Value Difference Metric

The Heterogeneous Value Difference Metric (HVDM) [356], defines the distance between

xA and xB as described by Equation 9.4. Again, if both values xAj and xBj are observed,

the type of feature j determines the computation of individual dj distances: dvdm is used

for categorical/nominal features (Equation 9.5) while ddiff is used for continuous features

(Equation 9.6).

dj(xAj , xBj) =


1, if j is missing in xAj or xBj

dvdm(xAj , xBj), if j is a categorical feature

ddiff (xAj , xBj), if j is a continuous feature

(9.4)

The computation of dvdm, as shown in Equation 9.5, requires information on the class

targets of each pattern xi (i = 1, . . . , n), herein referred to as ci. Thus, dvdm is computed

as a sum over all classes, where C is the number of classes in the problem domain – as we

are focusing on binary problems, C = 2, and therefore ci ∈ {1, 2}. NxAj ,c is the number

of patterns in X that have value xAj in feature j and class target c, while NxAj is the
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number of patterns in X that have value xAj in feature j (the same for xBj).

dvdm(xAj , xBj) =

√√√√ C∑
c=1

∣∣∣∣NxAj ,c

NxAj

− NxBj ,c

NxBj

∣∣∣∣2 (9.5)

Similarly to HEOM, the continuous features are scaled by ddiff , considering 4 standard

deviations (σ) of xj .

ddiff (xAj , xBj) =
|xAj − xBj |

4σxj
(9.6)

9.3.3 Redefinitions of HEOM and HVDM

Redefinitions of HEOM and HVDM [217] propose that missing values are considered “spe-

cial values”, and that the distance between two missing values is assumed to be 0 (missing

values are considered equal values). Accordingly, HEOM-R and HVDM-R are different

from their original formulations in what concerns the treatment of missing values (Equa-

tion 9.7):

dj(xAj , xBj) =

1, if j is missing only in xAj or xBj

0, if j is missing in both xAj and xBj
(9.7)

In addition, we propose another possible redefinition for HVDM: if missing values are

considered an “special” nominal category, dvdm may be applied in the case that only xAj

or xBj are missing, and j is categorical/nominal, referred to as HVDM-S (equation 9.8).

dj(xAj , xBj) =


0, if xAj and xBj are both missing

1, if xAj or xBj are missing and j is continuous

dvdm(xAj , xBj), if xAj or xBj are missing and j is categorical

(9.8)

9.3.4 Similarity for Heterogeneous Data

The similarity measure discussed herein was proposed by Belanche and Hernandéz [34],

where a heterogeneous similarity function (Equation 9.9) is incorporated into a neural

network so that prior knowledge may be included when developing the neuron model.

It considers individual measures for nominal and numeric features, both defined in the

codomain [0, 1], as we proceed to explain. Consider a similarity measure S, where SABj =
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Sj(xAj , xBj) represents the similarity between patterns xA and xB according to feature j:

SABj =


1
2 , if either xAj or xBj are missing

z
(
sABj
sj

)
, if both xAj and xBj are known

(9.9)

sABj is an intermediate similarity distance between xAj and xBj and is determined accord-

ing to the type of j (either a categorical/nominal or continuous feature). In Equation 9.9,

sj represents the mean similarity among all patterns according to j and z is a normalisation

function z : (0,+∞)→ (0, 1), described as z(a) = a
a+1 [34].

For categorical/nominal features, sABj is defined by Equation 9.10, where Plj is the frac-

tion of patterns that takes value xlj for feature j. In practice, Plk is the fraction of

examples that assume value xAj or xBj for j, since for this computation they are equal,

as shown in Equation 9.10.

sABj =

0, if xAj 6= xBj

1− Plj , if xAj = xBj
(9.10)

For continuous features, sABj is determined by Equation 9.11, where max(xj) and min(xj)

are the maximum and minimum values observed in j, respectively.

sABj = 1− | xAj − xBj |
max(xj)−min(xj)

(9.11)

In Equation 9.9, SABj is assumed to be 1
2 when xAj or xBj are missing, which is the

equivalent of replacing the missing similarity between xAj or xBj by the mean similarities

of all patterns according to j. Replacing the missing similarity sABj by the mean of all

similarities in j, sj , we would obtain z(
sj
sj

) = 1
2 . Naturally, this similarity function S

reveals how “alike” two values are whereas we are interested in obtaining a value of “how

far apart” the values are. Therefore, it needs to be adjusted to reflect a distance between

patterns, rather than a similarity. As SABj is defined in the domain [0,1], the distance

between xA and xB in j is given by dj(xAj , xBj) = 1 − SABj . Thus, the calculation of

this distance, which will be referred to as SIMDIST, starts by determining the individual

similarities SABj , which are then transformed to individual dj distances. Then, since

the distance matrix among all examples is available for all features, the computation of

D(xA,xB) is the same as for the previous distances.
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9.3.5 Mean Euclidean Distance

Mean Euclidean Distance (MDE) [12, 13] defines three possibilities for comparing two

values of a given feature j:

1. Both values are known: When xAj and xBj are observed, their distance is defined

as the standard euclidean distance:

MDE(xAj , xBj) = (xAj − xBj)2 (9.12)

2. One value is missing: When either xAj or xBj are missing, MDE is approximated

as the mean distance of each value of xj to the observed value. Considering that

xAj is missing and xBj is observed, MDE is defined by Equation 9.13. To ease the

interpretation of Equation 9.13, we consider an auxiliary variable x = xj . Thus, µx

and σx are equivalent to µxj and σxj , and refer to the mean and standard deviation

of all the observed values of xj .

MDE(xAj , xBj) = E
(

(x− xBj)2
)

=

∫
p(x)(x− xBj)2dx

= (xBj − µx)2 + σ2
x

(9.13)

3. Both values are missing: When both xAj and xBj are missing, MDE is approximated

as the mean distance between all observed values of xj (Equation 9.14). Similarly,

we consider the auxiliary variables x, y = xj .

MDE(xAj , xBj) =

∫ ∫
p(x)p(y)(x− y)2dxdy

=
(
E(x)− E(y)

)2
+ σ2

x + σ2
y

= 2σ2
x

(9.14)

To allow a proper weighting of continuous features with different ranges, a min-max nor-

malisation (Equation 9.15) is applied before the euclidean distance is computed. This

normalisation scales all continuous features to the same range, avoiding that features with

a larger range assume a higher weight in the distance computation.

zi =
xi −min(x)

max(x)−min(x)
(9.15)
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The original formulation of MDE is only established for continuous features. For hetero-

geneous datasets, these equations need to be extended for the categorical/nominal case.

To extend MDE for categorical/nominal features, we shall consider the standard overlap

distance, dO (Equation 9.2) and define a categorical version of MDE , which we will refer

to as MDO.

1. Both values are known: In this case, MDO is the same as dO.

MDO(xAj , xBj) =

0, if xAj = xBj

1, otherwise
(9.16)

2. One value is missing: Supposing xAj is missing and xBj is observed, MDO is com-

puted as the mean distance between all observed elements in xj and xBj . Again, we

make use of x = xj . Given the definition of dO, the sum will only be non-zero when

x 6= xBj , hence the simplification.

MDO(xAj , xBj) =
∑
x

p(x) dO(x, xBj)

=
∑
x 6=xBj

p(x)

= 1− p(xBj)

(9.17)

3. Both values are missing: When both xAj and xBj are missing, MDO is determined

as the mean distance between all elements in xj . Similarly, we consider auxiliary

variables x, y = xj .

MDO(xAj , xBj) =
∑
x

∑
y

p(x)p(y) dO(x, y)

=
∑
x

∑
y 6=x

p(x)p(y)

= 1−
∑
x

p2(x)

(9.18)

Finally, after the individual distances are computed, their aggregation is performed as

for the remaining distances, D(xA,xB), assuming dj(xAj , xBj) as MDE(xAj , xBj) or

MDO(xAj , xBj), depending on the feature type (continuous or categorical/nominal).

Figure 9.2 presents the relationships between the distance functions considered in this

chapter. According to the status of xAj and xBj values (either only one of them is missing,

both are known, or both are missing), and the type of feature j (either continuous or

categorical), the schema depicts the dj computation for each case. Each path, highlighted
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in different colours, presents the association between the presence/absence of values and

feature type and aggregates the distances that perform the same computation of dj .

xAj or xBj are missing xAj and xBj are known xAj and xBj are missing

j is continuous j is nominal

dj = 1/2 SIMDIST 

dj = 1
HEOM HVDM 

HEOM-R HVDM-R 

dj = dN
HEOM HEOM-R 

SIMDIST 

dj = ddiff

HVDM HVDM-R 

HVDM-S 

dj = Eq. 9.12 MDE 

HEOM HEOM-R 
dj = dO

MDE 

HVDM HVDM-R 

HVDM-S 

dj = dvdm

dj = Eq. 9.9 and 9.10

SIMDIST 

dj = Eq.  9.17 MDE dj = 1 HVDM-S 

dj = Eq. 9.13 MDE 

dj = Eq. 9.14 MDE 

dj = dvdm
with extra
category

HVDM-S 

dj = 1
HEOM HVDM 

dj = 1/2 SIMDIST 

dj(xAj, xBj)

dj = 0
HEOM-R HVDM-R 

HVDM-S

dj = Eq. 9.18 MDE 

Figure 9.2: Relationships between the distance functions considered in this chapter.

9.4 Experimental Setup

In this section, we provide an overview of the experimental setup used throughout this

work. Note that the experimental design described herein will be mainly used in the

preliminary experiments performed in this chapter and in the extended experiments con-

ducted in Chapter 10. In Chapter 11, several modifications are introduced, and they will

be thoroughly described later. Note also that, whenever certain aspects of the experimen-

tal setup deviate from what is detailed in this section, they will be clearly identified and
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explained. Overall, considerations regarding the experimental setup are as follows:

• Data Collection: The data collection was performed considering open-source repos-

itories such as UCI, Kaggle, OpenML, and KEEL [24, 115, 223, 330]. All datasets

are originally complete (i.e., without missing data), so that both the missing mech-

anism and percentage are controlled parameters of our experiments. Furthermore,

all datasets represent binary-classification problems, to simplify the classification

stage of the experimental setup (since, as previously detailed, kNN imputation may

present an added complexity in terms of memory and computational time). Thus,

rather than the number of classes, we focus on the heterogeneity among datasets

with respect to their sample sizes, number of features, types of features, application

domains, and imbalance ratios;

• Data Partitioning: Each dataset is partitioned following a stratified holdout

method (80% of data for training and 20% for testing) [81, 132], where each set

respects the proportion of class labels (same IR for training and test sets). Addi-

tionally, 30 runs of holdout partition are performed for each dataset;

• Missing Data Generation: Missing values were generated at 4 different rates (5,

10, 20, and 30%) under a Missing Completely At Random (MCAR) mechanism.

MCAR is the most frequently studied missing mechanism among imputation works,

especially when coupled with kNN imputation [47, 132, 197, 260, 425, 427]. Addition-

ally, we chose MCAR for consistency and control across different types of datasets,

namely to avoid the limitations found for multivariate MAR and MNAR missing

data generation regarding categorical data, as thoroughly described in Chapter 7.

Focusing solely on MCAR mechanism also avoids the need of to conduct additional

experiments in order to choose suitable determining features for MAR and MNAR,

and the need to perform distinct runs depending on the chosen set of features. Since

the evaluation of distance functions under several missing rates and stochastic runs

is inherently computationally expensive, and the focus of this work relies on the eval-

uation of their behaviour rather than finding the best possible solution under defined

conditions (e.g., missing mechanisms and rates), focusing on MCAR simplifies the

experimental design without compromising the study’s objectives. Nevertheless, ex-

amining MAR and MNAR assumptions are possible directions for future research.

We additionally guarantee that the same missing rate was inserted in both classes

according to the IR of the dataset, i.e., we guarantee that missing data is affecting

both classes proportionally to their distribution. Finally, missing data is inserted

only on training sets since the objective of this work is to analyse the effect of differ-

ent distance functions on kNN as an imputation method, and the consequent impact

on the classification model’s learning ability [47];

• Data Imputation: kNN imputation considers 7 distance functions (described in

Section 9.3). In the preliminary experiments performed in this chapter, only one
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value of k is used (k = 1), whereas Chapter 10 considers 4 values of k (1, 3, 5,

and 7 nearest neighbours) and Chapter 11 focuses on k = {1, 3}. For k = 1, kNN

directly uses the values of the most similar neighbour to impute missing values. For

higher values of k, kNN uses a weighted average of the neighbours’ feature values to

impute continuous features, whereas categorical features are imputed with the most

common value among the nearest neighbours, i.e., the mode (Mo). Considering an

example pattern xZ for which a value is missing on its feature j and a set of its k

nearest neighbours V, the estimated value of xZj , i.e., ŷZj is determined as:

ŷZj =


∑k
i=1 wV ixV ij∑k
i=1 wV i

, if j is continuous,

Mo(Vj), if j is categorical
(9.19)

The weights for continuous features are inversely proportional to the distance be-

tween pattern xZ and its i-th nearest neighbour, i.e., wV i = 1
D(xZ ,xV i)2 ;

• Classification: Classification and Regression Trees (CART) models were chosen

since they are relatively fast to construct and to provide classification results. Fur-

thermore, these models are able to handle missing data directly through the use

of surrogate splits (without discarding any patterns or observed values from the

dataset), thus allowing to study the impact of imputation on classification perfor-

mance by comparing models constructed from missing data with models constructed

from imputed data [81, 428];

• Evaluation: The impact of distance functions on data imputation is discussed in

terms of classification performance across this chapter, and Chapters 10 and 11. In

turn, imputation quality is only addressed in Chapter 10. Regarding classification

performance, Sensitivity, F-measure, and G-mean are presented due to robustness to

the existing class imbalance of the collected datasets [387]. For assessing imputation

quality, Normalised Mean Absolute Error (NMAE) and the percentage of matches,

Matches (%) were computed [78] (to be discussed in Chapter 10).

An overview of the considered experimental setup is presented in Figure 9.3. Across

this chapter and Chapter 10, for each dataset, a holdout partitioning was performed,

and missing data was generated in each training set2. Then, to determine the impact

of imputation on classification performance, both the training sets with missing values

(BASELINE approach) and the imputed training sets (kNN imputation) were used to train

Classification and Regression Trees (CART) models, and the classification performance

was evaluated using Sensitivity, F-measure, and G-mean [387]. Additionally, in Chapter 10

the quality of imputation was also evaluated, by examining the differences between the

original training sets (ground truth) and the imputed training sets.

2Chapter 11 considers k-fold cross-validation instead, and missing data, although MCAR, is generated
following several distinct configurations. These will be explained in the respective chapter.
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Figure 9.3: An overview of the experimental setup (Chapters 9 and 10). Each complete
dataset is first divided into a training and test partitions, and the training set is subjected
to loss in some features (missing values are synthetically introduced). Then, using kNNI
with distinct distance functions, the training set containing missing values is imputed and
becomes complete. The evaluation of classification performance is performed by comparing
the predictions of a decision tree model built with an incomplete training set with one built
using the imputed training set, over the same test data. In turn, the quality of imputation
in evaluated by analysing the difference between the true values in data (original training
set) with those generated by the kNNI approach (imputed training set).

9.5 Preliminary Experiments

As discussed in Section 9.2.1, in this first batch of experiments we focus on a preliminary

study of the effect of several heterogeneous distance functions on kNN imputation. In

particular, we aim to address the following research questions:

• Do distance functions significantly affect kNN imputation?

• Is there a distance more beneficial for some datasets?
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Accordingly, we started by collecting 61 complete and binary-classification datasets from

open-source repositories, considering different sample sizes, number of features, type of

features – continuous and categorical (nominal) – and imbalance ratios (detailed infor-

mation is given in Table D.2, Appendix D). Then, according to the experimental setup

depicted in Section 9.4, missing data was generated at 4 different rates (5, 10, 20, and

30%) under a MCAR mechanism [384], and 30 runs were considered for each dataset and

missing rate (MR). The datasets with missing values are then i) directly classified with

CART models (BASELINE approach), or ii) first imputed with kNN (k = 1) and then

classified with CART.

In what follows, we start our analysis by addressing the research question “Do distance

functions significantly affect kNN imputation?” and comparing the performance results

obtained for data imputation with different distance functions, as well as for the original

datasets with missing values (BASELINE). Then, we tailor our analysis to the character-

istics of each dataset, by considering three main groups of datasets, defined on the basis

of their types of features: Continuous, Nominal, and Other Datasets.

9.5.1 Do distance functions significantly affect kNN imputation?

Table 9.2 reports on the Sensitivity, F1, and G-mean of CART classifier for 8 different

methods: BASELINE (with missing values) and imputed with HEOM, HEOM-R, HVDM,

HVDM-R, HVDM-S, MDE, and SIMDIST, for MRs of 5, 10, 20, and 30%. F1 and G-

mean are presented on the left-side of the table, whereas Sensitivity is used to perform the

ranking of methods (on the right). Both Strategy 1 and 2 report on the Sensitivity results,

yet they differ on the computation of ranks. For Strategy 1, methods are ranked based on

their average Sensitivity: the results for all datasets are averaged by method, and then the

ranking is computed. For Strategy 2, methods are first ranked for each dataset separately

and the average rank is determined for each method.

Starting with the average Sensitivity, F1, and G-mean, the first observation is that all

imputation techniques are preferable to the classification with missing values, i.e., the

datasets imputed with kNN (for any distance function) outperform the BASELINE results.

Also, as the missing rate increases, so does the difference between the BASELINE and

the imputation methods: Sensitivity, F1, and G-mean present average differences of 0.017,

0.005, and 0.008 for a MR of 5%, and 0.119, 0.053, and 0.066 for 30%, respectively. Also,

the differences between distance functions is more noticeable with increasing missing rates:

for a MR of 5%, the classification performance results are similar between methods, with

a difference from the best to worst method of 0.004, 0.003 and 0.002 (for Sensitivity, F1,

and G-mean, respectively). For a MR of 30%, those differences increase to 0.036, 0.037,

and 0.029.
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Table 9.2: CART performance results without imputation (BASELINE) and with kNN
imputation using several distances.

MR Distance F1 G-mean Rank Strategy 1 Strategy 2

BASELINE 0.653 ± 0.240 0.724 ± 0.220 1ST SIMDIST (0.6603 ± 0.2367) SIMDIST (3.61 ± 1.96)
HEOM 0.659 ± 0.237 0.731 ± 0.217 2ND HVDM (0.6589 ± 0.2379) HVDM (3.81 ± 1.95))
HEOM-R 0.658 ± 0.235 0.732 ± 0.215 3RD HVDM-S (0.6584 ± 0.2341) HVDM-S (4.24 ± 1.94)
HVDM 0.658 ± 0.238 0.731 ± 0.219 4TH HEOM (0.6584 ± 0.2370) HEOM (4.32 ± 2.25)
HVDM-R 0.657 ± 0.237 0.730 ± 0.218 5TH HEOM-R (0.6576 ± 0.2341) HEOM-R (4.54 ± 2.09)
HVDM-S 0.660 ± 0.235 0.732 ± 0.214 6TH MDE (0.6570 ± 0.2320) HVDM-R (4.60 ± 2.01)
MDE 0.659 ± 0.233 0.731 ± 0.213 7TH HVDM-R (0.6565 ± 0.2365) MDE (4.67 ± 2.42)

5%

SIMDIST 0.660 ± 0.237 0.732 ± 0.218 8TH BASELINE (0.6413 ± 0.2385) BASELINE (6.20 ± 2.65)

BASELINE 0.627 ± 0.236 0.699 ± 0.217 1ST SIMDIST (0.6430 ± 0.2357) SIMDIST (3.53 ± 2.15)
HEOM 0.641 ± 0.235 0.716 ± 0.216 2ND HVDM (0.6403 ± 0.2341) HVDM (3.75 ± 1.99)
HEOM-R 0.638 ± 0.228 0.715 ± 0.209 3RD HEOM (0.6385 ± 0.2338) HEOM (3.94 ± 2.02)
HVDM 0.643 ± 0.235 0.718 ± 0.215 4TH MDE (0.6378 ± 0.2301) MDE (4.40 ± 2.49)
HVDM-R 0.636 ± 0.233 0.713 ± 0.215 5TH HVDM-S (0.6366 ± 0.2307) HVDM-S (4.58 ± 1.72)
HVDM-S 0.638 ± 0.231 0.715 ± 0.210 6TH HEOM-R (0.6363 ± 0.2276) HEOM-R (4.63 ± 2.38)
MDE 0.640 ± 0.233 0.716 ± 0.214 7TH HVDM-R (0.6335 ± 0.2320) HVDM-R (4.81 ± 1.69)

10%

SIMDIST 0.645 ± 0.236 0.720 ± 0.217 8TH BASELINE (0.6027 ± 0.2329) BASELINE (6.34 ± 2.53)

BASELINE 0.563 ± 0.218 0.638 ± 0.204 1ST SIMDIST (0.6082 ± 0.2314) MDE (3.16 ± 1.83)
HEOM 0.607 ± 0.228 0.689 ± 0.211 2ND HEOM (0.6048 ± 0.2279) SIMDIST (3.28 ± 2.18)
HEOM-R 0.587 ± 0.224 0.673 ± 0.206 3RD MDE (0.6047 ± 0.2238) HEOM (3.37 ± 1.91)
HVDM 0.607 ± 0.230 0.688 ± 0.211 4TH HVDM (0.6047 ± 0.2284) HVDM (3.42 ± 1.86)
HVDM-R 0.591 ± 0.220 0.677 ± 0.202 5TH HVDM-S (0.5933 ± 0.2239) HVDM-S (4.63 ± 1.67)
HVDM-S 0.597 ± 0.224 0.681 ± 0.204 6TH HVDM-R (0.5880 ± 0.2189) HVDM-R (5.19 ± 1.53)
MDE 0.608 ± 0.225 0.690 ± 0.207 7TH HEOM-R (0.5837 ± 0.2222) HEOM-R (5.76 ± 1.71)

20%

SIMDIST 0.612 ± 0.232 0.693 ± 0.213 8TH BASELINE (0.5101 ± 0.2034) BASELINE (7.20 ± 1.92)

BASELINE 0.503 ± 0.204 0.580 ± 0.197 1ST MDE (0.5694 ± 0.2201) MDE (2.97 ± 1.97)
HEOM 0.559 ± 0.224 0.650 ± 0.207 2ND SIMDIST (0.5682 ± 0.2286) SIMDIST (3.02 ± 1.99)
HEOM-R 0.537 ± 0.213 0.631 ± 0.197 3RD HVDM (0.5571 ± 0.2252) HVDM (3.49 ± 1.93)
HVDM 0.561 ± 0.226 0.649 ± 0.210 4TH HEOM (0.5563 ± 0.2228) HEOM (3.79 ± 1.81)
HVDM-R 0.541 ± 0.214 0.634 ± 0.198 5TH HVDM-S (0.5456 ± 0.2188) HVDM-S (4.64 ± 1.76)
HVDM-S 0.547 ± 0.217 0.640 ± 0.198 6TH HVDM-R (0.5375 ± 0.2142) HVDM-R (5.18 ± 1.61)
MDE 0.574 ± 0.221 0.660 ± 0.207 7TH HEOM-R (0.5334 ± 0.2122) HEOM-R (5.63 ± 1.64)

30%

SIMDIST 0.573 ± 0.229 0.659 ± 0.211 8TH BASELINE (0.4331 ± 0.1805) BASELINE (7.28 ± 1.82)

Overall, SIMDIST, MDE, HEOM, and HVDM appear to be the best performing distances,

although SIMDIST and MDE assume more prominent positions for higher missing rates

(20% and 30%). In turn, HEOM-R and HVDM-R appear frequently at the bottom po-

sitions. As previously discussed, the collected datasets are imbalanced and therefore we

focus on Sensitivity results in the following analyses (i.e., considering the classification

performance on the positive/minority cases)[387]. Furthermore, we rely on Strategy 2 to

analyse the Sensitivity results more thoroughly for each dataset.

The ranks presented in Strategy 2 are consistent with our previous analysis, and better

illustrate the differences between the methods. To determine whether there were significant

differences between the methods, we compared them using the Friedman rank test. Under

the null hypothesis, the different distances would assume equal ranks, i.e., the methods

would be equivalent. We computed the FF statistic [112] for all missing rates (FF =

{6.86, 8.73, 33.70, 35.22} for 5, 10, 20 and 30%), and compared it with the established

critical values for the F-distribution at a 5% significance level (F (7, 420)0.05 = 2.03). For

all missing rates, the null hypothesis was rejected and therefore we proceeded to post-

hoc testing at a 5% significance level, computing the critical differences for Nemenyi test

(CDn = 1.34), so that all methods are compared with each other. For all missing rates,

the difference between the rank of the BASELINE and the ranks of remaining methods is
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higher than CDn, which reveals that all imputation methods are significantly better than

training classification models with incomplete data. Regarding the remaining methods,

we further analyse the results by missing rate.

For a MR of 5% and 10%, the post-hoc did not detect any significant differences between

the methods, i.e., differences between the best and worst performing methods were lower

than the CDn (1.06 and 1.28 for 5% and 10%, respectively). In turn, for MRs of 20%

and 30%, some methods proved to be significantly better than others. For 20% and 30%

missing rates, the difference between distance ranks is reported in Table 9.3. The values

illustrate the difference between the ranks of each method in the rows and the methods in

the columns. Differences for a MR of 20% are presented in the upper part of table, whereas

differences for a MR of 30% are shown in the lower part of the table (shaded in grey).

Significant differences (higher than CDn) are marked in bold, except for the BASELINE,

since all methods proved to be significantly better. For both of these missing rates, all

distances were significantly better than HEOM-R and HVDM-R (except for HVDM-S,

that although achieving better results than both redefinitions, did not reach the CDn

value). Additionally, MDE and SIMDIST were significantly better than HVDM-S.

Considering the obtained results, it is interesting to observe that HEOM and HVDM are

significantly better than their redefinitions, as previously discussed from Table 9.2. In

turn, the experimental data was not sufficient to detect significant differences between

HEOM/HVDM and HVDM-S and although MDE and SIMDIST appear in the leading

positions for MRs of 20% and 30%, the post-hoc was not enough to conclude on their

superiority over HEOM or HVDM.

Table 9.3: Differences between ranks for each comparison of distance functions for 20%
and 30% (the latter shaded in grey). Significant differences are marked in bold.

BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 3.83 1.43 3.78 2.01 2.57 4.04 3.92
HEOM -3.49 – -2.39 -0.05 -1.82 -1.26 0.21 0.09
HEOM-R -1.65 1.84 – 2.34 0.57 1.13 2.61 2.48
HVDM -3.79 -0.30 -2.14 – -1.77 -1.21 0.26 0.14
HVDM-R -2.10 1.39 -0.45 1.69 – 0.56 2.03 1.91
HVDM-S -2.64 0.85 -0.99 1.15 -0.54 – 1.48 1.35
MDE -4.31 -0.82 -2.66 -0.52 -2.21 -1.67 – -0.12
SIMDIST -4.25 -0.76 -2.61 -0.47 -2.16 -1.61 0.06 –

HEOM-R: HEOM-R; HVDM-R: HVDM-R; HVDM-S: HVDM-S

9.5.2 Is there a distance more beneficial for some datasets?

To tailor our analysis to the characteristics of each dataset, we divided the collected

datasets into three groups on the basis of their types of features. Then, the ranks of

each distance function are evaluated separately for each group, considering the highest

percentage of missing data (30%), where differences between ranks were more noticeable.

298



How distance functions influence missing data imputation with k-nearest neighbours

Table 9.4 reports on these results, where the three main groups are identified. Continu-

ous Datasets consist entirely of datasets comprising continuous features, while Nominal

Datasets consist of datasets comprising predominantly nominal features. Among the col-

lected datasets, only one had entirely nominal features (lung-cancer-v1 ), although several

others were mainly composed of nominal features (comprising only 1, 2, or 3 continu-

ous features). For this reason, we have decided to include them in this group. The

remaining datasets were grouped in Other Datasets. This group contains heterogeneous

datasets (with both continuous and nominal features), and comprises datasets that include

a somewhat representative amount of each type of feature (e.g., arrhythmia, heart-statlog,

kidney), although the majority is predominantly continuous (we have left them out of Con-

tinuous Datasets since there was already a representative amount of exclusively continuous

datasets).

Similarly to the previous analysis, the FF statistic was computed for all groups (FF =

{30.97, 9.01, 6.08} for Group 1, 2, and 3, respectively), and compared to the F-distribution

at a 5% significance level, F (7, 252)0.05 = 2.05, F (7, 63)0.05 = 2.17, F (7, 91)0.05 = 2.11.

For all groups, the null hypothesis was rejected and Nemenyi test was performed. In what

follows, we provide an analysis by group, elaborating on the findings of the post-hoc and

explaining some trends and hypotheses that were consistent with the experimental data.

Group 1: Continuous Datasets

Regarding continuous datasets, the results are in agreement with the overall results pre-

sented in Table 9.2, with MDE and SIMDIST assuming the leading positions (2.78 and

2.81), and HEOM and HVDM falling just behind (3.30 and 3.31). All distances were sig-

nificantly better than the BASELINE, except for HEOM-R, although close to the critical

value, with a difference of 1.61 (CDn = 1.73). Additionally, HEOM-R and HVDM-

R/HVDM-S proved to be significantly worse that the remaining distances.

Since these datasets comprise only continuous features, these distances can only differ on

the way that continuous features are normalised, and how missing values are treated. As

discussed in Section 9.3, HEOM, SIMDIST, and MDE perform min-max normalisation.

HVDM scales features by 4σxj , and SIMDIST further uses a z normalisation function.

Nevertheless, the normalisation process is similar among functions and therefore does not

seem to be the reason behind the differences in performance. However, whereas HEOM and

HVDM assume a distance of 1 if xAj and/or xBj are missing, SIMDIST and MDE apply

more sensitive approaches: SIMDIST replaces the missing values by the mean similarity

between all patterns according to j, and MDE is more refined, further distinguishing

situations where one value or both values are missing. Since two groups of similar ranks

are identified among these top methods, {HEOM, HVDM} and {SIMDIST, MDE}, we

hypothesise that the approach to handle missing values may be on the origin of differences

found among these methods.
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Table 9.4: Distance ranks for a 30% missing rate, divided by group.

Group 1: Continuous Datasets C/N B HEOM HEOM-R HVDM HVDM-R *HVDM-S MDE SIMDIST

bc-coimbra (9/0) 8 3 1 6 4.5 4.5 2 7
biomed (5/0) 8 3 7 1 5.5 5.5 4 2
breast-tissue-2c (9/0) 8 2 7 3 5.5 5.5 4 1
cleveland 0 vs 4 (13/0) 7 3 4 8 5.5 5.5 2 1
ctg-2c (21/0) 8 4 7 3 5.5 5.5 2 1
dermatology 6 (34/0) 8 4 7 3 5.5 5.5 2 1
ecoli (7/0) 8 4 7 2 5.5 5.5 1 3
ecoli1 (7/0) 8 2 5 3 6.5 6.5 1 4
ecoli2 (7/0) 8 4 7 1 5.5 5.5 2 3
ecoli4 (7/0) 2.5 7 2.5 8 5.5 5.5 1 4
ecoli 0 1 4 6 vs 5 (6/0) 8 3 7 2 5.5 5.5 4 1
ecoli 0 1 4 7 vs 2 3 5 6 (7/0) 8 1 5 3 6.5 6.5 2 4
ecoli 0 1 4 7 vs 5 6 (6/0) 8 2 5 3 6.5 6.5 1 4.5
ecoli 0 1 vs 2 3 5 (7/0) 8 4 5 3 6.5 6.5 2 1
ecoli 0 1 vs 5 (6/0) 8 3 5 2 6.5 6.5 4 1
ecoli 0 2 3 4 vs 5 (7/0) 8 2 7 3 5.5 5.5 4 1
ecoli 0 2 6 7 vs 3 5 (7/0) 6 8 7 2 4.5 4.5 1 3
ecoli 0 3 4 6 vs 5 (7/0) 8 2 5 4 6.5 6.5 3 1
ecoli 0 3 4 7 vs 5 6 (7/0) 8 3 7 2 4.5 4.5 1 6
ecoli 0 3 4 vs 5 (7/0) 8 2 5 3 6.5 6.5 4 1
ecoli 0 4 6 vs 5 (6/0) 8 3 7 2 5.5 5.5 4 1
ecoli 0 6 7 vs 3 5 (7/0) 2.5 8 4 2.5 6.5 6.5 1 5
ecoli 0 6 7 vs 5 (6/0) 2 4 5 8 6.5 6.5 1 3
ecoli 0 vs 1 (7/0) 8 1 7 2 5.5 5.5 4 3
haberman (3/0) 8 4 7 1 5.5 5.5 3 2
new-thyroid-N-vs-HH (5/0) 8 1 6 3 4.5 4.5 7 2
newthyroid-v1 (5/0) 8 1 7 3 5.5 5.5 4 2
newthyroid-v3 (5/0) 8 3 6 1 3 3 7 5
parkinson (22/0) 8 4 7 3 5.5 5.5 2 1
pima (8/0) 8 3 5 2 6.5 6.5 1 4
relax (12/0) 8 6 1 7 3.5 3.5 5 2
spectf (44/0) 8 2 6 7 4 4 1 4
thyroid 3 vs 2 (21/0) 1 3 6 4 6 6 2 8
transfusion (4/0) 8 7 4 6 2.5 2.5 1 5
vertebral-2c (6/0) 8 1 7 2 4.5 4.5 6 3
wisconsin (9/0) 8 1 5 2 6.5 6.5 4 3
wpbc (32/0) 8 4 7 2 5.5 5.5 3 1

Rank: 7.27 3.30 5.66 3.31 5.43 5.43 2.78 2.81

Group 2: Categorical Datasets C/N B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

acute-inflammations-nephritis (1/5) 8 5 6 1.5 7 4 3 1.5
acute-inflammations-urinary (1/5) 8 3 4 2 7 5 6 1
autism-adolescent (1/18) 8 3 5 2 7 1 4 6
autism-adult (1/15) 8 4 6 5 7 2 3 1
dermatology-v2 (1/33) 8 4 6 5 1 2 3 7
fertility-diagnosis (2/7) 8 3 6 2 5 1 7 4
lung-cancer-v1 (0/56) 8 4 7 5 2 1 6 3
lymphography-v1 (3/15) 8 3 5 6 7 2 1 4
thoracic (3/13) 8 3 5 6 7 1 2 4
postoperative-SvsA (1/7) 7 3 4 5 2 1 8 6

Rank: 7.90 3.50 5.40 3.95 5.20 2.00 4.30 3.75

Group 3: Other Datasets C/N B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

abalone (7/2) 8 2 7 3 4 5 6 1
alzheimer-v1 (7/2) 8 5 3 2 7 6 4 1
arrhythmia (205/61) 8 7 6 2 4 5 1 3
bupa (5/1) 8 6 4 3 5 2 1 7
cryotherapy (4/2) 8 6 7 5 2 4 1 3
diabetic-retinopathy (16/3) 8 5 7 2 4 6 3 1
heart-statlog (7/6) 8 6 5 2 7 4 3 1
immunotherapy (5/2) 2 4 5 6 8 7 1 3
kala-azar (5/1) 8 5 2 3 1 7 4 6
kidney (11/13) 8 6 3 2 4 5 7 1
language-impairment-ENNI (59/2) 4 7 8 6 5 3 1 2
language-impairment-conti (59/1) 3 4 8 7 5 2 1 6
language-impairment-gillam (59/2) 7 6 8 4 5 3 1 2
saheart (8/1) 8 5 7 4 2 3 1 6

Rank: 6.86 5.29 5.71 3.64 4.50 4.43 2.50 3.07

C/N: Number of Continuous/Nominal features; B: BASELINE.
*For continuous datasets, HVDM-S is equivalent to HVDM-R.
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Also, if our hypothesis is correct, it would explain why HEOM-R and HVDM-R are ranked

lower than the remaining methods: although they treat missing values as “special values”,

the distance between two patterns on feature j is 1 if only xAj or xBj are missing, yet 0

if they are both missing (the same is valid for HVDM-S, since for continuous datasets, is

the same as HVDM-R). This evaluation of distances between patterns with missing values

seems extreme when compared to the top-performing distances (MDE and SIMDIST) and

also HEOM and HVDM, which would explain their poor results.

Group 2: Nominal Datasets

When datasets are predominantly composed of nominal features, HVDM-S stands out

among all distances, obtaining a rank of 2.00. The post-hoc revealed that all distances

were significantly better than the BASELINE, except for HEOM-R and HVDM-R (CDn =

3.32). Whereas overall HVDM-S falls to the bottom positions (Table 9.2), for nominal

datasets it seems to be the most beneficial (Table 9.4).

Nemenyi test also revealed that HVDM-S was significantly better than HEOM-R and

HVDM-R was near the critical value, with a difference between ranks of 3.4 and 3.2

respectively. No significant differences were found for HEOM, HVDM, MDE, or SIMDIST,

despite the considerable differences between ranks of HVDM-S and each of the methods

(1.5, 1.95, 2.3, and 1.75, respectively).

We hypothesise that the great advantage of HVDM-S derives from the way it considers

a missing value as an extra category and instead of simply applying a matching rule (as

HVDM-R), it applies dvdm: when only xAj or xBj are missing, the distance computation

is more refined, rather than being maximal (assigned a value of 1).

Another observation is that HEOM-R and HVDM-R are again ranked lower than HEOM

and HVDM which, similarly to the previous group, indicates that differences rely on the

treatment of missing values. In this case, assigning a a distance of 0 (minimum distance)

between two missing values seems more prejudicial than assigning a distance of 1 (maximal

distance). Nevertheless, the top-performing distance (HVDM-S) also considers that the

distance should be 0 between two missing values, although it uses a more refined approach

(dvdm) when only xAj or xBj are missing. This is consistent with the hypothesis that our

proposed strategy of considering missing values as extra categories is a major advantage

for nominal datasets.

In turn, MDE (which also considers a different distance assignment whether both values

are missing or only one value is missing) is ranked lower than HEOM and HVDM. Ad-

ditional investigation on this effect is required, although we may argue that computing

the mean distance between patterns (Equations 9.17 and 9.18) might not be adequate for

nominal features (as it seems to be for continuous). Note however, that a larger number

of exclusively nominal datasets would be detrimental to further validate this hypothesis.
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Group 3: Other Datasets

For this group of datasets, only HVDM, MDE, and SIMDIST proved to be significantly

better than the BASELINE (CDn = 2.91). MDE stood out as the winning approach,

followed by SIMDIST, whereas HEOM and HEOM-R were at the bottom positions. The

Nemenyi test also revealed that MDE proved to be significantly better than HEOM-R

(with a difference between ranks of 3.21) and HEOM was near the critical value (2.79).

This is an interesting observation since, as stated in Section 9.2.1, HEOM is traditionally

used in related work to handle heterogeneous data with missing values, although for this

group of datasets it was frequently assigned the worst ranks.

As a final remark, please note that, given the used missing data generation method, there

are no constraints on which type of features missing values were inserted, which is a ques-

tion to be investigated on future work (Chapter 11). For instance, it was expected that

MDE performed worse for datasets comprising a large number of nominal features, but

the number of nominal features comprised in these datasets (plus the stochastic process

inherent to MCAR mechanism) does not allow a full characterisation of this effect. For kid-

ney dataset, which contains an even distribution of continuous/nominal features (11/13),

MDE ranks the lowest (7.00). However, arrhythmia includes a considerable number of

both types of features (205/61) and MDE achieves the best rank (1.00). In this case, the

superiority of MDE may be explained by the fact that the continuous features constitute

the vast majority, although this question should be further addressed in future work.

9.6 Conclusions and Future Work

In this first batch of experiments, we perform a comparison of several heterogeneous

distances that handle missing values across a benchmark of 61 publicly-available datasets

with different characteristics. From the results obtained with the experimental data, four

main conclusions may be derived:

• Distance functions significantly affect kNN imputation, especially for higher missing

rates (20% and 30%). HEOM-R and HVDM-R performed the worst, occasionally

achieving lower performance than training classification models with missing data;

• Differences in performance between distance functions seem to rely on their respec-

tive approaches to missing values. Overall, the distance assignment of 0 when two

values are missing seems rigid and may be prejudicial for imputation;

• There seems to be an advantage in distinguish situations where only one value is

missing from situations when both are missing. However, depending on the type of

feature, these situations should be subjected to different approaches: e.g., consid-

ering the mean similarity of values for continuous features (similarly to MDE) and
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considering the missing value as an extra category for nominal features (similarly to

HVDM-S);

• Finally, although further investigation is required, we also argue that HEOM, widely

used across several domains, may not be the go-to approach, as others have shown

to be more beneficial (MDE and SIMDIST).

In the following chapters, we will extend this preliminary study in what concerns two

main directions. In Chapter 10, we will collect more datasets in order to investigate the

trends found within this work more deeply. We will further explore other values of k, and

analyse imputation performance/quality, in addition to classification performance. Finally,

in Chapter 11, we will explore different missing data generation implementations. In

particular, we will focus on which features the missing values will be generated (continuous

or nominal) for heterogeneous datasets, in order to determine whether the type of features

affected by missing data influence the performance of distance functions.
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Chapter 10

The Impact of Heterogeneous

Distance Functions on Missing

Data Imputation and

Classification Performance

In this chapter, we further pursue the line of investigation started in Chapter 9: the study

of the impact of distance functions on k-Nearest Neighbours imputation of heterogeneous

datasets. Missing data is generated at several percentages (5, 10, 20, and 30%), on a

large benchmark of 150 datasets (50 continuous, 50 categorical, and 50 heterogeneous

datasets), and data imputation is performed using different distance functions (HEOM,

HEOM-R, HVDM, HVDM-R, HVDM-S, MDE, and SIMDIST) and k values (1, 3, 5, and

7). The impact of distance functions on kNN imputation is then evaluated in terms of

classification performance, through the analysis of a classifier learned from the imputed

data, and in terms of imputation quality, where the quality of the reconstruction of the

original values is assessed. By analysing the properties of heterogeneous distance func-

tions over continuous and categorical datasets individually, we then study their behaviour

over heterogeneous data. We discuss whether datasets with different natures may benefit

from different distance functions and to what extent the component of a distance function

that deals with missing values influences such choice. Our experiments show that missing

data has a significant impact on distance computation, and the obtained results provide

guidelines on how to choose appropriate distance functions depending on data character-

istics (continuous, categorical, or heterogeneous datasets) and the objective of the study

(classification or imputation tasks).
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10.1 Introduction

The work conducted in this chapter follows from our previous research (Chapter 9), where

we have shown that distance functions affect kNN imputation. Nevertheless, some topics

remained unaddressed in the preliminary experiments. The study considered 61 datasets,

although there was not a clear division between categorical and heterogeneous datasets,

and continuous datasets comprised the great majority (37 datasets). Finally, only k = 1

was investigated and no analysis regarding imputation quality was performed.

Herein, we perform a more in-depth study of the impact of different heterogeneous distance

functions on kNN imputation, both in terms of classification performance and imputation

quality. Note that our objective is not to select an extensive set of possible distance

functions and tune the performance of classifiers with respect to each dataset, i.e., test

all possible distance functions and look for the solution that maximises classification or

imputation results. On the contrary, we aim to provide a thoughtful selection of distance

functions, with distinct approaches to continuous, categorical, and missing data, and study

the properties of each component in order to generate some insight regarding their be-

haviour. Accordingly, rather than searching for optimal results, i.e., test every approach

and select the best, we aim to provide insights, i.e., some intuition over the imputation

process that may ultimately lead to more informed decisions on the choice and application

of distance functions.

In comparison to the previous chapter, the work comprised herein introduces the following

contributions:

• A thorough investigation of the behaviour of heterogeneous functions, namely how

each component – treatment of continuous, categorical, and missing values – affects

the computation of distances (and consequently the classification results), extrapo-

lating insights for heterogeneous datasets.

• A comparison between different downstream tasks (classification versus imputation),

studying the impact of distance functions on the quality of imputation, besides

classification performance. While on the previous chapter the imputation task was

seen as an auxiliary task that helped to model the classification task, here we also

focus on the imputation task, and evaluate distance functions regarding their ability

to reconstruct the original, true values in data;

• An extension of the preliminary experiments in what concerns the number and char-

acteristics of datasets, and kNNI parametrisation. To fully understand to what

extent each component of a function definition influences imputation and classifi-

cation performance, we focus on dataset diversity in what concerns their type of

features, thus collecting a total of 150 datasets where 50 are continuous, 50 categor-

ical, and 50 are heterogeneous. We further consider several values of k (1, 3, 5 and
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7). This improves the experimental setup and allows a more thorough theoretical

and empirical analysis of the properties and behaviour of the considered distance

functions.

In sum, the work presented in this chapter constitutes the most comprehensive study on

the topic so far. It presents the largest benchmark of collected datasets among previous

research, and evaluates results both regarding classification performance and imputation

quality, whereas related work is often focused solely on one perspective, mostly on the

effect of kNNI on classification performance, as was done in our preliminary experiments

as well. Additionally, this work focuses mostly on behaviour, rather than comparing and

discussing results across distinct scenarios. It is highly motivated by the preliminary

results obtained in Chapter 9, although it aims to provide thorough insights regarding the

underlying operations of heterogeneous distance functions.

Overall, the entire experimental setup involved the analysis of 150 datasets × 30 versions ×
4 missing rates (BASELINE approach) + 2 × 50 datasets × 30 versions × 4 missing rates

× 4 k values × 7 distance functions (kNN imputation of categorical and heterogeneous

datasets) + 50 datasets × 30 versions × 4 missing rates × 4 k values × 6 distance functions

(kNN imputation of continuous datasets) = 498,000 datasets.

In the following sections, we focus on the analysis of the obtained experimental results,

regarding two aspects: the impact on classification performance (Section 10.2) and the

impact on imputation quality (Section 10.3).

Regarding classification performance (Section 10.2), we are interested in comparing the

classification results obtained with CART models trained with different imputed training

sets (on the same test set). Let us revisit Figure 9.3 and consider two training sets

imputed with and HEOM and MDE, X̂HEOM and X̂MDE. For each imputed training set,

the same CART model (with the same initial conditions/parameters) is trained. After

the training stage, there are two distinct CART models, that will be used to predict new

cases on the same test set. The top performing imputation approach (distance function)

is the one that originates the CART model with the highest classification results. In such

a way, we determine which distance function benefits the most the classification task,

i.e., produces estimates for missing values that ease the classification task, improving

classification results. Within this analysis, we also consider CART models built with

training sets with missing values (BASELINE approach).

Regarding imputation quality (Section 10.3), we evaluate the imputation task directly by

comparing the original training set values with the estimates produced by each distance

function. Following the previous example, consider that Xo represents the original train-

ing set and Xm the training dataset with missing values. Then, we compare X̂HEOM and

X̂MDE with Xo in the positions where Xm is missing, and evaluate each distance func-

tion in what concerns the recovery/reconstruction of missing data. The best imputation
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approach (distance function) is the one that produces estimates (imputed values) closer

to the original values.

Finally, Section 10.4 concludes this chapter by summarising its main conclusions and

elaborating on future research directions.

10.2 Impact on Classification Performance

In this section we analyse the impact of distance functions on kNN imputation regarding

classification performance. Distance functions are compared in terms of the classification

performance achieved by CART models built on datasets imputed with different distances.

In this case, we consider that the main objective is to solve a classification task, i.e.,

imputation methods are evaluated in what concerns their ability to produce more accurate

and efficient classification models. The imputation task is considered an auxiliary task

whose purpose is to obtain imputed values that help to model the classification task.

10.2.1 Overall effect on kNN imputation

Tables 10.1 to 10.4 report on the overall CART performance results for k = 1, 3, 5, and 7,

respectively, considering 8 approaches: training models with missing values (BASELINE)

and training models with values imputed with 7 different distance functions: HEOM,

HEOM-R, HVDM, HVDM-R, HVDM-S, MDE, and SIMDIST. The results consider the

average Sensitivity (Sens), F-measure (F1 ), and G-mean obtained for missing rates (MRs)

of 5, 10, 20, and 30% on all datasets. The top performing approach for each performance

metric is marked in bold.

Table 10.1: CART performance results without imputation (BASELINE) and with kNN
imputation (k = 1) using several distance functions. Best results are marked in bold.

Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.530 ± 0.327 0.532 ± 0.324 0.588 ± 0.313 0.524 ± 0.328 0.526 ± 0.325 0.580 ± 0.314
HEOM-R 0.530 ± 0.326 0.532 ± 0.324 0.588 ± 0.312 0.522 ± 0.327 0.525 ± 0.324 0.580 ± 0.313
HVDM 0.530 ± 0.326 0.532 ± 0.324 0.588 ± 0.312 0.523 ± 0.325 0.526 ± 0.322 0.581 ± 0.310
HVDM-R 0.530 ± 0.327 0.533 ± 0.323 0.589 ± 0.312 0.521 ± 0.326 0.524 ± 0.323 0.579 ± 0.312
HVDM-S 0.530 ± 0.326 0.533 ± 0.322 0.589 ± 0.311 0.527 ± 0.324 0.529 ± 0.320 0.585 ± 0.308
MDE 0.530 ± 0.326 0.532 ± 0.322 0.588 ± 0.311 0.527 ± 0.322 0.530 ± 0.320 0.585 ± 0.308
SIMDIST

5%

0.531 ± 0.327 0.532 ± 0.324 0.588 ± 0.313

10%

0.525 ± 0.327 0.528 ± 0.323 0.583 ± 0.311

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.508 ± 0.321 0.511 ± 0.318 0.568 ± 0.308 0.484 ± 0.319 0.485 ± 0.315 0.544 ± 0.307
HEOM-R 0.505 ± 0.323 0.508 ± 0.318 0.565 ± 0.310 0.483 ± 0.319 0.485 ± 0.315 0.542 ± 0.308
HVDM 0.509 ± 0.321 0.510 ± 0.318 0.568 ± 0.308 0.486 ± 0.319 0.486 ± 0.314 0.543 ± 0.308
HVDM-R 0.503 ± 0.321 0.507 ± 0.317 0.563 ± 0.309 0.485 ± 0.319 0.487 ± 0.314 0.544 ± 0.308
HVDM-S 0.515 ± 0.317 0.517 ± 0.314 0.576 ± 0.303 0.497 ± 0.318 0.496 ± 0.311 0.556 ± 0.303
MDE 0.513 ± 0.323 0.514 ± 0.318 0.572 ± 0.308 0.505 ± 0.321 0.500 ± 0.316 0.560 ± 0.308
SIMDIST

20%

0.508 ± 0.323 0.511 ± 0.318 0.567 ± 0.309

30%

0.484 ± 0.318 0.487 ± 0.315 0.543 ± 0.307
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Table 10.2: CART performance results without imputation (BASELINE) and with kNN
imputation (k = 3) using several distance functions.

Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.533 ± 0.326 0.534 ± 0.322 0.590 ± 0.311 0.530 ± 0.325 0.530 ± 0.322 0.586 ± 0.310
HEOM-R 0.531 ± 0.328 0.533 ± 0.324 0.589 ± 0.312 0.526 ± 0.326 0.527 ± 0.322 0.583 ± 0.311
HVDM 0.532 ± 0.326 0.534 ± 0.323 0.591 ± 0.310 0.530 ± 0.326 0.531 ± 0.322 0.587 ± 0.310
HVDM-R 0.534 ± 0.327 0.535 ± 0.324 0.592 ± 0.311 0.527 ± 0.327 0.528 ± 0.323 0.583 ± 0.312
HVDM-S 0.533 ± 0.327 0.534 ± 0.324 0.590 ± 0.311 0.530 ± 0.325 0.531 ± 0.320 0.587 ± 0.308
MDE 0.532 ± 0.325 0.533 ± 0.321 0.591 ± 0.308 0.532 ± 0.324 0.532 ± 0.321 0.589 ± 0.309
SIMDIST

5%

0.534 ± 0.326 0.535 ± 0.322 0.592 ± 0.310

10%

0.532 ± 0.326 0.532 ± 0.323 0.590 ± 0.309

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.516 ± 0.320 0.515 ± 0.316 0.574 ± 0.306 0.504 ± 0.321 0.498 ± 0.315 0.559 ± 0.306
HEOM-R 0.513 ± 0.321 0.513 ± 0.317 0.572 ± 0.307 0.499 ± 0.321 0.495 ± 0.314 0.555 ± 0.305
HVDM 0.516 ± 0.325 0.515 ± 0.319 0.573 ± 0.309 0.501 ± 0.319 0.496 ± 0.312 0.557 ± 0.303
HVDM-R 0.514 ± 0.320 0.513 ± 0.316 0.572 ± 0.305 0.498 ± 0.321 0.493 ± 0.315 0.553 ± 0.307
HVDM-S 0.522 ± 0.319 0.520 ± 0.314 0.581 ± 0.301 0.510 ± 0.317 0.504 ± 0.310 0.566 ± 0.301
MDE 0.519 ± 0.321 0.517 ± 0.317 0.577 ± 0.306 0.511 ± 0.321 0.504 ± 0.314 0.565 ± 0.306
SIMDIST

20%

0.519 ± 0.323 0.519 ± 0.318 0.577 ± 0.307

30%

0.504 ± 0.318 0.499 ± 0.312 0.559 ± 0.303

Table 10.3: CART performance results without imputation (BASELINE) and with kNN
imputation (k = 5) using several distance functions.

Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316
HEOM 0.533 ± 0.327 0.534 ± 0.324 0.590 ± 0.312 0.532 ± 0.326 0.532 ± 0.322 0.588 ± 0.310
HEOM-R 0.532 ± 0.326 0.534 ± 0.323 0.590 ± 0.312 0.530 ± 0.328 0.531 ± 0.323 0.587 ± 0.311
HVDM 0.533 ± 0.325 0.535 ± 0.322 0.592 ± 0.309 0.531 ± 0.328 0.531 ± 0.323 0.587 ± 0.312
HVDM-R 0.533 ± 0.326 0.535 ± 0.322 0.592 ± 0.309 0.529 ± 0.329 0.529 ± 0.324 0.585 ± 0.313
HVDM-S 0.532 ± 0.327 0.535 ± 0.323 0.591 ± 0.310 0.529 ± 0.325 0.530 ± 0.321 0.587 ± 0.308
MDE 0.532 ± 0.324 0.534 ± 0.321 0.591 ± 0.309 0.529 ± 0.326 0.530 ± 0.323 0.586 ± 0.312
SIMDIST

5%

0.535 ± 0.326 0.536 ± 0.322 0.593 ± 0.310

10%

0.530 ± 0.328 0.530 ± 0.323 0.587 ± 0.311

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322
HEOM 0.522 ± 0.323 0.521 ± 0.318 0.579 ± 0.307 0.503 ± 0.321 0.497 ± 0.314 0.557 ± 0.305
HEOM-R 0.513 ± 0.321 0.511 ± 0.317 0.571 ± 0.306 0.507 ± 0.323 0.501 ± 0.314 0.562 ± 0.306
HVDM 0.522 ± 0.323 0.520 ± 0.317 0.579 ± 0.306 0.506 ± 0.323 0.499 ± 0.316 0.560 ± 0.308
HVDM-R 0.518 ± 0.325 0.515 ± 0.319 0.574 ± 0.309 0.503 ± 0.324 0.498 ± 0.316 0.558 ± 0.308
HVDM-S 0.525 ± 0.321 0.521 ± 0.315 0.582 ± 0.303 0.512 ± 0.323 0.504 ± 0.314 0.566 ± 0.305
MDE 0.521 ± 0.321 0.518 ± 0.317 0.578 ± 0.307 0.506 ± 0.323 0.501 ± 0.316 0.561 ± 0.308
SIMDIST

20%

0.519 ± 0.322 0.519 ± 0.317 0.576 ± 0.307

30%

0.506 ± 0.320 0.500 ± 0.314 0.561 ± 0.304

Table 10.4: CART performance results without imputation (BASELINE) and with kNN
imputation (k = 7) using several distance functions.

Distance MR Sens F1 G-mean MR Sens F1 G-mean

BASELINE 0.524 ± 0.326 0.527 ± 0.323 0.583 ± 0.313 0.520 ± 0.328 0.522 ± 0.325 0.577 ± 0.316

HEOM 0.534 ± 0.326 0.535 ± 0.322 0.593 ± 0.310 0.531 ± 0.326 0.532 ± 0.322 0.588 ± 0.310

HEOM-R 0.534 ± 0.326 0.535 ± 0.322 0.593 ± 0.309 0.530 ± 0.326 0.530 ± 0.321 0.587 ± 0.310

HVDM 0.533 ± 0.326 0.535 ± 0.323 0.592 ± 0.310 0.532 ± 0.328 0.532 ± 0.324 0.588 ± 0.313

HVDM-R 0.533 ± 0.326 0.535 ± 0.322 0.592 ± 0.309 0.528 ± 0.328 0.529 ± 0.324 0.585 ± 0.312

HVDM-S 0.534 ± 0.326 0.536 ± 0.322 0.593 ± 0.309 0.531 ± 0.325 0.531 ± 0.321 0.588 ± 0.308

MDE 0.533 ± 0.327 0.534 ± 0.323 0.591 ± 0.311 0.530 ± 0.326 0.531 ± 0.323 0.587 ± 0.312

SIMDIST

5%

0.535 ± 0.325 0.536 ± 0.322 0.594 ± 0.309

10%

0.531 ± 0.328 0.531 ± 0.324 0.588 ± 0.312

BASELINE 0.504 ± 0.328 0.505 ± 0.326 0.558 ± 0.320 0.490 ± 0.328 0.491 ± 0.326 0.542 ± 0.322

HEOM 0.521 ± 0.321 0.518 ± 0.316 0.579 ± 0.304 0.506 ± 0.319 0.500 ± 0.312 0.562 ± 0.303

HEOM-R 0.518 ± 0.324 0.516 ± 0.317 0.575 ± 0.306 0.505 ± 0.322 0.499 ± 0.315 0.561 ± 0.307

HVDM 0.523 ± 0.322 0.522 ± 0.317 0.581 ± 0.305 0.508 ± 0.321 0.501 ± 0.313 0.562 ± 0.305

HVDM-R 0.518 ± 0.325 0.515 ± 0.318 0.575 ± 0.306 0.503 ± 0.323 0.497 ± 0.315 0.557 ± 0.307

HVDM-S 0.527 ± 0.322 0.523 ± 0.315 0.583 ± 0.302 0.509 ± 0.320 0.502 ± 0.312 0.564 ± 0.303

MDE 0.523 ± 0.320 0.520 ± 0.316 0.581 ± 0.304 0.509 ± 0.322 0.502 ± 0.316 0.562 ± 0.306

SIMDIST

20%

0.520 ± 0.323 0.518 ± 0.317 0.578 ± 0.305

30%

0.508 ± 0.324 0.500 ± 0.317 0.561 ± 0.308
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The first observation is that, overall, for all k values, MRs, and performance metrics,

classifiers constructed from imputed data obtain higher classification results than those

learned from data with missing values, i.e., datasets imputed with kNN (for any distance

function) outperform the BASELINE results. An exception occurs for k = 1, where, for a

MR of 30%, CART models trained with missing values obtain higher Sensitivity and F1

results than all distance functions, except the top 2 performing distances, HVDM-S and

MDE (Table 10.1).

Additionally, as the missing rate increases, so does the difference between the BASELINE

and the top kNN imputation approach, for all k values. The difference between the

results obtained by the considered distance functions also becomes more noticeable with

increasing amounts of missing data, especially for k = 1 and 3 (Tables 10.1 and 10.2). For

a MR of 5%, the classification results obtained with each distance function are close, with

a difference from the best to worst distance function of 0.001 (k = 1) and 0.002-0.003 (k =

3), whereas for a MR of 30%, differences increase to 0.015-0.022 (k = 1) and 0.009-0.013 (k

= 3) (these values concern the difference between the best and worst results obtained by

distance functions, considering all classification metrics). For higher values of k, although

differences between distance functions increase with the missing rate, differences are more

subtle (Tables 10.3 and 10.4).

Another important observation is that, whereas for MRs of 5 and 10% distances behave

similarly, with SIMDIST, HVDM-R, HVDM-S, and MDE among the top performing ap-

proaches (k = 1 and 3), for MRs of 20 and 30%, HVDM-S and MDE present superior

performance results (for k = 1 and 3, HVDM-S is the top performing approach for a MR

of 20%, whereas MDE seems superior for 30%). As expected, for k = 5 and 7, the best

results become more scattered across other distance functions. Nevertheless, for these val-

ues of k, HVDM-S is consistently the best approach for MRs of 20% and 30% (SIMDIST

also appears as a top performer for a MR of 5% in both scenarios).

These results suggest that for a dataset with given, invariable, characteristics (imbalance

ratio, number of categorical and continuous features, number of samples), the choice of

the best distance function is often dependent on the missing rate. Given these findings, we

proceed to analyse the datasets by category (continuous, categorical, and heterogeneous

datasets) in order to assess the behaviour of each distance function in different contexts.

To that end, a ranking strategy is used.

The majority of the considered datasets are imbalanced, which is a frequent problem in

several domains [107]. Therefore, we focus on Sensitivity results for the following analysis,

where a particular importance is given to correct predictions of the minority class, which

is considered to be the concept of interest (positive class).

Firstly, datasets were divided into three groups (Continuous Datasets, Categorical Datasets,

and Heterogeneous Datasets) and for each missing rate (5, 10, 20, and 30%) and k value (1,
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3, 5, and 7), all approaches are ranked for each dataset based on the obtained Sensitivity

results. Then, the average rank of each approach is determined, and a statistical analysis

is conducted.

To determine whether there is a statistically significant difference among approaches (for

each group, missing rate and k value), the Friedman test was run under the null-hypothesis

that the performance of all approaches is equivalent [112]. For each group of datasets,

missing percentage, and k value, the FF statistic is computed and compared with the

established critical value for the F-distribution at a 5% significance level, Fc (Table 10.5).

Table 10.5: FF statistic calculated for each group of datasets, divided by missing rates
and k values. Highlighted values (shaded in grey) indicate statistically significant differ-
ences between the approaches (BASELINE and kNN imputation with different distance
functions).

k 5% 10% 20% 30%

1 1.28 1.34 1.24 3.72
Continuous 3 1.31 1.46 3.16 0.84
Datasets 5 0.76 1.53 3.53 1.74
(Fc = 2.14) 7 1.82 0.92 3.90 0.40

1 0.78 1.51 2.02 5.17
Categorical 3 0.68 0.61 2.12 4.20
Datasets 5 0.78 0.21 2.42 2.29
(Fc = 2.06) 7 0.63 1.23 3.96 2.18

1 0.41 1.17 2.19 3.86
Heterogeneous 3 0.98 0.73 1.40 3.07
Datasets 5 0.58 0.59 1.86 4.23
(Fc = 2.06) 7 1.04 0.82 3.97 3.12

Considering all groups and k values, the Friedman test did not detect any statistically

significant differences between the approaches for missing rates of 5% and 10% (for these

MRs, the calculated FF statistic is not superior to the established critical value Fc and

therefore the null hypothesis could not be rejected). This is also true for some combinations

of groups, MRs, and k, as illustrated in Table 10.5. Apart from these exceptions, as the

missing rate increases (20 and 30%), the null hypothesis of equivalence between approaches

is rejected, even for increasing values of k. This indicates that although k-parametrisation

plays an important role on the optimisation of kNN imputation results, it is important

not to overlook the distance function hyperparameter, as it seems to play an important

role on determining the best approach, especially for higher missing rates.

Since the null-hypothesis was often rejected for higher missing rates (20 and 30%), the

Nemenyi test was applied for post-hoc testing (at a 5% significance level), to compare all

methods against each other. Tables 10.6 to 10.9 show the average Sensitivity ranks of each

approach, considering each group and missing rate, for k = 1, 3, 5, and 7, respectively.

The winning method (with the lowest rank) is marked in bold, and statistically significant

differences between the best approach and the remaining are shaded in grey.
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Table 10.6: Average Sensitivity ranks per missing rate, divided by groups (k = 1). Crit-
ical differences for Nemenyi test (CDn) are shown for each group of datasets. Lowest
ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R *HVDM-S MDE SIMDIST

5% 4.31 4.18 4.39 3.79 3.95 – 3.38 4.00
Continuous 10% 4.09 3.72 4.37 4.05 4.37 – 3.38 4.02
Datasets 20% 4.49 4.10 4.08 4.15 4.05 – 3.44 3.69
(CDn = 1.27) 30% 3.67 3.90 4.63 4.19 4.25 – 2.92 4.44

5% 5.06 4.25 4.46 4.45 4.61 4.18 4.78 4.21
Categorical 10% 4.25 4.77 4.77 4.90 4.77 3.61 4.37 4.56
Datasets 20% 4.51 4.39 4.88 4.61 5.24 3.63 4.09 4.65
(CDn = 1.48) 30% 4.58 5.04 4.57 5.11 4.84 3.09 3.61 5.16

5% 4.79 4.69 4.21 4.59 4.55 4.44 4.15 4.58
Heterogeneous 10% 4.56 4.40 4.91 4.29 5.17 4.01 4.37 4.29
Datasets 20% 4.27 4.63 4.86 4.03 5.34 3.84 4.17 4.86
(CDn = 1.48) 30% 5.12 5.14 4.95 4.45 4.83 3.61 3.42 4.48

B: BASELINE
*For continuous datasets, HVDM-S is equivalent to HVDM-R.

Table 10.7: Average Sensitivity ranks per missing rate, divided by groups (k = 3). Crit-
ical differences for Nemenyi test (CDn) are shown for each group of datasets. Lowest
ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.71 3.84 4.04 4.11 3.64 – 3.84 3.82
Continuous 10% 4.36 3.73 4.39 3.76 4.22 – 3.42 4.12
Datasets 20% 5.08 3.99 3.94 3.71 4.10 – 3.37 3.81
(CDn = 1.27) 30% 4.35 4.00 4.07 3.84 4.04 – 3.48 4.22

5% 5.05 4.34 4.64 4.60 4.39 4.12 4.59 4.27
Categorical 10% 4.53 4.56 4.73 4.59 4.89 4.00 4.40 4.30
Datasets 20% 4.73 4.35 4.85 4.65 5.24 3.55 4.31 4.32
(CDn = 1.48) 30% 5.01 4.37 4.48 5.32 4.85 3.22 3.84 4.91

5% 4.83 4.75 4.86 3.97 4.75 4.38 4.14 4.32
Heterogeneous 10% 4.84 4.34 4.83 4.46 4.70 4.03 4.60 4.20
Datasets 20% 4.45 4.93 4.90 4.80 4.51 3.84 3.97 4.60
(CDn = 1.48) 30% 5.59 4.52 4.62 4.69 4.86 3.94 3.73 4.05

Regarding k = 1, the best method is consistent over all MRs for continuous and categorical

datasets (Table 10.6). For continuous datasets, MDE stands out as the winning approach,

whereas for categorical datasets, HVDM-S is the best performing approach. For hetero-

geneous datasets, MDE and HVDM-S are the top performing approaches, with HVDM-S

obtaining higher performance results for intermediate MRs (10 and 20%), whereas MDE

obtains the lowest ranks for MRs of 5 and 30%.

Results obtained for k = 3 are similar (Table 10.7), where MDE and HVDM-S figure

consistently among the best approaches. On contrary, the best results for k = 5 and 7

(Tables 10.8 and 10.9), are more scattered across other approaches. Nevertheless, HVDM-

S remains among the top approaches for categorical and heterogeneous data: for k = 5,

HVDM-S is considered the best approach for MRs of 20 and 30% regarding both categorical

and heterogeneous datasets, and for k = 7, it remains the best approach for categorical
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Table 10.8: Average Sensitivity ranks per missing rate, divided by groups (k = 5). Crit-
ical differences for Nemenyi test (CDn) are shown for each group of datasets. Lowest
ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.47 3.96 3.96 3.70 4.00 – 4.19 3.72
Continuous 10% 4.67 4.15 3.50 3.89 3.69 – 4.13 3.97
Datasets 20% 5.14 3.53 4.26 3.56 3.72 – 3.92 3.87
(CDn = 1.27) 30% 4.69 4.26 4.20 3.61 3.86 – 3.61 3.77

5% 5.05 4.53 4.54 4.57 4.72 4.15 4.11 4.33
Categorical 10% 4.59 4.37 4.60 4.51 4.76 4.41 4.52 4.24
Datasets 20% 4.88 4.47 5.03 4.80 4.66 3.33 4.26 4.57
(CDn = 1.48) 30% 4.94 4.62 4.70 4.76 4.99 3.43 4.08 4.48

5% 5.10 4.44 4.60 4.54 4.35 4.37 4.32 4.28
Heterogeneous 10% 4.90 4.20 4.81 4.28 4.36 4.25 4.61 4.59
Datasets 20% 4.80 4.38 5.42 4.08 4.33 3.97 4.29 4.73
(CDn = 1.48) 30% 5.67 5.29 4.04 4.48 4.40 3.47 4.36 4.29

Table 10.9: Average Sensitivity ranks per missing rate, divided by groups (k = 7). Crit-
ical differences for Nemenyi test (CDn) are shown for each group of datasets. Lowest
ranks (best results) are marked in bold. Significant differences in comparison to the best
approach are shaded in grey.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 4.71 3.41 3.94 3.71 3.91 – 4.19 4.13
Continuous 10% 4.55 3.84 4.05 3.88 3.92 – 3.62 4.14
Datasets 20% 5.27 3.97 3.63 3.67 3.94 – 3.97 3.55
(CDn = 1.27) 30% 4.40 3.92 3.92 3.86 4.10 – 3.94 3.86

5% 4.96 4.61 4.77 4.34 4.58 4.18 4.32 4.24
Categorical 10% 4.49 4.43 4.66 4.43 5.20 3.97 4.73 4.09
Datasets 20% 5.05 4.92 5.23 4.66 4.64 3.14 4.30 4.06
(CDn = 1.48) 30% 4.93 4.80 4.98 4.46 4.82 3.47 4.18 4.36

5% 5.09 4.55 4.08 4.95 4.30 4.40 4.43 4.20
Heterogeneous 10% 4.80 4.49 4.83 4.50 4.50 3.98 4.78 4.12
Datasets 20% 5.20 4.44 4.88 4.27 4.81 3.41 3.73 5.26
(CDn = 1.48) 30% 5.88 4.66 4.10 4.06 4.59 4.27 4.14 4.30

data (all MRs), and heterogeneous data (MRs of 10 and 20%). This confirms the rational

that k is not the sole parameter that should generally be tuned when developing kNN

imputation approaches, since the choice of distance function has shown to affect data

imputation, particularly for categorical and heterogeneous datasets.

Considering the obtained experimental results, we establish that distance functions sig-

nificantly affect kNN imputation and that their performance is related to the amount of

missing data. However, besides the presence of missing data, the performance of distance

functions differs according to the nature of datasets, showing that it is important to isolate

each component of the distance functions’ definition to fully characterise their behaviour.

In what follows, we analyse the behaviour of distance functions by isolating certain com-

ponents of the distance computation between patterns. In particular, we start by studying

continuous and categorical datasets individually and assess the impact of increasing MRs

on the performance of distance functions. Then, the insights extracted from this analysis

313



Chapter 10

are cross-correlated with the results obtained for the heterogeneous datasets.

We focus on a more local behaviour of kNN, by analysing the results obtained with k = 1.

As k increases, the neighbourhood of a given pattern becomes larger, and it is expected

that differences between distance functions become more smoothed, as previously discussed

and confirmed by the overall performance results (Tables 10.1 to 10.4). Therefore, to allow

a more thorough analysis of the behaviour of distance functions regarding the definition

of each component, we consider the smallest neighborhood: for k = 1, differences between

distance functions will mainly rely on their definition, whereas for higher values of k, it

becomes more difficult to distinguish the effects associated with the definition of distance

functions from the increase of the k-neighboorhood. Despite the focus on k = 1, results

obtained for additional values of k (3, 5, and 7) are also discussed throughout our analysis.

10.2.2 Effect of function definition on distance computation

Throughout this section, we discuss how each component of the definition of distance

functions affects the computation of the similarity between patterns, focusing mostly on

imputation results for k = 1 for a more local analysis. We start by cross-referencing the

results presented in Tables 10.6 and 10.10. Note that Table 10.10 considers the pairwise

differences between all distances: the values correspond to the difference between the ranks

of the approaches in the corresponding rows and columns. Thus, positive differences

indicate that the approach in the columns is better than the one in the rows, whereas

negative differences indicate that the approach in the rows is better (significant differences

are marked in bold). Furthermore, differences for 5 and 20% are shown in the upper part

of the tables, whereas differences for 10 and 30% are presented in the lower part of the

tables (shaded in grey).

We now tailor our analysis to the individual categories of datasets, by cross-referencing

the information of Tables 10.6 and 10.10.

Continuous Datasets

For continuous datasets, MDE outperforms the remaining approaches for all missing rates,

although for MRs of 5, 10, and 20% no significant differences were found (Table 10.6).

However, for a MR of 30%, MDE achieves an average rank of 2.92, and the post-hoc

concluded on its superiority over HEOM-R, HVDM, HVDM-R, and SIMDIST (Tables

10.6 and 10.10). The difference for HEOM was considerable (0.98) but not higher than

the critical value (1.27). An insightful observation is on the comparison of HEOM and

HVDM with their redefinitions: HEOM-R and HVDM-R perform worse than their original

formulations, suggesting that considering two missing values as being equal seems rigid

and may be prejudicial for imputation (Table 10.10).
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Regarding the remaining distances, HEOM, HVDM, and SIMDIST behave somewhat sim-

ilarly, except for a MR of 30%, where HEOM presents a lower rank (3.90 versus 4.19/4.44).

Furthermore, Table 10.10 indicates that, overall, HEOM performs slightly better than

HVDM, which could be due to normalisation differences (Chapter 9, Equations 9.3 and

Table 10.10: Differences between ranks for each comparison of distance functions (k = 1)
for MRs of 5, 10, 20, and 30% (10 and 30% are shaded in grey). Values correspond to the
differences between the ranks of the approaches in the corresponding rows and columns.
Accordingly, positive differences indicate that the approach in the columns is better than
the one in the rows, whereas negative differences indicate that the approach in the rows
is better. Statistically significant differences are marked in bold.

Continuous Datasets: 5 and 10%
BASELINE HEOM HEOM-R HVDM HVDM-R *HVDM-S MDE SIMDIST

BASELINE – 0.13 -0.08 0.52 0.36 – 0.93 0.31
HEOM -0.37 – -0.21 0.39 0.23 – 0.80 0.18
HEOM-R 0.28 0.65 – 0.60 0.44 – 1.01 0.39
HVDM -0.04 0.33 -0.32 – -0.16 – 0.41 -0.21
HVDM-R 0.28 0.65 0.00 0.32 – – 0.57 -0.05
HVDM-S – – – – – – – –
MDE -0.71 -0.34 -0.99 -0.67 -0.99 – – -0.62
SIMDIST -0.07 0.30 -0.35 -0.03 -0.35 – 0.64 –

Continuous Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R *HVDM-S MDE SIMDIST

BASELINE – 0.39 0.41 0.34 0.44 – 1.05 0.80
HEOM 0.23 – 0.02 -0.05 0.05 – 0.66 0.41
HEOM-R 0.96 0.73 – -0.07 0.03 – 0.64 0.39
HVDM 0.52 0.29 -0.44 – 0.10 – 0.71 0.46
HVDM-R 0.58 0.35 -0.38 0.06 – – 0.61 0.36
HVDM-S – – – – – – – –
MDE -0.75 -0.98 -1.71 -1.27 -1.33 – – -0.25
SIMDIST 0.77 0.54 -0.19 0.25 0.19 – 1.52 –

Categorical Datasets: 5 and 10%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.81 0.60 0.61 0.45 0.88 0.28 0.85
HEOM 0.52 – -0.21 -0.20 -0.36 0.07 -0.53 0.04
HEOM-R 0.52 0.00 – 0.01 -0.15 0.28 -0.32 0.25
HVDM 0.65 0.13 0.13 – -0.16 0.27 -0.33 0.24
HVDM-R 0.52 0.00 0.00 -0.13 – 0.43 -0.17 0.40
HVDM-S -0.64 -1.16 -1.16 -1.29 -1.16 – -0.60 -0.03
MDE 0.12 -0.40 -0.40 -0.53 -0.40 0.76 – 0.57
SIMDIST 0.31 -0.21 -0.21 -0.34 -0.21 0.95 0.19 –

Categorical Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.12 -0.37 -0.10 -0.73 0.88 0.42 -0.14
HEOM 0.46 – -0.49 -0.22 -0.85 0.76 0.30 -0.26
HEOM-R -0.01 -0.47 – 0.27 -0.36 1.25 0.79 0.23
HVDM 0.53 0.07 0.54 – -0.63 0.98 0.52 -0.04
HVDM-R 0.26 -0.20 0.27 -0.27 – 1.61 1.15 0.59
HVDM-S -1.49 -1.95 -1.48 -2.02 -1.75 – -0.46 -1.02
MDE -0.97 -1.43 -0.96 -1.50 -1.23 0.52 – -0.56
SIMDIST 0.58 0.12 0.59 0.05 0.32 2.07 1.55 –

Heterogeneous Datasets: 5 and 10%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – 0.10 0.58 0.20 0.24 0.35 0.64 0.21
HEOM -0.16 – 0.48 0.10 0.14 0.25 0.54 0.11
HEOM-R 0.35 0.51 – -0.38 -0.34 -0.23 0.06 -0.37
HVDM -0.27 -0.11 -0.62 – 0.04 0.15 0.44 0.01
HVDM-R 0.61 0.77 0.26 0.88 – 0.11 0.40 -0.03
HVDM-S -0.55 -0.39 -0.90 -0.28 -1.16 – 0.29 -0.14
MDE -0.19 -0.03 -0.54 0.08 -0.80 0.36 – -0.43
SIMDIST -0.27 -0.11 -0.62 0.00 -0.88 0.28 -0.08 –

Heterogeneous Datasets: 20 and 30%
BASELINE HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

BASELINE – -0.36 -0.59 0.24 -1.07 0.43 0.10 -0.59
HEOM 0.02 – -0.23 0.60 -0.71 0.79 0.46 -0.23
HEOM-R -0.17 -0.19 – 0.83 -0.48 1.02 0.69 0.00
HVDM -0.67 -0.69 -0.50 – -1.31 0.19 -0.14 -0.83
HVDM-R -0.29 -0.31 -0.12 0.38 – 1.50 1.17 0.48
HVDM-S -1.51 -1.53 -1.34 -0.84 -1.22 – -0.33 -1.02
MDE -1.70 -1.72 -1.53 -1.03 -1.41 -0.19 – -0.69
SIMDIST -0.64 -0.66 -0.47 0.03 -0.35 0.87 1.06 –

*For continuous datasets, HVDM-S is equivalent to HVDM-R.
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9.6). Since differences between HEOM, HVDM, and MDE mostly rely on the treatment

of missing data, we may infer that considering a distance of 1 if either xAj and xBj are

missing also seems inadequate, given the superiority of MDE over these other two distance

functions.

Furthermore, despite some similarities in working principles of MDE and SIMDIST (con-

sidering the average distance between patterns to impute missing values), there seems to

be an advantage in distinguish situations where one or both values are missing, causing

MDE to be top performing approach, as no other distance distinguishes between such

scenarios.

For k = 3, results are similar, with MDE being the top performing distance (Table 10.7).

However, for k values of 5 and 7, differences in classification performance become negligible

(Tables 10.8 and 10.9). Overall, significant differences between approaches also cease to

exist, due to loss of locality in kNN parametrisation.

Categorical Datasets

For categorical datasets, HVDM-S stands out as the best approach for all missing rates

(Table 10.6).

An interesting topic for discussion is the comparison between HVDM-S, MDE, and HVDM.

As shown in Table 10.6, despite the fact that HVDM-S achieves lower ranks than MDE, the

equivalence between the two distance functions is never rejected, not even for the highest

missing rate. In turn, HVDM-S is significantly better than the remaining approaches for

a MR of 30%. Then, a comparison of MDE with HVDM becomes insightful. Although

the computation of categorical distances is different in this case (MDE uses the overlap

metric while HVDM uses dvdm when both values are observed) the performance of both

distances is not significantly different (Table 10.10). For 5%, HVDM is slightly better

than MDE (perhaps due to the computation of dvdm) but rapidly looses its advantage

as the missing rate increases: for a MR of 30%, MDE is even significantly better than

HVDM (Table 10.10). In turn, HVDM-S, whose definition is very close to HVDM, always

surpasses MDE (Table 10.6). This indicates that it is the treatment of missing data (the

only aspect that changes between HVDM-S and HVDM) that is responsible for the good

results achieved.

Contrary to continuous datasets, using the average distance to compute the distance be-

tween missing patterns is not the best overall approach: for categorical datasets, the ability

of HVDM-S to consider the distribution of missing values in each class could be one of its

greatest advantages.

Another interesting point is that, for categorical datasets, HVDM-S remains the top per-

forming approach for larger values of k. For k = 5, MDE and SIMDIST achieve the top
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positions for MRs of 5 and 10%, respectively (Table 10.8), but for k = 3 and 7, HVDM-S

assumes the leading position for all MRs (Tables 10.7 and 10.9). Significant differences

are found for some distances, where the most clear improvement is on k = 7 for a MR of

20%, where HVDM-S is significantly superior to all distances except MDE and SIMDIST

(Table 10.9).

Heterogeneous Datasets

For heterogeneous datasets, MDE or HVDM-S appear as the winning approaches for all

missing rates (Table 10.6). For a MR of 5%, MDE is the top performing approach, whereas

for 10 and 20%, HVDM-S becomes superior. For a MR of 30%, both approaches behave

similarly (3.61 versus 3.42 obtained by HVDM-S and MDE, respectively).

A similar trend is observed for higher values of k, in what concerns HVDM-S: for k = 3

and 7, it achieves the top results for intermediate MRs of 10 and 20% (Tables 10.7 and

10.9), whereas for k = 5 it is the top performer for 20 and 30% (Table 10.8). In turn,

MDE, although presenting good results for more local neighbourhoods (k = 3), is not the

best approach for higher k values. In fact, for extreme levels of MR (5 or 30%), there is

not a consensus on the best approach for higher values of k.

Given the results obtained for continuous and categorical datasets (k = 1), where MDE

and HVDM-S are the top performing approaches, respectively, these results on heteroge-

neous datasets are somewhat expected. It would be important, however, to determine the

components of each distance that affect the most the results in the case of heterogeneous

data.

For a lower MR of 5%, where most values are expected to be observed, the results ob-

tained by the two approaches do not considerably differ. When both xAj and xBj values

are observed, differences among the two distance functions rely on the normalisation of

continuous features (MDE seems to perform better according to the results obtained for

continuous features) and on the treatment of categorical features (using dvdm or dO for

HVDM-S and MDE, respectively), where HVDM-S seems superior. For higher missing

rates (10, 20, and 30%), it becomes more difficult to determine which component is influ-

encing the results the most.

One hypothesis is that the type of features comprised in the dataset (continuous or cat-

egorical) somewhat conditions the behaviour of distance functions. To analyse that rela-

tionship, heterogeneous datasets were divided into 3 groups: comprising mostly continu-

ous features (CONT), comprising mostly categorical features (CAT), and comprising the

same number of continuous and categorical features (EQUAL). Then, the performance

of HVDM-S and MDE was compared in terms of percentage of wins and ties. Here,

“wins” refer to the percentage of datasets where one distance function outperforms the

other (HVDM-S outperforms MDE or vice-versa), whereas “ties” refer to situations where
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both distance functions achieve the same performance results. Table 10.11 presents the

described analysis, showing the percentage of datasets for which each distance function

outperforms the other, and the percentage of ties, for each group (CONT, CAT, and

EQUAL).

Table 10.11: Performance comparison between HVDM-S and MDE, regarding the per-
centage of wins and ties (k = 1), for each scenario (CAT, CONT, and EQUAL).

CONT CAT EQUAL

MR HVDM-S MDE TIE HVDM-S MDE TIE HVDM-S MDE TIE

5% 46.7 33.3 20 42.9 47.6 9.5 7.1 71.4 21.4

10% 33.3 53.3 13.3 57.1 38.1 4.8 64.3 35.7 0

20% 33.3 53.3 13.3 47.6 42.9 9.5 50 50 0

30% 33.3 53.3 13.3 42.9 47.6 9.5 35.7 64.3 0

From the analysis of Table 10.11, several observations stand out. First, the percentage

of ties when datasets are mostly continuous (CONT) is more than the double that when

datasets are mostly categorical (CAT), for MRs of 5 and 10%, indicating that one impor-

tant difference between the two distance functions relies on the treatment of categorical

values. For higher missing rates (20 and 30%), the difference between ties becomes less

noticeable, suggesting that other factors may be at play, namely the treatment of missing

data.

For intermediate missing rates (10 and 20%), the results obtained by HVDM-S and MDE

follow the overall results shown in Table 10.6, with HVDM-S and MDE being superior

for CAT and CONT datasets, respectively. For 30%, CAT group suffers an inversion of

results (MDE becomes the best approach), whereas the results of CONT group remain

the same. This suggests that the major advantage of HVDM-S is on treatment of missing

values in categorical features, when one value might be missing. When the MR is high,

and it is more likely that both xAj and xBj values are missing, MDE seems to be superior.

The behaviour observed for the EQUAL group is consistent with this observation. For

a MR of 5%, MDE performs exceptionally well, being superior to HVDM-S for 71.4%

of datasets, but both distances perform equally well for 21.4% of datasets. As the MR

increases, there are no more ties between methods. For a MR of 10%, there is a 64.3/35.7

difference between HVDM-S and MDE, which may be due to the superiority of HVDM-S

over categorical features. Nevertheless, for a MR of 20%, differences decrease to 50/50

and lastly, MDE becomes the best approach for a MR of 30%.

Overall, HVDM-S shows a good behaviour for intermediate MRs (10 and 20%), whereas

MDE performs well on extremes, especially for 30%. Aligned with the hypotheses that

HVDM-S might not adequately address situations where both values are missing is the

degradation in performance observed for heterogeneous datasets when comparing the re-

sults obtained by HVDM and HVDM-R (Table 10.6). For MRs greater than 5%, HVDM-R
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presents a degradation in performance when compared to HVDM. Note that the only dif-

ference between these approaches is that for HVDM-R two missing values are considered

equal, i.e., dj(xAj , xBj) = 0. This effect was not so strongly observed for continuous or

categorical data individually, but it seems to considerably affect the results on heteroge-

neous data. Such assignment seems to be impairing the classification performance and,

given that HVDM-S follows the same procedure, this indicates that HVDM-S could be

improved regarding this aspect.

Finally, another interesting observation regarding heterogeneous data is that HEOM, a

popular solution for heterogeneous domains, has not stood out as the best approach for

any missing rate1. When compared to all the remaining distance functions, HEOM was

only superior to HEOM-R and HVDM-R (10 and 20%) and SIMDIST (20%), lagging

behind in all remaining scenarios (Table 10.10), which suggests that, although simple, it

may not be the go-to approach, as suggested in several application papers (please refer to

Table D.1).

To ease the interpretation of results, Table 10.16 summarises the main conclusions derived

for each group of datasets (continuous, categorical, and heterogeneous) in what concerns

the discussion on classification performance.

10.3 Impact on Imputation Quality

In this section, we analyse the imputation task directly and discuss the impact of the

considered distance functions on the quality of imputation, focusing on their Predictive

Accuracy (PAC), i.e., on their ability to reconstruct the original values in data [203,

386]. PAC was assessed through the computation of the Normalised Mean Absolute Error

(NMAE) and the percentage of matches, Matches (%), for continuous and categorical

features, respectively.

Traditionally, the Mean Absolute Error (MAE) is computed as shown in Equation 10.1,

where yi and ŷi represent the original value (ground truth) and imputed value, respectively,

and n is the number of values that were missing in feature xj .

MAE =
1

n

n∑
i=1

| yi − ŷi | (10.1)

The MAE of a feature xj therefore represents an average of the difference between the

original and the imputed values. Naturally, the MAE is measured on the same scale as

xj , and since that dataset features may consider different scales, a normalisation (NMAE)

is required to produce a final MAE measure for the entire dataset. In this work, we

1Considering k = 1. For higher values of k, HEOM has only obtained the best values for k = 5, for a
MR of 10%, although not statistically better than any other approach.
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considered a normalisation over xj values, i.e., NMAE = MAE
max(xj)−min(xj)

. Accordingly,

the final NMAE of a dataset is the average NMAE of all of its features, where values closer

to 0 indicate more accurate imputations.

The percentage of matches is given by Equation 10.2, and indicates the proportion of

categorical values that were exactly recreated (i.e., the imputed categorical value exactly

matches the original value). In this case, accurate imputations should return a value closer

to 100%.

Matches (%) =
100×∑yi=ŷi

1

n
(10.2)

Tables 10.12 to 10.15 show the NMAE and Matches (%) results obtained with all distance

functions, for k values of 1, 3, 5, and 7, respectively. For all values of k, both NMAE and

Matches (%) results are similar: for continuous datasets, SIMDIST is the top performing

approach for all k, whereas for categorical and heterogeneous datasets, MDE is overall the

best approach, with little exceptions where HVDM or SIMDIST outperform the remaining.

Table 10.12: NMAE and Matches (%) divided by groups and missing rates for k = 1 (best
results are marked in bold).

MR HEOM HEOM-R HVDM HVDM-R *HVDM-S MDE SIMDIST

5% 0.107 ± 0.061 0.119 ± 0.058 0.107 ± 0.061 0.117 ± 0.058 – 0.110 ± 0.047 0.102 ± 0.061
Continuous 10% 0.115 ± 0.060 0.131 ± 0.056 0.114 ± 0.060 0.129 ± 0.058 – 0.112 ± 0.047 0.106 ± 0.061
Datasets 20% 0.128 ± 0.057 0.145 ± 0.054 0.127 ± 0.058 0.143 ± 0.056 – 0.118 ± 0.046 0.113 ± 0.060
NMAE 30% 0.139 ± 0.056 0.156 ± 0.054 0.138 ± 0.057 0.154 ± 0.056 – 0.123 ± 0.045 0.120 ± 0.059

5% 55.4 ± 17.4 55.5 ± 17.4 54.6 ± 17.1 54.0 ± 16.7 50.0 ± 14.7 59.8 ± 16.0 55.7 ± 17.6
Categorical 10% 55.3 ± 17.0 55.3 ± 16.9 54.3 ± 16.7 53.6 ± 16.4 50.9 ± 15.5 59.8 ± 15.5 55.6 ± 17.2
Datasets 20% 54.5 ± 16.5 54.4 ± 16.3 53.4 ± 16.2 52.8 ± 16.0 51.5 ± 15.6 59.6 ± 15.2 54.7 ± 16.5
Matches(%) 30% 53.6 ± 15.9 53.4 ± 15.5 52.4 ± 15.7 51.9 ± 15.3 51.5 ± 15.8 59.2 ± 14.8 53.9 ± 16.0

5% 0.202 ± 0.064 0.206 ± 0.065 0.190 ± 0.059 0.200 ± 0.059 0.194 ± 0.060 0.187 ± 0.060 0.201 ± 0.065
56.1 ± 16.4 55.9 ± 16.4 55.9 ± 14.9 55.0 ± 14.6 54.4 ± 14.8 58.7 ± 15.9 56.3 ± 16.4

Heterogeneous 10% 0.205 ± 0.062 0.211 ± 0.062 0.198 ± 0.060 0.210 ± 0.059 0.201 ± 0.059 0.190 ± 0.060 0.204 ± 0.063
Datasets 55.9 ± 16.0 55.2 ± 15.7 55.5 ± 14.7 53.9 ± 14.5 54.5 ± 15.0 58.9 ± 15.2 56.3 ± 16.0
NMAE 20% 0.209 ± 0.060 0.218 ± 0.061 0.208 ± 0.060 0.222 ± 0.061 0.210 ± 0.059 0.193 ± 0.059 0.208 ± 0.062
Matches(%) 55.3 ± 15.0 54.5 ± 14.8 54.1 ± 14.1 52.7 ± 14.2 53.8 ± 15.0 58.7 ± 14.8 56.1 ± 14.8

30% 0.215 ± 0.059 0.224 ± 0.062 0.216 ± 0.060 0.228 ± 0.061 0.217 ± 0.060 0.196 ± 0.059 0.212 ± 0.061
54.7 ± 14.4 53.6 ± 14.3 53.2 ± 14.0 52.0 ± 14.1 52.9 ± 14.9 58.5 ± 14.5 55.4 ± 14.3

*For continuous datasets, HVDM-S is equivalent to HVDM-R.

For continuous datasets, the NMAE is generally low, with a minimum value of 0.09 (k =

5 and 7) and maximum of 0.156 (k = 1), and there are no substantial differences between

distance functions, even among different k values.

For categorical datasets, however, MDE stands out when compared to the remaining

approaches, achieving a percentage of exact matches around 60%, versus the 50-56%

obtained by the remaining (k = 1). As the k value increases, this difference becomes

less noticeable, although MDE remains the top approach. An important note, however,

is the lower imputation quality of HVDM-S on categorical data, when compared to the

remaining distance functions: for all k values, it obtains the lowest percentage of exact

matches on categorical features.
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Table 10.13: NMAE and Matches (%) divided by groups and missing rates (k = 3).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.096 ± 0.050 0.105 ± 0.047 0.095 ± 0.050 0.103 ± 0.049 – 0.104 ± 0.046 0.091 ± 0.051
Continuous 10% 0.102 ± 0.050 0.114 ± 0.047 0.102 ± 0.050 0.112 ± 0.048 – 0.106 ± 0.045 0.094 ± 0.051
Datasets 20% 0.113 ± 0.048 0.127 ± 0.045 0.112 ± 0.049 0.125 ± 0.048 – 0.111 ± 0.045 0.100 ± 0.050
NMAE 30% 0.123 ± 0.047 0.136 ± 0.045 0.121 ± 0.049 0.134 ± 0.048 – 0.116 ± 0.044 0.106 ± 0.049

5% 57.1 ± 17.9 57.2 ± 17.8 56.2 ± 17.5 55.6 ± 17.1 51.2 ± 15.3 60.4 ± 16.0 57.5 ± 18.0
Categorical 10% 57.2 ± 17.2 57.2 ± 17.1 56.2 ± 17.0 55.4 ± 16.5 52.1 ± 16.0 60.3 ± 15.6 57.5 ± 17.4
Datasets 20% 56.4 ± 16.8 56.3 ± 16.4 55.2 ± 16.5 54.6 ± 15.9 52.6 ± 16.0 60.0 ± 15.3 56.8 ± 16.8
Matches(%) 30% 55.7 ± 16.1 55.7 ± 15.7 54.3 ± 15.9 54.0 ± 15.3 52.6 ± 16.2 59.7 ± 14.9 55.9 ± 16.3

5% 0.177 ± 0.056 0.179 ± 0.056 0.172 ± 0.055 0.178 ± 0.055 0.173 ± 0.054 0.175 ± 0.058 0.177 ± 0.057
58.3 ± 16.0 58.0 ± 15.9 57.4 ± 15.0 56.6 ± 14.9 55.8 ± 15.0 59.3 ± 15.4 58.4 ± 15.8

Heterogeneous 10% 0.179 ± 0.055 0.183 ± 0.054 0.176 ± 0.055 0.184 ± 0.054 0.178 ± 0.054 0.177 ± 0.058 0.179 ± 0.055
Datasets 57.8 ± 15.7 57.2 ± 15.6 56.9 ± 14.7 55.6 ± 14.7 55.9 ± 14.9 59.6 ± 14.8 58.4 ± 15.7
NMAE 20% 0.184 ± 0.053 0.189 ± 0.054 0.184 ± 0.054 0.192 ± 0.054 0.183 ± 0.053 0.180 ± 0.057 0.182 ± 0.055
Matches(%) 57.0 ± 15.2 56.4 ± 15.0 55.8 ± 14.5 54.8 ± 14.5 55.1 ± 15.1 59.2 ± 14.6 57.8 ± 14.9

30% 0.188 ± 0.054 0.194 ± 0.054 0.190 ± 0.055 0.198 ± 0.054 0.189 ± 0.054 0.182 ± 0.057 0.186 ± 0.056
56.4 ± 14.8 55.5 ± 14.6 55.1 ± 14.4 54.0 ± 14.3 54.5 ± 14.9 59.0 ± 14.4 57.2 ± 14.7

Table 10.14: NMAE and Matches (%) divided by groups and missing rates (k = 5).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.094 ± 0.048 0.102 ± 0.045 0.094 ± 0.048 0.100 ± 0.046 – 0.103 ± 0.045 0.090 ± 0.048
Continuous 10% 0.101 ± 0.047 0.111 ± 0.044 0.100 ± 0.048 0.109 ± 0.046 – 0.105 ± 0.045 0.092 ± 0.048
Datasets 20% 0.111 ± 0.046 0.123 ± 0.043 0.110 ± 0.047 0.122 ± 0.046 – 0.110 ± 0.044 0.098 ± 0.048
NMAE 30% 0.121 ± 0.045 0.132 ± 0.043 0.119 ± 0.047 0.131 ± 0.046 – 0.115 ± 0.043 0.104 ± 0.047

5% 58.9 ± 17.5 58.9 ± 17.3 57.6 ± 17.2 57.1 ± 16.6 52.0 ± 15.8 60.7 ± 16.5 59.1 ± 17.7
Categorical 10% 58.5 ± 17.1 58.5 ± 17.0 57.4 ± 16.9 56.6 ± 16.2 52.8 ± 16.3 60.7 ± 15.9 58.8 ± 17.2
Datasets 20% 57.8 ± 16.5 57.5 ± 16.3 56.4 ± 16.2 55.6 ± 15.6 53.3 ± 16.2 60.5 ± 15.3 58.1 ± 16.7
Matches(%) 30% 57.0 ± 15.7 56.9 ± 15.3 55.6 ± 15.4 55.1 ± 14.8 53.2 ± 16.2 59.9 ± 15.0 57.3 ± 15.8

5% 0.171 ± 0.054 0.173 ± 0.054 0.167 ± 0.054 0.172 ± 0.053 0.168 ± 0.053 0.171 ± 0.057 0.172 ± 0.055
59.1 ± 16.1 59.1 ± 16.0 58.4 ± 15.0 57.7 ± 14.9 56.8 ± 15.0 59.5 ± 15.5 59.8 ± 15.9

Heterogeneous 10% 0.174 ± 0.052 0.176 ± 0.052 0.171 ± 0.054 0.178 ± 0.052 0.172 ± 0.052 0.174 ± 0.056 0.174 ± 0.054
Datasets 58.7 ± 15.6 58.3 ± 15.5 57.7 ± 14.6 56.7 ± 14.5 56.8 ± 14.7 59.8 ± 14.9 59.1 ± 15.5
NMAE 20% 0.179 ± 0.052 0.182 ± 0.051 0.179 ± 0.053 0.186 ± 0.052 0.178 ± 0.052 0.177 ± 0.056 0.177 ± 0.053
Matches(%) 58.0 ± 15.2 57.6 ± 14.9 56.6 ± 14.5 55.9 ± 14.5 56.1 ± 14.9 59.5 ± 14.7 58.7 ± 15.0

30% 0.182 ± 0.052 0.187 ± 0.052 0.184 ± 0.053 0.191 ± 0.052 0.183 ± 0.052 0.179 ± 0.056 0.180 ± 0.054
57.4 ± 14.7 56.6 ± 14.6 56.1 ± 14.4 55.2 ± 14.4 55.4 ± 14.7 59.2 ± 14.4 58.0 ± 14.8

Table 10.15: NMAE and Matches (%) divided by groups and missing rates (k = 7).

MR HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 0.095 ± 0.047 0.102 ± 0.044 0.094 ± 0.047 0.100 ± 0.045 – 0.103 ± 0.044 0.090 ± 0.047
Continuous 10% 0.101 ± 0.046 0.111 ± 0.043 0.100 ± 0.047 0.109 ± 0.045 – 0.105 ± 0.044 0.093 ± 0.047
Datasets 20% 0.112 ± 0.045 0.122 ± 0.043 0.111 ± 0.046 0.121 ± 0.045 – 0.110 ± 0.043 0.098 ± 0.047
NMAE 30% 0.120 ± 0.044 0.131 ± 0.042 0.119 ± 0.046 0.130 ± 0.045 – 0.115 ± 0.043 0.103 ± 0.046

5% 59.5 ± 17.0 59.5 ± 16.8 58.4 ± 16.7 58.1 ± 16.1 52.5 ± 15.9 61.0 ± 16.4 59.8 ± 17.2
Categorical 10% 59.4 ± 16.8 59.2 ± 16.7 58.2 ± 16.5 57.3 ± 15.9 53.3 ± 16.5 60.9 ± 15.9 59.6 ± 16.9
Datasets 20% 58.7 ± 16.1 58.5 ± 15.9 57.2 ± 15.8 56.5 ± 15.1 53.7 ± 16.4 60.6 ± 15.3 59.0 ± 16.3
Matches(%) 30% 57.7 ± 15.5 57.6 ± 15.1 56.2 ± 15.1 55.7 ± 14.5 53.7 ± 16.2 60.1 ± 14.9 58.1 ± 15.7

5% 0.169 ± 0.052 0.170 ± 0.052 0.164 ± 0.053 0.169 ± 0.052 0.165 ± 0.052 0.170 ± 0.056 0.170 ± 0.053
59.4 ± 15.9 59.4 ± 15.9 58.7 ± 14.7 58.3 ± 14.7 57.3 ± 14.8 59.9 ± 15.4 60.0 ± 15.7

Heterogeneous 10% 0.172 ± 0.051 0.174 ± 0.051 0.169 ± 0.053 0.175 ± 0.051 0.170 ± 0.051 0.172 ± 0.056 0.172 ± 0.053
Datasets 59.2 ± 15.3 59.0 ± 15.2 58.1 ± 14.3 57.4 ± 14.4 57.2 ± 14.6 60.1 ± 14.8 59.9 ± 15.2
NMAE 20% 0.176 ± 0.051 0.179 ± 0.050 0.177 ± 0.052 0.183 ± 0.052 0.176 ± 0.051 0.175 ± 0.055 0.175 ± 0.053
Matches(%) 58.4 ± 15.1 58.1 ± 14.8 57.3 ± 14.3 56.7 ± 14.2 56.7 ± 14.6 59.6 ± 14.7 59.2 ± 15.0

30% 0.180 ± 0.051 0.184 ± 0.051 0.182 ± 0.052 0.188 ± 0.052 0.181 ± 0.051 0.178 ± 0.055 0.178 ± 0.053
58.1 ± 14.5 57.2 ± 14.6 56.7 ± 14.3 55.8 ± 14.3 56.0 ± 14.4 59.3 ± 14.4 58.6 ± 14.7
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This observation confirms that classification and imputation are different tasks and there-

fore their evaluation should be carefully performed.

Nevertheless, the imputation quality results obtained by HVDM-S agree with its defini-

tion as described in Section 9.3 (Chapter 9) and discussed throughout this work. On the

one hand, since dvdm considers class targets when computing distances, HVDM-S (and

generally all HVDM-like functions) considers some information regarding the classifica-

tion task while computing distances, which grant it a major advantage for classification

purposes. On the other hand, two values xAj and xBj are considered similar if their class

distribution is similar which, while for classification purposes it may be beneficial, it may

have undesirable consequences in terms of imputation quality. As an example, consider

a dataset where j represents a categorical feature, “Chest Pain”, with possible values of

“low”, “moderate”, “high”, and “very high”. If “high” and “very high” are often both

associated with class “heart attack”, imputing a missing value (whose original category is

“high”) as “high” or “very high” will not have consequences in terms of classification, but

will not be translated into an exact match. This affects all HVDM-like functions (HVDM,

HVDM-R, HVDM-S), which perform worse than the remaining approaches. For the par-

ticular case of HVDM-S, results are especially worse since missing values, considered as an

extra category, are simply additional confounding factors in terms of imputation quality.

For heterogeneous datasets, MDE remains the overall best approach for all k, being the top

performer for MRs of 20 and 30%, whereas for lower missing rates, HVDM and SIMDIST

perform slightly better in some scenarios (k = 3, 5, 7). However, NMAE values obtained

with MDE are higher than the ones obtained for exclusively continuous data, whereas

the percentage of matches remains consistently around 60%, as for categorical datasets.

On the other hand, HVDM-S, although with slightly lower values of Matches (%) than

the remaining distances, performs similarly to the remaining (especially as k increases)

contrary to what was observed for exclusively categorical datasets. Regarding NMAE

values, HVDM-S also performs similarly to the remaining distance functions, often with

slightly better results and improving as k increases.

Overall, the experimental results suggest that, in terms of imputation quality, and consid-

ering all k values, SIMDIST is the top performing approach for continuous data whereas

MDE is the best approach for categorical and heterogeneous data. Nevertheless, it should

be stated that, as previously discussed, imputation and classification are different tasks

and both perspectives may be considered while evaluating imputation approaches. The

disagreement on HVDM-S (i.e., for categorical datasets, HVDM-S performs the best in

terms of classification results while being the worst approach in terms of imputation qual-

ity), suggests that different metrics assess different aspects (in this case, the performance

on different tasks) and that evaluation should be conducted on the most relevant aspects

for the domain. The top imputation approach in terms of classification performance is

not necessarily the top approach in terms of imputation quality, and it is important to
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determine which is more critical for the problem at hand.

Finally, the NMAE and Matches (%) results obtained for different values of k allow us

to draw some conclusions regarding the weighting strategy used for data imputation.

As previously detailed (Chapter 9, Section 9.4), the imputation estimates are weighted

according to the distance of each neighbour on continuous features, whereas for categorical

features the mode is used instead. In terms of Matches (%), it seems that an increase

of k slightly improves the results (the mode is computed considering a higher number

of neighbours). In terms of NMAE, although results do not considerably change for

continuous datasets, they increasingly improve for heterogeneous datasets as k increases,

meaning that although the neighbourhood is increasing, which may typically lead to a

distortion on the imputed values as more neighbours are being considered, the weighting

strategy presented in Equation 9.19 (Chapter 9) is able to take advantage of a broader

concept surrounding the missing pattern, while also minimising such distortion, by given a

higher weight to closer neighbours. This is especially relevant for missing data imputation,

as the neighbours that can act as “donors” for imputation are dependent on the availability

of values on a given feature. To illustrate this idea, please refer to Figure 10.1.

?

?
A

B

C

D

E

Figure 10.1: kNN imputation schema for a k = 3 neighbourhood: patterns with missing
values in the feature of interest, such as xB, will be disregarded for imputation.

In a multivariate MCAR scenario, all values from all features (and patterns) are equally

likely to be missing. Thus, consider pattern xA, whose value for a given feature j = 1 (f1)

for instance, is missing (denoted by “?”). If we considered a k = 3 neighbourhood, then

patterns xB, xC , and xD should be considered for imputation. However, it happens that

pattern xB is also missing a value on f1. Considering distances that handle missing data

allows to consider xB, xC , and xD as donors even if they have some missing values, i.e,

they could serve as donors for xA for f2, for instance. However, donors must have observed

values on the feature considered for imputation. In this case, as xB is also missing a value

in f1, the next closest neighbour needs to be considered, xE , although it may be farther

than the remaining neighbours. This may not have a great impact in terms of classification

performance (ultimately, all points could belong to the same class), but it may be provoke

a distortion in terms of imputation quality (especially NMAE). However, weighting donors

based on their distance to xA would make the contribution of xE mainly negligible.
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Taken together, these differences found between both tasks (classification and imputation)

also suggest something important: that for classification purposes, the chosen distance

function may significantly impact the obtained results, whereas regarding imputation pur-

poses, although the distance function plays an important role, the k parametrisation and

weighting scheme used for imputation are also potentially impactful for superior results.

The main conclusions on imputation quality are also depicted on Table 10.16, considering

each group of datasets individually (continuous, categorical, and heterogeneous datasets).

10.4 Conclusions and Future Work

Throughout this chapter, we performed a comparison of several heterogeneous distance

functions that handle missing values across a benchmark of 150 datasets with different

characteristics (continuous, categorical, and heterogeneous datasets). Whereas Sections

10.2 and 10.3 provide a detailed analysis on classification performance and imputation

quality, respectively, herein we focus on summarising the main conclusion of the work,

while also elaborating on possible future research directions. To that end, Table 10.16

presents a summary of the main conclusions obtained for both classification performance

and imputation quality, while particularly focusing on the obtained insights regarding

continuous, categorical, and heterogeneous datasets.

Table 10.16: Summary of conclusions on continuous, categorical, and heterogeneous
datasets regarding both classification and imputation quality.

Classification Performance Imputation Quality

• Overall, MDE outperforms the remaining distance functions
for all MRs (k = 1 and 3).
• For higher values of k, differences become negligible.

Continuous
Datasets

• Considering two missing values as being equal or defining
a maximal distance if one value is missing seems prejudicial.

• Considering all k values and MRs, SIMDIST is the top
performing approach.

• Distinguishing situations where only one or both values are
missing seems beneficial.

Categorical
Datasets

• For all k, HVDM-S is the overall top performing approach
across all MRs.
• Considering the distribution of missing data in each class
seems beneficial.

• Considering all k values and MRs, MDE is the top
performing approach.
• For all k values and MRs, HVDM-S performs worse
than the remaining distance functions.

• For k = 1, MDE and HVDM-S are the top performing approaches. • For k = 1, MDE is the best approach.

Heterogeneous
Datasets

• HVDM-S handles missing data in categorical features
better when one value is missing. For higher MRs,
MDE is superior.

• For higher values of k, MDE is the best approach for MRs
of 20 and 30%, although HVDM and SIMDIST perform
slightly better in some scenarios, for lower MRs.

• For higher k values, HVDM-S remains the top performer,
for intermediate MRs. For 5% or 30% MRs, there is no consensus.

• Regarding Matches (%), HVDM-S performs similarly to
the remaining distance functions, especially as k increases.

In turn, Figure 10.2 summarises the main recommendations for researchers using kNNI

to address domains affected by missing. Recommendations regarding the most suitable

distance functions for kNNI attend to the desired downstream task (classification or im-

putation) and to the characteristics of the dataset at hand (nature of features and missing

rate). Values of k = 1, 3 are chosen as the most representative of a local approximation of

imputation. Lower values maintain the variability of data in the domain and are common

in real-world application domains (please refer to Table D.1).
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Dataset with  
missing data

Nature  
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Metric

HVDM
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Figure 10.2: Summary of best practices for researchers regarding kNNI imputation (k =
1, 3), considering datasets with different characteristics (nature of features and missing
rates), as well as distinct downstream tasks (classification and imputation).

We conclude this chapter by systematising the main lessons learned from the conducted

experiments, and presenting promising lines for future research:

• For all k values and missing rates, learning classifiers from imputed data is preferred

to classification with missing data, as kNN imputation generally outperforms the

BASELINE results. For some scenarios (k = 1 and MR of 30%) building CART

models with missing data might be preferred to imputing with some distance func-

tions, though not preferred over MDE or HVDM-S (Table 10.1);

• As the missing rates increases, differences in classification performance between dis-

tance functions become more significant, especially for k = 1 and 3, showing that

missing data has a considerable impact on classification performance. For higher

values of k, differences are more subtle;

• In terms of classification performance, MDE and HVDM-S are the top two perform-

ing approaches: MDE stands out as the best approach for continuous datasets (k =

1 and 3), while for categorical datasets, HVDM-S frequently outperforms all others

(for all k). For heterogeneous datasets, both MDE and HVDM-S figure consistently

among the best approaches, for all k;

• For continuous datasets, the major difference between distance functions consists

in the treatment of missing data. Rather than defining similarities according to the

availability of xAj or xBj directly, the best approach considers the average similarities
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among observed values in data. Also, distinguishing situations where one value is

missing or two values are missing seems a suitable approach;

• For categorical datasets, the ability of HVDM-S to use information on the distri-

bution of missing values by class seems to be key for the good performance results

achieved;

• For heterogeneous datasets, an improved distance function could combine the prop-

erties of MDE and HVDM-S. MDE provides a better treatment of continuous fea-

tures, whereas HVDM-S is superior for categorical features. Regarding categorical

features, when one value is missing, the computation used by HVDM-S on categor-

ical features seems to be the most suitable approach, whereas when both values are

missing, MDE seems to perform better (although HVDM-S could be improved by

readjusting this comparison);

• Still regarding classification performance, we argue that HEOM, although widely

used across several heterogeneous domains, may not be the go-to approach, as others

have shown to be more beneficial;

• Regarding imputation quality and considering all k values, SIMDIST is the top

performing approach for continuous data, whereas MDE seems better for categorical

and heterogeneous data;

• Of note are also the results obtained by HVDM-S for categorical data. While it

obtains the highest classification results, it performs poorly in terms of imputa-

tion quality. This suggested that considering the class of patterns while performing

imputation helps to model the classification task, although it may not benefit the

imputation task itself;

• Differences between the analysis of classification versus imputation quality suggest

that, for classification performance, the choice of distance function is a determin-

ing aspect to obtain superior results (especially for categorical and heterogeneous

datasets). For imputation quality, the k-parametrisation and weighting scheme also

seem fundamental to obtain improved results;

• Classification and imputation are different tasks and their evaluation should be per-

formed accordingly, using adequate metrics. It is not guaranteed that the top ap-

proach in terms of classification performance is the best in terms of imputation

quality, and vice-versa. A suitable imputation approach should consider both (in

this regard, MDE obtains robust results); however, both the objective and condi-

tions of the study (missing rate, characteristics of data) should be taken into account

to perform an informed decision on the best imputation approach.
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In the next chapter (Chapter 11), we will focus on further studying heterogeneous datasets

under extended experimental conditions, e.g., generating missing values only on categori-

cal or continuous features. Another interesting topic for further research is a more in-depth

analysis of categorical features (and ratio of categorical to continuous features): we ex-

pect to find different results depending on the number of multi-valued nominal attributes

and number of categorical/continuous features. Other promising directions would be the

development of a novel distance function based on the behaviour of the studied distance

functions, and finally, the investigation of other missing data mechanisms (e.g., MAR),

missing rates (>30%), and strategies to weight features differently (e.g., based on their

mutual information or discriminative power).
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Chapter 11

An applicational study on the

k-nearest neighbours imputation

of medical datasets

In healthcare domains, dealing with missing data is crucial since absent observations com-

promise the reliability of patient-oriented models. k-Nearest Neighbours (kNN) impu-

tation has proven beneficial since it takes advantage of the similarity between patients

to replace missing values. Nevertheless, its performance largely depends on the distance

function used to evaluate such similarity. As discussed throughout the previous chapters,

in related literature kNN imputation often neglects the nature of data or performs fea-

ture transformation, whereas in this work, we study the impact of different heterogeneous

distance functions on the imputation of medical datasets. Obtained results show that

distance functions impact the performance of classifiers learned from the imputed data,

especially for more complex datasets.
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11.1 Introduction

A common data quality problem in healthcare domains is the presence of missing data,

which consists of absent observations in patients’ medical records [77]. Dealing with miss-

ing data is of outstanding importance, since absent observations may jeopardise algo-

rithms’ predictions, compromising the reliability of patient-oriented models for decision-

making. In healthcare contexts, k-Nearest Neighbours (kNN) imputation is a popular

imputation technique since it takes advantage of the similarity between patients to pro-

duce accurate estimates for imputation [202, 212, 378]. Nevertheless, as discussed along

Chapters 9 and 10, kNN performance largely depends on the distance function used to

evaluate such similarity. Besides their heterogeneous nature and susceptibility to missing

data, medical data is also prone to other complicating factors, such as class imbalance, the

presence of sub-concepts in data (small disjuncts), class overlap, and noisy data [107, 191],

which make them especially complex domains where choosing suitable distance functions

becomes a more strenuous and critical task. Accordingly, this work studies the impact of

different heterogeneous distance functions on kNN imputation, evaluating their effect on

the performance of classifiers constructed from medical datasets with different character-

istics. In contrast to previous experiments (Chapters 9 and 10), this work considers solely

heterogeneous datasets, and aims to provide some insights regarding the following:

• Determining if distance functions impact kNN imputation of medical datasets, and

whether the type of features affected by missing data influences the classification

performance;

• Determining whether the impact of distance functions is associated with the com-

plexity of the classification task (i.e., data complexity).

Considering the former, it is important to state that we evaluate the impact of distance

functions on data imputation indirectly, by focusing on the classification performance of

Classification and Regression Trees (CART) models constructed from the imputed data.

In other words, we focus on how accurate are the resulting classifiers, rather than how

well the imputation process reconstructs the data. Regarding the latter, we investigate

whether there are some scenarios (e.g., data complexity characteristics), where the choice

of distance function considerably influences the obtained results. In order to address

these topics, this work introduces the following modifications to the experimental setup

described in Section 9.4 (Chapter 9):

• Data Collection: Herein we focus on healthcare domains, and therefore only het-

erogeneous datasets are included. This study considers 31 complete and binary-

classification datasets, collected from open-source repositories (UCI, KEEL, KAG-

GLE, OpenML), comprising different medical contexts, sample sizes, number and
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types of features, imbalance ratios (IR), and other data characteristics (given by

complexity measures);

• Data Partitioning: In this work, each dataset was divided into 5 folds following

a stratified cross-validation (SCV) approach1. Missing data is introduced in the

same percentage for each fold, and the folds rotate to create 5 pairs of training/test

sets, where only the training set contains missing values. For each dataset, 10

repetitions of the cross-validation procedure were performed, resulting in a 10 × 5

SCV approach. A schema of the data preparation and cross-validation strategy is

depicted in Figure 11.1;

• Missing Data Generation: Similarly to the previous chapter, missing data is

generated at 4 different rates (5, 10, 20, and 30%), following a Missing Completely

At Random (MCAR) mechanism. Additionally, the same missing rate was inserted

in both classes according to the IR of each dataset, to guarantee that missing data

is affecting both classes proportionally to their distribution. However, this work

considers 4 different variants of MCAR generation, referred to as Weighted-Plain

(PLAIN), Weighted-ALL (WA), Weighted-Continuous (WA-CONT), and Weighted-

Categorical (WA-CAT). The goal of comparing different generations variants of miss-

ing data is to determine if the type of features (continuous or categorical) affected

by missing data influenced the choice of a proper distance function for imputation.

The “weighted” designation refers to the fact that the missing data is generated ac-

cording to the IR of each dataset. The PLAIN, ALL, CONT, and CAT designations

depend on the features where missing values are generated, as follows:

• PLAIN: This approach does not control for the number or type of features

where missing values are placed. Accordingly, missing data is generated over

the entire dataset without constraints, simulating a scenario likely to be found

in real-world healthcare domains;

• WA: This approach generates the same percentage of missing values for each

feature, i.e., all features are equally affected by missing data;

• WA-CONT: This approach generates the same percentage of missing values

for all continuous features;

• WA-CAT: This approach generates the same percentage of missing values for

all categorical features.

There are no significant changes regarding Data Imputation (kNN considers the pre-

viously described distance functions and k = {1, 3} for a more local behaviour), Classi-

fication (CART models), and Evaluation (only classification performance is evaluated,

resorting to Sensitivity, F-measure, and G-mean).

1As some datasets have a lower number of minority examples, using 10 folds would result in test sets
with a very small amount of minority examples, or the need to repeat minority examples across folds.
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Figure 11.1: Stratified cross-validation and missing data generation: missing data is in-
jected after the splitting of the data into training and test sets, for each fold. The same
splits are used for all methods (both for training and testing stages).
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11.2 Results and Discussion

Tables 11.1 and 11.2 report on the average Sensitivity ranks obtained for CART, consider-

ing training sets with missing values (BASELINE) and training sets imputed with each of

the 7 considered distances (k = 1 and 3, respectively). Furthermore, results are grouped

by missing data variant (PLAIN, WA, WA-CAT, and WA-CONT) and missing rate (5%

to 30%).

Overall, HVDM-S is globally the top performing approach, independently of the gener-

ation variant. For k = 1, where kNN imputation has a more local behaviour, HVDM-S

is consistently the best approach for most missing rates (> 5%) in all variants, only sur-

passed by SIMDIST when missing data is generated exclusively on continuous features.

This suggests that although HVDM-S handles efficiently both continuous, categorical, and

missing values, the strategy used by SIMDIST to handle continuous values might be su-

perior. For k = 3, HVDM-S surpasses the remaining approaches for higher missing rates

(> 10%), with MDE showing competitive results for lower missing rates (5 and 10%).
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Table 11.1: CART average Sensitivity ranks per missing rate (MR), and variant (k = 1).
The best values in each row are marked in bold and underlined. B: BASELINE.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 5.31 4.50 4.58 3.95 5.18 4.24 3.79 4.45
PLAIN 10% 5.52 4.35 5.31 5.03 4.63 3.48 3.73 3.95
Datasets 20% 4.32 4.66 5.06 4.77 5.37 3.32 4.10 4.39

30% 4.55 4.47 4.94 4.44 5.35 3.10 3.56 5.60

5% 3.55 4.98 4.89 4.63 4.61 4.65 3.55 5.15
WA 10% 5.24 4.81 4.87 4.42 5.06 3.16 4.18 4.26
Datasets 20% 5.10 5.05 4.87 4.34 4.21 3.63 3.77 5.03

30% 5.23 4.27 5.08 3.97 5.21 3.60 3.71 4.94

5% 5.57 4.93 4.12 3.91 3.86 4.10 5.03 4.47
WA-CAT 10% 5.02 4.59 5.00 4.64 5.21 3.12 3.64 4.79
Datasets 20% 4.91 4.38 5.14 4.00 4.78 3.60 4.83 4.36

30% 4.97 4.71 5.02 4.45 4.81 3.52 4.29 4.24

5% 5.31 4.26 4.63 4.08 4.39 4.39 5.03 3.92
WA-CONT 10% 4.92 4.79 4.73 4.56 4.37 4.37 4.24 4.02
Datasets 20% 5.31 4.18 4.71 5.10 4.08 4.08 4.19 4.35

30% 3.92 4.56 4.71 4.97 4.63 4.63 4.19 4.39

Table 11.2: CART average Sensitivity ranks per missing rate (MR), and variant (k = 3).
The best values in each row are marked in bold and underlined. B: BASELINE.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

5% 5.76 4.56 4.52 4.26 4.61 3.76 3.74 4.79
PLAIN 10% 6.40 4.66 3.94 5.18 3.87 3.44 4.31 4.21
Datasets 20% 5.40 5.26 4.65 4.29 4.52 3.48 3.89 4.52

30% 6.39 5.02 4.02 4.24 5.00 2.95 3.56 4.82

5% 4.44 4.90 4.47 5.06 5.31 3.82 3.60 4.40
WA 10% 5.60 4.06 4.76 4.50 4.44 4.47 3.94 4.24
Datasets 20% 5.50 4.61 5.11 4.89 4.56 3.34 3.76 4.23

30% 6.21 5.16 3.84 4.15 4.21 3.53 4.32 4.58

5% 5.34 4.28 4.83 3.59 3.52 4.31 5.07 5.07
WA-CAT 10% 4.79 4.53 4.93 4.60 4.86 4.00 4.64 3.64
Datasets 20% 5.72 3.93 4.76 4.29 4.67 3.76 5.00 3.86

30% 4.86 3.98 4.66 5.50 5.12 3.34 4.45 4.09

5% 5.29 4.85 3.89 4.48 4.35 4.35 4.23 4.55
WA-CONT 10% 5.87 4.35 4.32 4.42 4.37 4.37 3.66 4.63
Datasets 20% 5.27 5.00 4.35 4.27 3.98 3.98 4.19 4.94

30% 4.98 4.66 4.37 4.82 4.16 4.16 4.29 4.55

As the analysis of ranks does not provide information of the classification results directly,

we also analyse several important performance metrics for complex, imbalanced datasets,

such as Sensitivity, F-measure, and G-mean, as shown in Tables 11.3 and 11.4. Over-

all, HVDM-S remains the top performing approach, despite the superior behaviour of

SIMDIST and MDE for k = 1, regarding missing rates of 5 and 10%, respectively.

However, the classification performance is overall poor, even when data is imputed. Since

we focus specifically on the analysis of the effect of data imputation, the considered

datasets were not improved by any pre-processing strategies, such as data oversampling,

outlier removal, or cleaning approaches. As medical datasets are often complex by nature,

presenting a considerable imbalance ratio and associated problems such as small disjuncts,

overlap, and outliers, among others, we moved to a more detailed analysis of the character-

istics of the collected datasets, with the objective to determine whether data complexity

could be related to differences in performance for selected distance functions.

333



Chapter 11

Table 11.3: CART performance results (mean ± standard deviation) on PLAIN Datasets
without imputation (BASELINE) and with kNN (k = 1) imputation using specific dis-
tances for distinct missing rates (MR). The best values for each performance metric are
marked in bold and underlined.

Distance MR Sens F-measure G-mean MR Sens F-measure G-mean

BASELINE 0.468 ± 0.331 0.472 ± 0.326 0.536 ± 0.300 0.460 ± 0.334 0.463 ± 0.331 0.524 ± 0.306
HEOM 0.481 ± 0.322 0.484 ± 0.316 0.555 ± 0.284 0.476 ± 0.326 0.475 ± 0.319 0.541 ± 0.292
HEOM-R 0.479 ± 0.326 0.483 ± 0.320 0.551 ± 0.289 0.469 ± 0.325 0.470 ± 0.319 0.537 ± 0.290
HVDM 0.483 ± 0.324 0.484 ± 0.317 0.554 ± 0.282 0.470 ± 0.328 0.471 ± 0.320 0.538 ± 0.293
HVDM-R 0.475 ± 0.328 0.479 ± 0.322 0.546 ± 0.291 0.472 ± 0.325 0.473 ± 0.317 0.540 ± 0.289
HVDM-S 0.482 ± 0.326 0.483 ± 0.320 0.552 ± 0.289 0.477 ± 0.327 0.476 ± 0.317 0.546 ± 0.286
MDE 0.481 ± 0.326 0.483 ± 0.317 0.554 ± 0.284 0.479 ± 0.326 0.478 ± 0.315 0.547 ± 0.287
SIMDIST

5%

0.483 ± 0.324 0.485 ± 0.317 0.555 ± 0.283

10%

0.478 ± 0.330 0.476 ± 0.322 0.541 ± 0.296

BASELINE 0.461 ± 0.337 0.459 ± 0.332 0.516 ± 0.311 0.436 ± 0.334 0.437 ± 0.334 0.489 ± 0.317
HEOM 0.460 ± 0.322 0.455 ± 0.315 0.522 ± 0.294 0.435 ± 0.319 0.430 ± 0.313 0.494 ± 0.297
HEOM-R 0.453 ± 0.319 0.454 ± 0.313 0.520 ± 0.290 0.429 ± 0.317 0.429 ± 0.313 0.491 ± 0.297
HVDM 0.460 ± 0.324 0.458 ± 0.316 0.525 ± 0.293 0.441 ± 0.316 0.435 ± 0.309 0.500 ± 0.294
HVDM-R 0.448 ± 0.318 0.448 ± 0.312 0.514 ± 0.290 0.428 ± 0.317 0.427 ± 0.312 0.487 ± 0.299
HVDM-S 0.473 ± 0.321 0.467 ± 0.310 0.540 ± 0.282 0.451 ± 0.316 0.444 ± 0.306 0.512 ± 0.287
MDE 0.463 ± 0.330 0.458 ± 0.316 0.526 ± 0.294 0.452 ± 0.332 0.440 ± 0.314 0.507 ± 0.300
SIMDIST

20%

0.460 ± 0.324 0.458 ± 0.315 0.524 ± 0.293

30%

0.417 ± 0.324 0.417 ± 0.317 0.476 ± 0.303

Table 11.4: CART performance results (mean ± standard deviation) on PLAIN Datasets
without imputation (BASELINE) and with kNN (k = 3) imputation using specific dis-
tances for distinct missing rates (MR). The best values for each performance metric are
marked in bold and underlined.

Distance MR Sens F-measure G-mean MR Sens F-measure G-mean

BASELINE 0.468 ± 0.331 0.472 ± 0.326 0.536 ± 0.300 0.460 ± 0.334 0.463 ± 0.331 0.524 ± 0.306
HEOM 0.482 ± 0.324 0.483 ± 0.317 0.553 ± 0.283 0.479 ± 0.332 0.475 ± 0.319 0.541 ± 0.292
HEOM-R 0.482 ± 0.324 0.483 ± 0.317 0.554 ± 0.283 0.483 ± 0.329 0.480 ± 0.316 0.548 ± 0.288
HVDM 0.480 ± 0.328 0.480 ± 0.320 0.549 ± 0.288 0.475 ± 0.331 0.472 ± 0.320 0.539 ± 0.295
HVDM-R 0.480 ± 0.327 0.479 ± 0.320 0.549 ± 0.286 0.482 ± 0.325 0.478 ± 0.314 0.547 ± 0.285
HVDM-S 0.485 ± 0.328 0.485 ± 0.320 0.556 ± 0.286 0.487 ± 0.329 0.481 ± 0.316 0.550 ± 0.288
MDE 0.485 ± 0.329 0.484 ± 0.319 0.552 ± 0.288 0.480 ± 0.332 0.474 ± 0.319 0.544 ± 0.290
SIMDIST

5%

0.481 ± 0.328 0.482 ± 0.320 0.551 ± 0.286

10%

0.483 ± 0.332 0.478 ± 0.320 0.544 ± 0.294

BASELINE 0.461 ± 0.337 0.459 ± 0.332 0.516 ± 0.311 0.436 ± 0.334 0.437 ± 0.334 0.489 ± 0.317
HEOM 0.463 ± 0.326 0.454 ± 0.315 0.519 ± 0.293 0.450 ± 0.320 0.437 ± 0.309 0.505 ± 0.288
HEOM-R 0.469 ± 0.320 0.463 ± 0.311 0.529 ± 0.289 0.461 ± 0.314 0.445 ± 0.302 0.514 ± 0.279
HVDM 0.470 ± 0.327 0.460 ± 0.314 0.526 ± 0.292 0.462 ± 0.321 0.444 ± 0.307 0.512 ± 0.285
HVDM-R 0.466 ± 0.329 0.455 ± 0.315 0.522 ± 0.292 0.456 ± 0.321 0.441 ± 0.309 0.507 ± 0.289
HVDM-S 0.479 ± 0.323 0.468 ± 0.310 0.539 ± 0.284 0.476 ± 0.321 0.456 ± 0.303 0.532 ± 0.276
MDE 0.476 ± 0.328 0.465 ± 0.314 0.534 ± 0.291 0.470 ± 0.324 0.452 ± 0.307 0.523 ± 0.284
SIMDIST

20%

0.468 ± 0.331 0.458 ± 0.319 0.523 ± 0.296

30%

0.456 ± 0.325 0.440 ± 0.311 0.509 ± 0.289

Accordingly, several data complexity measures where computed for each dataset. These

measures regard key properties of datasets such as geometry/topology (L3, N4), class

overlap (F1, F2, and F3) and class separability (L1, L2, N1, N2, and N3), and have proved

to accurately provide important meta-information on the learning abilities of classifiers,

especially in imbalanced domains [387]. We found the most informative measures to be

related to class overlap (F1) and class separability (L2 and N1), as presented in Figure 11.2.

F1 captures the highest discriminative power of all features in data and lower values

indicate more complex problems. In turn, L2 and N1 focus on the characteristics of the

decision boundary between classes, where L2 measures the error rate of a support vector
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Figure 11.2: Data complexity measures of the considered datasets: F1, L2, and N1.
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machine with linear kernel and N1 measures the fraction of data points connected to the

opposite class by an edge in a minimum spanning tree. Contrary to F1, higher values of

L2 and N1 indicate more complex problems.

Accordingly, the top most complex datasets are caesarian, dmft-health, pharynx-1year,

pharynx-status, plasma-retinol, schizo, and veteran (Figure 11.2), which were further anal-

ysed. Figure 11.3 compares the mean performance of each dataset for PLAIN variant and

a missing rate of 30%, where differences were more noticeable2. For simplicity, and to

determine clinical relevance, we focus on a direct comparison of HVDM-S with both the

BASELINE and the most frequently used approaches in the literature for healthcare data,

i.e., HEOM and HVDM [9, 202, 378]. Nevertheless, results for the remaining distances fol-

low a similar trend (with MDE, some datasets obtain similarly performances to HVDM-S,

as expected from Tables 11.3 and 11.4).

The analysis of Figure 11.3 reveals that HVDM-S provides a substantial improvement in

Sensitivity results for more complex datasets (especially in comparison to HEOM). This

suggests that choosing a proper distance function for kNN imputation is important to

produce quality training sets, and that this choice is even more important when data

is complex, as determining the most similar patterns becomes crucial to obtain better

classification results.

2PLAIN variant is also the most likely to be encountered in real-world domains, where missing data is
scattered throughout the entire dataset.
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Figure 11.3: CART Sensitivity results for most complex datasets, considering a PLAIN
variant a missing rate of 30% (k = 1 and 3).
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11.3 Conclusions and Future Work

In an era where the health community is shifting its attention towards the paradigms

of personalised medicine, where machine learning algorithms play an instrumental role,

guaranteeing the quality of data to develop decision-support models is of extreme impor-

tance. In that sense, to improve the quality of medical data, we explore kNN imputation

on the performance of CART models across different missing data scenarios. These are

both non-parametric, interpretable, and explainable models, which is a critical aspect in

healthcare domains.

From the experiments conducted in this chapter, three main conclusions may be derived.

First, distance functions impact kNN imputation, where HVDM-S has proved to be a

feasible and robust approach for the imputation of heterogeneous medical data, indepen-

dently of the type of features affected by missing data (i.e., generation variant). Secondly,

HVDM-S shows a particularly good behaviour when compared to more common distance

function (HEOM and HVDM) for more complex datasets, indicating that choosing a

proper distance function becomes crucial when data is complex. Finally, missing data

should be considered as yet another data difficulty factor for imbalanced domains, as it

influences the computation of distances and assignment of nearest neighbours, becoming

specially critical when other factors are present in data.
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Chapter 12

Conclusions

In this chapter, we end the thesis by summarising our conclusions and insights regarding

the research questions presented in Chapter 1 and discussed throughout the remaining

chapters (Sections 12.1 to 12.7). Finally, we provide our view on the steps needed to bring

the machine learning community closer to a data-centred research (Section 12.8).

12.1 Learning from Imbalanced Data (RQ-1)

The research questions comprised in RQ-1 were thoroughly discussed in Chapter 2. Major

insights are summarised follows:

ä What characterises the overoptimistic and overfitting effects when handling

imbalanced datasets?

The overoptimism effect derives from a poorly-designed cross-validation procedure. It

occurs when oversampling is performed beforehand, over the entire dataset and prior to

the data division into training and test partitions. In this scenario, similar or exact replicas

of a given example may appear both in the training and test sets, and a classification

model built with the training set will perform exceptionally well over the test set, not due

to the generalisation abilities developed during the learning stage, but rather because it

is classifying very similar, “already seen” examples.

In turn, the overfitting effect is associated to a misguided choice of oversampling tech-

niques. It is associated to oversampling algorithms that create exact replicas of training

examples, such as Random Oversampling. In this scenario, the training set will be aug-

mented with synthetic examples that are exact replicas of the original examples. This

causes the model to be deeply fitted to the training data, and consequently lose its gener-

alisation ability for the test data.
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ä How does oversampling change the nature of data, consequently influencing

the performance of classifiers?

By generating new synthetic examples in certain regions of the data space, oversampling

is able to modify the training data, most often generating larger and less specific deci-

sion boundaries that increase the generalisation of classifiers, thus improving classification

performance.

The key characteristics of oversampling algorithms that lead to better classification perfor-

mance are often associated to their ability to alleviate certain data imperfections, namely

class overlap and small disjuncts.

Regarding class overlap, common strategies rely on i) cleaning procedures or ii) adaptive

weighting of examples. This involves either i) removing conflicting examples from the

training data or ii) increasing the representation of specific types of examples. In i),

examples with conflicting neighbourhoods are eliminated, often those that are misclassified

by their k-nearest neighbours. In ii), the algorithms search for examples with particular

characteristics, frequently related to each example’s hardness (i.e., difficulty of examples

for classification tasks), and oversample them more often. In some cases, the focus is on

examples that are easier to learn (considered safe); in other cases, the focus is on examples

that are harder to learn (considered danger or borderline examples).

Regarding small disjuncts, popular algorithms rely on cluster-based oversampling. These

algorithms are more attentive to the structure of the domains, and focus on finding and

inflating sub-clusters in data, increasing the recognition of underrepresented sub-concepts.

Among the oversampling algorithms studied in Chapter 2, SMOTE-TL and MWMOTE

proved to be the best approaches.

SMOTE-TL focuses mostly on reducing boundary complexity by alleviating class overlap.

It cleans the training data by removing complex examples from both the minority and

majority classes. However, this cleaning is not excessive: the objective is not to perform

a deep or recursive cleaning, but rather to simplify the domain’s decision boundaries,

alleviating some of the artefacts possibly introduced by SMOTE oversampling.

In turn, MWMOTE provides a careful oversampling process by combining several success-

ful characteristics. It alleviates class overlap and increases the representation of harder-

to-learn minority examples by performing filtering and an adaptive weighting of examples,

and is attentive to other structural biases in the domains, such as the existence of small

disjuncts or dense/sparse regions, by considering data clustering.
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12.2 Addressing real-world imbalanced domains (RQ-2)

The research question RQ-2 regards the experiments conducted in Chapter 3, from which

the following conclusions can be derived:

ä Can concept heterogeneity be interpreted as a form of class imbalance? How

can it be handled in real-world domains?

When handling imbalanced data, researchers are mostly concerned with alleviating between-

and/or within-class imbalance. The former corresponds to a disproportion between target

classes (i.e., an unequal number of representatives from each of the classification concepts).

In turn, the latter refers to the existence of sub-represented concepts of particular classes

in data, defined in the literature as the problem of small disjuncts. Nevertheless, concept

heterogeneity may also be understood as a form of class imbalance. On the one hand,

concept heterogeneity is associated with the problem of small disjuncts, since examples

from the same class may be comprised in several clusters with distinct characteristics.

On the other hand, it illustrates some degree of class overlap, since clusters may contain

examples of different classes, indicating that examples with different class memberships

may reveal similar characteristics. The co-occurrence of these factors naturally creates a

more complex situation for classifiers.

Robust approaches to address class imbalance should consider concept heterogeneity. In

Chapter 3, we explore a cluster-based oversampling approach to address a complex real-

world healthcare dataset presenting several difficulties: heterogeneous data, missing data,

class imbalance, and concept heterogeneity, illustrating a mixture of small disjuncts and

class overlap. We carefully design our approach in order to address patient heterogeneity,

by considering the following aspects:

• Missing Data Imputation: Prior to the oversampling stage, in order to clean the

data, missing values were replaced using the closest neighbour imputation approach

(1NN). Performing 1NN imputation was a sensible choice to maintain the variability

of the dataset, and avoid that certain concepts became diluted by the use of larger

neighbourhoods when producing plausible estimates;

• Cluster-Based Oversampling: The oversampling procedure was performed con-

sidering several clustering solutions. This step was designed to increase the repre-

sentation and recognition of patient profiles with reduced sizes. Rather than consid-

ering solely the disproportion between class targets or the heterogeneity of examples

within each class, we analyse naturally-occurring clusters in data, regardless of the

class of the examples comprised in each cluster. We handle class imbalance in what

concerns concept heterogeneity, guaranteeing that existing concepts in data are ap-

proximately equally represented. Additionally, we take advantage of the diversity

created by multiple clustering solutions to produce a training set aligned with the
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heterogeneous nature of the data. In such a way, the training set becomes represen-

tative of the context being studied, thus improving the performance of classification

models;

• Adaptive Synthetisation of Examples: Rather than targeting oversampling

only to the minority class, we produce an adaptive synthetisation of examples. Our

modified version of SMOTE is applied to cluster examples regardless of their class,

and the class label of each new synthetically generated example is not pre-established,

it is assessed during the oversampling procedure;

• Attentive Distance Functions: Rather than performing feature transformation,

the approaches applied in this work consider appropriate functions to assess patient

similarity. In particular, we consider HEOM, which handles both continuous and

categorical data, and further incorporates missing data in distance computation.

Our objective is that distance computation is as faithful to the nature of data as

possible;

• Ensemble Evaluation: Another way to account for concept heterogeneity is by

using ensemble methods. In our work, this strategy ultimately lead to the wining

solution on the hepatocellular carcinoma dataset. Rather than producing a single

representative set of the domain, the final predictions are given by an ensemble of

classifiers constructed with several distinct representative training sets.

In sum, accounting for concept heterogeneity in real-world domains involves the devel-

opment of approaches that potentiate the representation of data concepts prior to the

development of classification models. This entails the design of frameworks that are at-

tentive to data heterogeneity at all steps of the process, acknowledging and respecting

the nature of data rather than applying ad hoc solutions. This allows the construction

of training sets that are truly exemplary of the data domain, where the representation

of complex (often ambiguous) concepts is assured, which in turn translates to a higher

generalisation ability developed during the learning stage of classification algorithms.

12.3 Identification of Small Disjuncts (RQ-3)

The research questions included in RQ-3 were the subject of investigation of Chapter 4,

where the following topics were discussed:

ä Is it possible to identify small disjuncts in real-world domains?

In rule-based learning, small disjuncts are defined by sets of rules with low coverage. Aside

from rule-based classification, small disjuncts are typically perceived as small, underrepre-

sented clusters in data. In real-world domains, the structure and number of existing class

concepts is not trivial to determine, let alone the definition of which clusters stand as valid
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and well-represented concepts, which clusters illustrate small disjuncts, and which data

examples are considered noise. In Chapter 4, we put forward a framework for the identi-

fication of small disjuncts, based on density-based clustering. According to the obtained

results, we argue that it is likely that the identification of small disjuncts in real-world

domains observes some breakthroughs shortly. However, some questions will be harder to

answer than others.

In our approach, we discuss how to adjust density-based clustering solutions to the iden-

tification of small disjuncts, and propose a new fine-tuning approach for the DBSCAN

algorithm. DBSCAN is able to handle several difficulties associated with other approaches

based on k-means: it does not require that the final number of clusters is defined apri-

ori, it can handle more complex, non-spherical cluster shapes, and it can identify noisy

examples, leaving them out of the clustering solution. Overall, our approach has shown

promising results, although more thought should be put into solving the following issues:

• Varying cluster densities: The inability to handle varying cluster densities is a

well-known drawback of DBSCAN. As long as there are connection points between

clusters with different densities, DBSCAN aggregates them into one larger cluster.

This is critical to the identification of small disjuncts, as there may exist several

small disjuncts that are density-reachable from larger, well-defined clusters, causing

them to be aggregated to those same concepts in single, larger clusters. A possible

strategy to overcome this issue is the introduction of a new category into the labelling

strategy of DBSCAN, the connection points. Connection points may be identified

through the examination of the data density of each core point. However, defining a

suitable threshold to distinguish between a core and a new connection point is not

trivial. Another strategy to overcome varying cluster densities is the implementation

of an adaptive neighbourhood distance ε. In our approach, ε, although dynamically

adjusted, is equal for all data points. Our df term acts as a regulator of ε, in order to

simultaneously privilege scenarios with dense and well-defined clusters (guaranteeing

that a stable solution is obtained), while also achieving a faster final solution (i.e.,

it reduces the number of iterations required for the fine-tuning process to end).

Nevertheless, it remains a fixed step used across the entire domain. An adaptive

strategy would allow to adjust ε according to the characteristics of data. For instance,

ε would be decreased for initial core points with lower data densities, causing its core

category to be re-evaluated;

• Concept heterogeneity and class overlap: Clustering algorithms are unsuper-

vised by nature. In such a way, there is no distinction between majority and minority

examples that may be encompassed in the same clusters. To surpass this issue, cur-

rent approaches (including ours) perform the clustering for each class individually.

Nevertheless, this process may also cause some smaller clusters of the same class to

be aggregated into larger clusters, even if they are separated by concepts of the oppo-
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site class. This occurs since the clustering process is blind to the existence of classes

other than the one being clustered. A possible way to surpass this issue is to con-

sider a semi-supervised strategy in which the typology of data examples of the class

being clustered is known. For instance, outlier examples could be discarded from

the clustering solution apriori, whereas rare examples could automatically consti-

tute clusters of rare, although valid, concepts. In turn, safe and borderline examples

would be subjected to the clustering process, although only safe examples would be

eligible to constitute core points and allowed to expand;

• Validity of concepts: Discerning on the validity of concepts is, however, more

complicated than the above aspects, since it may require some background knowledge

on the real-world domain. A natural question refers to what should be considered a

rare concept versus an artefact. In our approach, artefacts are those points defined as

noise by the DBSCAN algorithm. Then, the remaining data examples are analysed

following the notions of concept representativity and relative importance. These ideas

are based on the premise that larger clusters constitute well-defined concepts, and

small disjuncts are defined by comparison to the most represented concepts in the

domain. Based on that rationale, another question may be considered, concerning

the distinction between a well-represented concept and a poorly represented concept,

especially if the minority class does not have one or several strong concepts, but

rather multiple “weak”, underrepresented concepts. Our categorisation follows a pre-

defined threshold for relative importance which leads to different solutions depending

on the specified value. Naturally, even if this is to be accepted as a reasonable method

to distinguish between concepts, new heuristics or sensitivity analyses would have to

be attempted to generalise this methodology to real-world domains. Finally, another

controversial topic would be how to distinguish true noise from outliers or rare cases.

Although in imbalanced domains, minority class outlier and rare examples are not

considered noise, there is still no consensus on how to distinguish between them in

what concerns their validity in representing a particular concept of the domain.

ä How to adjust the parametrization of clustering algorithms (DBSCAN) to

the identification of small disjuncts?

Although it does not require that the final number of clusters is established apriori, DB-

SCAN requires that two parameters, ε and minPts, are defined. Parameter ε refers to the

radius that defines the neighbourhood of each data example, whereas minPts refers to

the minimum number of points that need to be in such neighbourhood for a given point

to be considered a core point, and later expanded. In order to adjust the parametrization

of DBSCAN to the identification of small disjuncts, the following decisions were taken, for

each parameter:

• ε: The ε value is a sensitive parameter of DBSCAN, highly impacting the achieved

solutions. In our approach, we consider an iterative process where ε is increased
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dynamically at each iteration. First, ε is set to an initial value (called a fixed term,

ft), which will typically produce a large number of clusters. Then, ε is increased by a

factor df×ft, where df acts as a regulator of the fixed term ft. At each iteration, df is

adjusted based on the current clustering solution. If the solution illustrates a scenario

where the found clusters are dense and well-defined, then df will be low and the next

iteration will produce smaller ε adjustments so that cluster borders are sensitive to

nearby examples. In turn, if the process produces a solution where clusters are

sparse and closer to each other, df will increase, producing a larger ε value that will

cause the clustering solution to be considerably re-evaluated, most likely resulting in

different cluster definitions. The process ends when there is an ε value such that all

examples are assigned to the same cluster. Then, it is necessary to find the ε value,

and respective cluster assignments, that corresponds to the optimal solution. This

dynamic adjustment of ε has two main advantages. First, it drives the process to

converge faster. Rather than increasing ε by a standard, fixed step ft, this solution

adjusts the step according to the obtained clustering solution. This means that,

when the process starts, the initial iterations will have larger df and ε values, until

the algorithm approximates solutions where clusters become well-defined, lowering

the df and ε values in order to be sensitive to cluster boundaries. Then, after the

optimal solution has been achieved, the clusters produced will become misshapen as

ε increases, which again generates larger df and ε values, consequently reducing the

number of iterations required for the process to end. Secondly, it fosters the search for

an optimal solution. Since the df factor ensures that ε will increase slowly in scenarios

representing well-defined clustering solutions, these slight variations will eventually

correspond to the existence of more iterations for these scenarios, i.e., the appearance

of a plateau where the same clustering solution is found for increasing values of ε,

illustrating stable solutions. This allows that the optimal solution, corresponding to

the most suitable ε value, is found after searching for that plateau, i.e., by examining

the longest sequence of iterations returning the same number of clusters;

• minPts: This value is established based on the current established data typology of

minority class examples: safe, borderline, rare, and outlier examples. According to

this data typology, rare examples correspond to isolated pairs or triples of minor-

ity class examples surrounded by majority class examples, forming “small islands”

inside the majority class. In turn, outlier examples are isolated, singular examples,

“thrown” into the majority class. In imbalanced domains, both rare and outlier

types are considered rare cases. Nevertheless, whereas rare examples are closer to

be acknowledged as valid, underrepresented concepts, it is still not clear how to dis-

tinguish outliers from noisy examples. The current premise is that outliers should

not be treated as noise, but as small, precious sub-concepts for which no other repre-

sentatives could be collected for training. Distinguishing between the three concepts

is, however, another line of research. In the proposed approach, we aimed to ap-
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proximate the detection of small disjuncts to the established data typology, although

distinguishing the concept of small disjuncts from the concepts of rare and outlier

examples. Therefore, we consider that a small disjunct should comprise at least 3

data examples (minPts = 3). Note that, although the data typology is established

based on the neighbourhood characteristics of each data example (i.e., number of

majority class examples that surround the minority ones), our concept of small dis-

junct does not attend to the class labels of surrounding neighbours (the clustering

process is performed class-wise, and only over the minority class, in our work). In

our view, even if there is no class overlap (i.e., even if data examples are safe), the

fact that a small number of examples is circumscribed to a particular region of the

feature space seems indicative that they constitute some sub-concept that may be

underrepresented in comparison to larger concepts. Finally, following minPts = 3,

DBSCAN algorithm will automatically define isolated singletons or pairs of examples

as noise. This does not mean that the respective examples are in fact true noise, but

it distinguishes between concepts that should perhaps be inflated to increase their

representation in data, from concepts which require further investigation (in order to

determine whether they correspond to truly valid concepts, if more representatives

can be collected, and whether to invest in expert classifiers that can recognise them

properly, or in specialised preprocessing techniques to increase their representation).

ä Which clusters represent valid concepts, which correspond to underrepre-

sented concepts (small disjuncts), and which may be considered noisy exam-

ples?

After finding the plateau corresponding to stable solutions, it is necessary to assess the

produced clusters and evaluate which solution is the most representative of the domain.

To that end, we first establish the notion of concept representativity. Essentially, the

representation of each concept is evaluated based on how well its examples are encom-

passed in that concept and how many examples the cluster contains (cluster cardinality).

Thus, concept representativity is somewhat reminiscent of cluster validity indexes and it

further uses the cardinality of each cluster to produce a measure of “representativenes” of

the overall clustering solution, based on the premise that larger clusters constitute well-

defined, more representative concepts, and thus have a higher impact on the obtained

solution. The most representative solution is the one that obtains maximal concept rep-

resentativity. Then, it is necessary to discern on the validity of the established clusters.

As previously discussed, validating the concepts found in the clustering solution, without

any domain knowledge, is not a trivial task. In our approach, we are only concerned with

concepts that are represented by at least 3 data examples; singletons and pairs of exam-

ples are considered noise by DBSCAN and should be analysed in more detail afterwards.

As follows from the notion of concept representativity, larger clusters are associated with

well-represented, “secure”, and representative clusters, i.e., the “main” concepts of the

domain. The remaining concepts are evaluated in comparison to the main concepts, ac-
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cording to their relative importance, or in other words, their “relative representation” on

the domain. This relative importance associates the representativeness of each sub-cluster

to the ratio of its size over the size of the largest cluster in data. Then, we defined a

threshold based on our experiments, and establish a small disjunct as a cluster whose

cardinality is 30% lower than the cardinality of the main concept. If there is not at least

a single “main concept” in data, then all clusters are considered “main concepts”, rather

than small disjuncts. This indicates that there may exist a considerable amount of class

decomposition in the domain, but there are no sub-represented concepts, since all con-

cepts are relatively equally represented. Finally, it is important to state that at most, this

established threshold should be taken as a hyperparameter of the algorithm, since there

is no obvious strategy to infer which concepts should be considered “underrepresented”

for all domains. Also, note that this categorisation into small disjuncts only considers the

number of data examples in each cluster, and perhaps other measures such as the cluster

density, and data typology of the examples comprised in each cluster should be analysed

to infer on their representation, considering what was previously discussed regarding the

dangers associated with class heterogeneity and overlap.

12.4 Interplay of Class Imbalance and Class Overlap (RQ-4)

The research questions comprised in RQ-4 concern the study conducted in Chapters 5 and

6. Main conclusions are the following:

ä What is the influence of intrinsic data characteristics (data decomposition,

data structure, data dimensionality, data typology) on the classification per-

formance of imbalanced and overlapped domains?

Based on the analysis conducted over imbalanced and overlapped domains, two main as-

pects seem the most influential for classification performance: local data characteristics

and data structure. Some insights have also been derived regarding data dimensionality,

although this topic requires a more detailed attention in future work.

With the term local data characteristics we refer to two main factors: local imbalance and

data typology :

• Local Imbalance: The local imbalance characterises the imbalance ratio in the

overlap region, and contrasts with the notion of global imbalance, which refers to

the overall disproportion of examples among existing classes. Ultimately, the local

imbalance refers to the characteristics of data at a local level, i.e., the distribution of

each class in the regions where data examples overlap, and may occur irrespective of

the imbalance ratio (i.e., it can be due to other structural biases). The representation

of each class in the overlap region is one of the most impactful factors for classification

performance. In general, the class that is more well-represented in the overlap region
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(regardless of the imbalance ratio) is easier to recognise by classification algorithms;

• Data Typology: A domain with a high imbalance ratio where all data examples

remain safe does not illustrate a complex classification problem. Resorting to the

analysis of data typology is a way of approximating the complexity of the classifica-

tion task over a given domain, where borderline examples are often directly associated

with class overlap, despite the fact that all of the non-safe examples (which includes

rare and outlier examples) may also contribute to the problem. A higher number of

borderline examples indicates that there is a larger amount of class overlap, and that

the decision boundaries of the domain are therefore more complex. Several complex-

ity measures are in fact based on the identification of complicated neighbourhoods,

searching for examples that have conflicting class memberships and consequently are

harder to learn. In imbalanced domains, analysing the data typology of minority

examples has shown to be a good predictor of classification performance.

In what concerns the data structure of a domain, we refer to non-linear boundaries and

class decomposition:

• Non-Linear Boundaries: Non-linear decision boundaries are harder to learn re-

gardless of the class imbalance and overlap characteristics of the domains. In im-

balanced domains, the minority class borders may be harder to define since it is

possible that several representative data examples that make up the decision bound-

aries could not have been collected for training. This becomes especially hard if

boundaries are non-linear, since is it more difficult to infer them from the existing

class representations. When domains are additionally affected by class overlap, the

already ill-defined decision boundaries become further deformed by overlapping ex-

amples, which creates a very complex scenario for classifiers, often jeopardizing their

classification performance altogether;

• Class Decomposition: The occurrence of class decomposition implies that there

is a certain concept heterogeneity in the domain, given that it characterises the ap-

pearance of clusters of the same class in different regions of the feature space. This

indicates that there are concepts of the same class that assume distinct feature val-

ues, a situation that complicates the generalisation process of standard classifiers.

When class decomposition is associated with class imbalance, it depicts a scenario

where small disjuncts may arise, (i.e., where some class clusters are underrepre-

sented) further complicating the classification tasks. Additionally, if class clusters

are affected by class overlap, the concepts that the classifiers are intended to learn

become faulty, and another confounding layer is added to the discrimination pro-

cess. Indeed, in imbalanced domains, increasing class overlap was more damaging

for classification performance than increasing class decomposition. All of the above
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problems are further exacerbated if the data clusters also present complex, non-linear

decision boundaries.

ä How do classifiers with different nature (distinct learning biases) handle

imbalanced and overlapped domains?

Classifiers with different learning paradigms respond differently to imbalanced and over-

lapped domains, and their performance is also dependent on distinct data characteristics.

In Chapter 5, we have studied Instance-Based Classifiers, Rule and Tree-Based Classifiers,

Bayesian Classifiers, Neural Networks, Support Vector Machines, and Linear Discrimi-

nants, and described their behaviour in what concerns class imbalance, class overlap, and

certain characteristics of the data domains. Instance-based classifiers were the most robust

in handling imbalanced and overlapped domains, even for complicated characteristics of

the data domains such as local imbalance, complex data types, and complex data shapes

and decision boundaries. Overall, a common factor for success relies on the local behaviour

of the classifiers and their ability to provide specialised rules. To this regard, neural net-

works and support vector machines have also shown a good performance, provided that

a suited hyperparametrisation is incorporated, such as the use of Gaussian kernels, ap-

proximating a local learning paradigm. Regarding the remaining families of classifiers,

main observations may be summarised as follows. Rule and tree classifiers are especially

degraded by class overlap and non-linear boundaries. Pruning does not significantly add

to the classification performance, although it may be beneficial for the recognition of some

data types (typically rare and outlier examples). Bayesian classifiers are relatively robust

to local imbalance and complex data structures. They are susceptible to rare and outlier

data types, although handling borderline examples rather successfully. Neural networks

are robust to non-linear data structures, struggling the most with local imbalance issues

and class decomposition to some extent. SVMs are more deeply affected by class overlap

than class imbalance, although their combined effects are highly impactful and cannot

be neglected. Finally, linear classifiers perform quite inadequately when compared to the

remaining families of classifiers, since they are affected by a large number of common

characteristics of the data domains.

ä How can class overlap be characterised in real-world imbalanced domains?

In Chapters 5 and 6, we acknowledge class overlap as a heterogeneous concept compris-

ing multiple sources of complexity. Accordingly, we argue that it could be characterised

according to four main representations: Feature Overlap, Instance Overlap, Structural

Overlap, and Multiresolution Overlap. Each representation of class overlap typically fo-

cuses on one vortex of the problem, while often neglecting other sources of complexity.

Feature Overlap characterises class overlap by determining the discriminative power of

individual features in data. Instance Overlap is linked to the analysis of local data char-

acteristics, and therefore concerned with the identification and quantification of examples

(instances) with conflicting neighbourhoods. Structural Overlap characterises class over-
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lap by analysing the internal structure (morphology) of the domain and determining to

what extent the existing data concepts are intertwined. Finally, Multiresolution Overlap

offers a trade-off between a local and global analysis of the data domains, combining some

strategies associated with the previous representations.

To guide researchers towards this characterisation of the problem of class overlap, we put

forward a taxonomy of class overlap complexity measures according to three fundamental

components: i) the decomposition of the domain into regions of interest, ii) the identifi-

cation of problematic regions, and iii) the quantification of class overlap in problematic

regions. Feature Overlap comprises F1, F1v, F2, F3, F4, and IN. Instance Overlap in-

cludes degOver, SI, R-value, Raug, N3, N4, D3, CM, wCM, dwCM, kDN, Borderline

Points, IPoints, and LSC. Structural Overlap encompasses N1, T1, ONB, DBC, Clst,

N2, NSG, ICSV, and LSCAvg. Finally, Multiresolution Overlap is measured by Purity,

Neighbourhood Separability, C1, C2, and MRCA.

As class overlap has proven to be more harmful for classification than class imbalance,

this characterisation of the problem is derived for general data domains, regardless of class

imbalance. In this regard, some of the explored complexity measures are sensitive to class

imbalance, whereas others require further investigation. For the most part, adaptations

to class imbalance are based on the class-wise computation of original measures (F2, F3,

F4, N3, N4, Borderline Examples, CM, wCM, dwCM, T1, N1, N2, and ONB), although

some measures incorporate more refined strategies (Raug and MRCA).

Although acknowledging class overlap as a heterogeneous concept is a step towards the es-

tablishment of a unified view of the problem in real-world domains, future research should

strongly focus on the development of measures with broader points of view, i.e., mea-

sures that consider both the different representations of class overlap, as well as additional

complicating factors, such as class imbalance.

ä What are the state-of-the-art methods to handle class overlap in imbalanced

data domains? What are their key characteristics?

In Chapter 5, we aggregate class overlap-based approaches into four main groups: un-

dersampling approaches, oversampling approaches, cleaning approaches, and other ap-

proaches (ensembles, region splitting, evolutionary, and hybrid approaches). Whereas

ensembles, region splitting, evolutionary, and hybrid approaches are used less often in im-

balanced and overlapped domains, undersampling, oversampling, and cleaning approaches

are widely popular.

In imbalanced and overlapped domains, undersampling approaches are focused on elim-

inating redundant and conflicting majority examples from the training sets. They often

comprehend the analysis of structural overlap and determine the internal structure of

the domains, often through clustering methods (density-based, neighbourhood/prototype-

based, and fuzzy-based clustering). In this context, promising undersampling approaches

350



Conclusions

are OBU and AdaOBU.

In turn, cleaning and oversampling approaches prioritise local information, mostly inves-

tigating the existence of instance overlap. Cleaning approaches search for examples with

complicated neighbourhoods (i.e., with contradictory class memberships), and remove ei-

ther examples from both classes, or typically only from the majority class. The level of

cleaning applied is also a distinguishing factor among approaches. Some focus on bor-

derline examples near the decision boundaries, therefore considering data typology and

instance hardness information, whereas others perform a deeper cleaning across the entire

data domain, regardless of the typology or complexity degree of data examples. The latter

type of approaches often resort to multiresolution overlap and produce several iterations

of the cleaning procedures. Recent cleaning approaches obtaining encouraging results are

NB-based approaches (NB-Basic, NB-Tomek, NB-Comm, and NB-Rec).

Regarding oversampling approaches, their main goal is to ensure that the representation

of minority class examples is enough for a classifier to learn the existing minority class

concepts. Accordingly, oversampling approaches often rely on local information (instance

overlap) to identify problematic regions in data and inflate concepts that are difficult

to learn, generating new synthetic examples in specific regions of the data space. Some

overlapping approaches focus particularly on some types of examples (e.g., increasing the

representation of safe or borderline examples), or associate a probability of resampling

to each example in data, proportional to its complexity for classification tasks. Over-

sampling approaches are also quite flexible, and some methods combine different types

of information (e.g., instance and structural overlap, via clustering approaches), and dif-

ferent strategies (e.g., approaches are complemented with cleaning procedures). Popular

oversampling approaches studied over imbalanced and overlapped domains are IA-SUWO

and NI-MWMOTE.

Overall, there is a tendency for emergent approaches to aggregate several paradigms (e.g.,

local, structural, and density information, and fuzzy logic and cost-sensitive strategies),

supporting the idea that class overlap exhibits several vortices of complexity, and that

there is a need to address them in conjunction to devise specialised solutions.

ä What are the main limitations of current research preventing that a con-

sensus on the synergy between class imbalance and overlap is reached? What

are the most pressing future directions to embrace in the years to come?

In what concerns the study of imbalanced and overlapped domains, there are essentially

three major limitations preventing researchers from reaching a consensus on the synergy

between both problems, although they all revolve around the lack of characterisation and

measurement of the problem of class overlap.

The most important issue is that the problem of class overlap is not yet mathematically

well-established and there is no standard measurement of the overlap degree. Due to
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this, class overlap is measured in rather different ways, both in synthetic and real-world

datasets. Using different measures to characterise class overlap is problematic for two

main reasons. First, it makes it impossible to compare the obtained results of different

related research at an equal footing. Secondly, by using different class overlap measures,

related work may be capturing distinct vortices of class overlap, which further complicates

the cross-referencing of the conclusions obtained across related research.

In this regard, another main limitation is precisely the fact that, as more research is

conducted on the topic, class overlap is more and more observed to comprise multiple

sources of complexity. Accordingly, some measures may be exceptional in capturing some

representations of class overlap, while presenting serious shortcomings in capturing others.

This should result in the characterisation of class overlap as a heterogeneous concept,

motivating the analysis of an extended set of measures to fully characterise the problem

in all its dimensions. However, related research currently focuses on individual vortices of

the problem (commonly feature or instance overlap measures).

Finally, another issue is the inadequacy of measures to simultaneously capture several

vortices of complexity. Existing class overlap measures are focused on individual properties

of data and are not adapted to additional data characteristics. In Chapter 6, we have

shown how current measures of class overlap are impacted by other data characteristics

such as class imbalance or structural complexity, producing biased results.

The most important direction to address in the following years is therefore the consensus

towards the characterisation and measurement of class overlap in real-world imbalanced

domains. This involves, at first, acknowledging class overlap as a complex problem filled

with idiosyncrasies, highly affected by distinct sources of complexity and data charac-

teristics. Then, the establishment of standard measures to assess existing class overlap

representations in the domain, and ultimately, the development of complexity measures

with broader points of view, simultaneously attentive to distinct representations of the

problem. This will allow that novel methodologies and algorithms are compared at an

equal footing, and pave the way for the development of specialised solutions in the field.

Then, several open challenges can be taken across Data Analysis, Data Preprocessing,

Algorithm Design, and Meta-learning research, given that imbalanced and overlapped

domains comprise a complex problem for all of these fields of knowledge. Regarding Data

Analysis, emergent future directions regard the analysis of multi-classification datasets.

In the field of Data Preprocessing, open directions involve studying suitable strategies for

data resampling of imbalanced and overlapped datasets, and studying the effect of missing

data in these domains. In what concerns the fields of Algorithm Design and Meta-learning,

promising research directions are the development of hyperparameter tuning strategies,

and classifier recommendation and ensemble learning solutions.
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12.5 Learning from Missing Data (RQ-5)

The research questions included in RQ-5 concern the review provided in Chapter 7, from

which the main insights can be summarised in what follows:

ä What are the state-of-the-art approaches to generate synthetic missing data?

Synthetic missing data generation approaches can be divided into univariate or multivari-

ate approaches, depending on whether they create missing values in only one feature or

across several features, respectively. In multivariate approaches, not all features need to

be missing. For instance, some approaches define pairs/triples of features where only one

is missing per group. Similarly, not all features need to have the same missing rate, since

several configurations may be implemented. Additionally, approaches may be categorised

with respect to the missing mechanism they follow, i.e., MCAR, MAR, or MNAR. Ap-

proaches that produce the same missing mechanism generally share the same underlying

rationale, regardless of their univariate or multivariate nature.

MCAR implementations use uniform pseudorandom number generators to define missing

positions in a given feature. Some approaches specifically refer to the construction of

Bernoulli distributions, whereas others use other built-in software functions that directly

return a specified number of randomly selected positions to be missing. In turn, MAR

approaches require that a determining feature is first defined. Then, missing values will

be introduced in other feature (or features), according to the corresponding values in the

determining feature. For univariate implementations, a single determining and missing

feature are chosen, whereas for multivariate implementations, two strategies are often fol-

lowed. One option is to use the same determining feature to decide on the locations of

missing values in the remaining features. Alternatively, several pairs/triples of features can

be constructed, where each group has its determining feature. The determining feature

can be defined by the researcher, randomly chosen, or defined according to its correlation

with the feature(s) to be missing. The missing values are then introduced in the feature(s)

of interest depending on their corresponding values on the determining feature. Common

strategies are i) eliminating positions corresponding to the lowest, the highest, or both

values of the determining feature, ii) defining cut-off values based on k% percentiles or

median values or, iii) assigning a probability of missingness to each value of the missing

feature according to the ranks of the determining feature. In MNAR approaches, after

a feature is chosen to be missing, its lowest or highest values are deleted. Robust uni-

variate approaches are MCAR2univa, MAR4univa, and MNAR2univa, whereas for the

multivariate case we recommend MCAR2unifo, MAR1unifo, and MNAR1unifo.

Beyond the standard approaches described above, there are some domain-based approaches

discussed in the literature where specific strategies are implemented, often based on prior

knowledge on the data domain. These often explore known relationships between dataset

features to generate customised MCAR, MAR, and MNAR scenarios. Missing values are
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also commonly introduced by pattern (i.e., in each record/data example) rather than by

feature, which illustrates a scenario where records are subjected to missing values in several

different features (some records will be more affected than others), rather than frequently

having the same set of missing features for all records.

ä What are their limitations when applied to real-world domains? How can

these limitations be surpassed?

In real-world domains, some of the assumptions of existing approaches might not be ver-

ified. Consequently, some of the approaches may produce undesired artefacts, biased

results, or in the worst cases, break the underlying premisses of the missing mechanisms

they intend to generate.

Regarding MCAR mechanism, a plausible concern is the use of Bernoulli trials for small

datasets, which does not guarantee that the desired missing rate is generated precisely.

Variability is also a concern, since different runs of MCAR generation yield different re-

sults. Nevertheless, these two limitations are simple to surpass by a careful design of the

experimental setup.

Another concern for real-world data is the devise of missing data generation strategies

for MAR and MNAR mechanisms, in what concerns categorical data. These mechanisms

often resort to ordering strategies to define which values should be missing, which is

impractical for nominal data (that has no ordering), and may lead to biased results when

using ordinal data. This is an urgent issue that should be further addressed in future

work. Additionally, in MAR configurations, defining probabilities of missingness rather

than an ordering of values may somewhat distort the missing mechanism for unfortunate

runs.

Additionally, a typical strategy to choose the feature where missing values will be inserted

is to evaluate the correlation of all features with the class target. In real-world domains,

this involves the study of distinct correlation coefficients, depending on the feature types

involved. However, the direct comparison between different correlation coefficients is not

straightforward. A workaround would be to guarantee that all coefficients return values

in the [0, 1] interval, although the best approach would be to compare the correlation

coefficients obtained for features of the same type and either i) select one feature of each

type to be missing (i.e., the one with the highest correlation with the target class), or ii)

randomly select one feature from that intermediate set of features to be missing, in the

case of univariate configurations. The same problem occurs when evaluating pairs/triples

of correlated features, a common strategy used for multivariate MAR configurations.

Finally, depending on the desired missing mechanism and the characteristics of data, it

is important to study the missing rate constraints that may exist. This is especially

critical for MAR and MNAR configurations that form pairs/triples of features and define

intervals of values where missing data will be created. Considering the approaches studied
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in Chapter 7, this may lead (in the worst-case scenario) to a restriction of the missing

rate to 25% for MAR configurations that consider pairs of features and use the median

to produce a cut-off value (MAR3unifo and MAR4unifo). Also, some care must be taken

regarding whether the missing rate is specified by feature or for the entire dataset, and

produce the necessary adjustments.

12.6 Impact of Missing Data Imputation on Data Distribu-

tion (RQ-6)

The research questions encompassed in RQ-6 concern the experiments conducted in Chap-

ter 8, which culminated in the following conclusions:

ä Is there a relationship between data distribution and imputation perfor-

mance? Which imputation techniques can efficiently reproduce the true values

in data without causing the distortion of their distribution? Is it possible to

derive some heuristics on the choice of proper imputation techniques depend-

ing on the data distribution?

The analysis conducted in Chapter 8 shows that most of the considered imputation tech-

niques (Mean Imputation, Decision Trees, k-Nearest Neighbours, and Self Organising

Maps), are influenced by the data distribution, i.e., that imputation techniques do not

perform similarly across all distributions, and that some distributions are better imputed

with particular techniques. In turn, Support Vector Machines do not seem highly affected

by data distribution.

Overall, our findings indicate that imputation techniques based on distance learning, such

as kNN and SOM, are the most robust in producing plausible estimates for missing data

(high predictive accuracy), while maintaining the distributional properties of data (high

distributional accuracy). Note how the good performance of SVM may also be explained

by its ability to approximate a local learning paradigm by adjusting the hyperparameters

of the Gaussian kernel. In detail, SOM has shown to be a suitable approach for birnbaum-

saunders, extreme value, and weibull distributions, whereas kNN performed better for

logistic distributions.

Regarding the devise of accurate and interpretable heuristics, we have obtained a deci-

sion tree model with a reasonable classification performance (AUC = 0.7), that outputs

recommendations on appropriate imputation strategies for some data distributions. The

recommended imputation approach depends on the type of generation of missing data, the

missing rate introduced, and the endgame (optimal predictive or distributional accuracy).

Nevertheless, less obvious characteristics have proven to be highly informative, namely

sample size, goodness-of-fit of features, and the ratio between the number of features and

the number of different distributions comprised in the dataset.
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12.7 Behaviour of k-Nearest Neighbours on the imputation

of real-world heterogeneous data (RQ-7)

The research questions comprised in RQ-7 refer to the study produced in Chapters 9 to

11. Major insights are described in what follows:

ä Do distance functions significantly affect kNN imputation, and consequently

classification performance? Is there a distance function more beneficial for

some datasets? Are trends similar when the focus shifts to the analysis of the

imputation quality?

Distance functions significantly affect kNN imputation, especially for missing rates higher

than 10%. This behaviour consequently impacts the classification performance obtained

from models constructed over differently imputed training sets, showing that beyond the

choice of a suitable hyperparameter k (often tested among related work), the distance

function hyperparameter is equally impactful, significantly influencing the success of the

imputation approach.

From the experiments conducted throughout Chapters 9, 10, and 11, some recommenda-

tions regarding distance functions could be derived, depending on the nature of datasets.

In what concerns classification performance, MDE seems to be the most beneficial dis-

tance function for continuous datasets, whereas HVDM-S is better suited for categorical

datasets. For heterogeneous datasets, both MDE and HVDM-S are the top performing

approaches. Results differ, however, when the downstream task is the evaluation of impu-

tation quality (i.e., predictive accuracy). In this regard, SIMDIST seems the best approach

for continuous datasets, and MDE for categorical and heterogeneous datasets.

Considering both tasks, MDE presents a robust behaviour. However, the experimental

results indicate that classification and imputation are different tasks and should be evalu-

ated accordingly, since the approach that performs the best on one task is not necessarily

the top performer regarding the other. Accordingly, the recommendation of a suitable

distance function, beyond the nature of data and missing rate, should also be attentive to

the objective of the study.

The difference between results achieved for each task further suggests that the choice

of a suitable distance function is a determining factor for superior classification results

(particularly for categorical and heterogeneous datasets), whereas the k-parametrisation

and weighting scheme may be more impactful to achieve a higher imputation quality.
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ä To what extent does each component of a distance function definition influ-

ence imputation and classification performance?

Differences in performance between distance functions are mostly explained by their re-

spective approaches to the assessment of the similarity/dissimilarity between missing val-

ues, and are also linked to the nature of datasets.

For continuous data, the best approach focuses on computing the average similarity of

observed values to impute the absent data. Defining different formulations for the distance

computation of missing data depending on whether only one value is missing or both

values are missing also seems beneficial. Furthermore, considering a minimal distance if

two values are both missing or considering a maximal distance if only one value is missing

seems rather prejudicial.

In turn, considering the distribution of missing values in each class seems the key to the

success over categorical datasets.

Regarding heterogeneous datasets, obtained results indicate that a suitable solution should

combine the operations of MDE and HVDM-S. For continuous features, the formulation

of MDE could be used. Regarding categorical features, the same rationale of HVDM-S of

considering missing data as an extra nominal category seems the most promising solution

when only one value is missing. When both values are missing, the strategy followed by

MDE seems to be more beneficial.

ä Does the type of features (continuous or categorical) affected by missing

data influence the imputation process? Are the obtained results related to

other data characteristics, beyond the nature of features?

Although this topic requires further investigation, the experiments conducted in Chap-

ter 11 show that for heterogeneous datasets, HVDM-S remains the top performing ap-

proach. MDE, on the other hand, performs adequately for lower missing rates (5%) in

PLAIN and WA generation types, although better results were expected for scenarios

where missing data affects only continuous features (WA-CONT). Preliminary results on

the complexity of datasets have also shown that more complex datasets benefit the most

from a careful choice of distance functions, where the most discriminative features to map

this behaviour are associated with the existing class overlap in data (F1, L2, and N1).
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12.8 On the verge of Smart Data

Over the past decades, machine learning has advanced to the point that it now offers

thousands of highly-competitive algorithms for nearly all types of tasks, especially classifi-

cation tasks. Despite these advancements, topics such as how data imperfections affect the

learning stages of classifiers, the effects of their synergy, and how they can be overcome,

are still not established at this point. This, along with our lack of knowledge regarding

suitable strategies to appropriately identify and quantify some types of data imperfec-

tions in real-world domains, causes the application of methods to be rather blind, and

the evaluation of results to be flawed. In what follows, we provide a final comment on

the downsides of the current research paradigm used in machine learning, and how to

improve it by redefining its research goals and methodology, and focusing on data rather

than algorithms, and on insights and behaviour rather than metrics.

In our view, current machine learning approaches are mainly developed according to two

main paradigms (Figure 12.1). Approaches are either developed to suit real-world appli-

cations (Figure 12.1a), or used in experimental machine learning, focusing on benchmark

datasets (Figure 12.1b).

In real-world applications, machine learning approaches are needed to solve a specific prob-

lem (Figure 12.1a). Naturally, the key concerns of domain-centred approaches rely on the

need to understand the domain, and perform a careful data acquisition and preprocess-

ing. The algorithm selection may or may not be a critical step, depending on whether this

task involves studying a set of standard classifiers, or developing specialised solutions. The

most common case is that standard algorithms are chosen and later optimised through

(hyper)parameter tuning. After the learning task is complete, the interpretation and eval-

uation of results follows. Note that the main objective of domain-centred approaches is to

produce valid, useful, and understandable insights on the domain, so that it can be de-

ployed and used routinely in daily practice. Thus, the evaluation of the achieved solution,

beyond analysing technical performance measures such as the error rate and computational

time, requires that the insights obtained from the produced knowledge base (KB) are as-

sessed in order to determine whether they are compatible with (or add to) the existing

domain knowledge.

Aside from the development of domain-centred solutions, we enter the realm of experi-

mental machine learning, or in other words, competition-testing machine learning (Fig-

ure 12.1b) [33]. This is perhaps the most common form of machine learning research

nowadays, and it essentially comprises three main tasks: i) the selection of benchmark

datasets, typically from open-source repositories, which are then to be used to perform

ii) a comprehensive comparison between different classifiers/approaches (and often a new

proposed approach), through iii) the evaluation of performance measures. Note how in

this paradigm (which we describe as algorithm-based), the problem itself is no longer an
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input of the model. On contrary, the experimental setups are commonly designed to per-

form a comparison of benchmark algorithms/approaches, or to evaluate a new proposed

approach against the ones established as the state-of-the-art, so that the obtained results

are subjected to scientific publication, and the proposed approach becomes the one to

beat in subsequent research. Naturally, the evaluation process becomes concerned with

minimising some quantitative measure of performance (ε), often the classification error.

When comparing benchmark approaches or classifiers, the one that achieves the lowest

classification error is defined as the top-notch approach. In turn, if the objective is to pro-

pose a new approach, then while the obtained results do not meet the expectations, the
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Figure 12.1: Machine learning paradigms: (a) domain-centred, (b) algorithm-centred, and
(c) data-centred. Key concerns of each paradigm are highlighted. KB is the knowledge
base outcome of learning, whereas ε denotes a quantitative evaluation of the results, most
often the classification error rate. Adapted from [370].
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approach is tuned and modified until it outperforms the remaining. It is also a possibility

that a new dataset selection is performed so that better behaved datasets are included in

the experiments (sometimes replacing difficult ones). In this context, the KB is neither an

outcome of the process, nor subjected to further investigation. Instead, the main outcome

of this research model relies on the statistical significance of one approach over the others,

without an explanation of why or how it is so. Experiments derived from this type of

paradigm may therefore be of little use for practitioners. They sustain a type of research

where analysing related literature becomes a “mechanical skimming task, seeking for the

bold numbers” [33]. On the contrary, aiming to explain why an algorithm achieves a given

result, or how it surpasses others, relates to the analysis of behaviour, rather than met-

rics, and may produce useful insights for practitioners, regardless of whether the obtained

results are optimal or sub-optimal. To this end, benchmarks and extensive experiments

are also key, but research models need to focus on different questions.

Throughout this thesis, we have been arguing how machine learning research needs to move

towards the analysis of data characteristics. In short, it needs to move from algorithm-

centred to data-centred research, which naturally relies on a thoughtful process of data

understanding. In Figure 12.1c, we attempt to systematise such a paradigm.

Note how this new paradigm assembles key features from both domain-centred and algorithm-

centred models. On the one hand, it borrows from the same principles of domain un-

derstanding, where the interpretation of results is essential, and the produced KB is an

outcome of the process. On the other hand, similarly to algorithm-centred models, the

main objective of the process is not the deployment of a final model, but rather scientific

advancement. Accordingly, the experimental setup also involves the use of comprehensive

benchmarks of data and the comparison of a set of learners, and the evaluation of results

also values quantitative measures, such as error rates.

However, note how nearly all of the processes involved in this paradigm revolve around

data: data (acknowledged as imperfect data) is the input. Indeed, the objective of data-

centred research is neither to fit a particular application, nor to define a new approach

as the state-of-the-art. However, it may contribute to both. Understanding the problems

associated with common data characteristics and imperfections allows us to address them

properly when they are encountered in real-world applications. Similarly, understanding

how data imperfections affect learning paradigms and how they can be surpassed through

preprocessing methods, allows us to perform informed decisions on data preprocessing,

encoding, algorithm selection, and tuning, creating specialised solutions likely to become

the state-of-the-art. The key difference here is that this new state-of-the-art approach is

not a one-fits-all solution, the overall best approach or a universal solution to all kinds

of problems, but rather a solution well-suited to a particular data problem. Data-centred

research is therefore designed to understand data, using experimental machine learning to

test numerous possibilities, but allowing the design of approaches to be guided by insights
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derived from data. In this paradigm, machine learning algorithms and data itself are si-

multaneously and continuously improved. The former through parameter tuning, which

may also be guided by insights derived from the data, rather than random combinations

of possibilities. The latter through data understanding, ultimately outputting a new out-

come: smart data. Note that the Learning block itself is now a core process of this model,

and used to evaluate new insights, rather than to simply provide a benchmark of classifi-

cation results. Finally, the optimisation of performance metrics is encouraged, though not

necessarily required: important outcomes also rely on the production of valuable insights,

with ultimately might be derived from negative results.

More than ever, with the diversity of datasets created from real-world domains, and the

increasing realisation of researchers that the study of algorithms alone is not sufficient to

provide meaningful scientific progress, we are on the verge of smart data, and we must

take that final leap.
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[90] Lucas Chesini Okimoto, Ricardo Manhães Savii, and Ana Carolina Lorena. Com-

plexity measures effectiveness in feature selection. In Brazilian Conference on Intel-

ligent Systems, pages 91–96. IEEE, 2017.

[91] Sungbin Cho, Hyojung Hong, and Byoung-Chun Ha. A hybrid approach based on

the combination of variable selection using decision trees and case-based reasoning

using the mahalanobis distance: For bankruptcy prediction. Expert Systems with

Applications, 37(4):3482–3488, 2010.

[92] Arkopal Choudhury and Michael R. Kosorok. Missing data imputation for classifi-

cation problems, 2020.

370



References

[93] Yi-Hong Chu, Jen-Wei Huang, Kun-Ta Chuang, De-Nian Yang, and Ming-Syan

Chen. Density conscious subspace clustering for high-dimensional data. IEEE Trans-

actions on Knowledge and Data Engineering, 22(1):16–30, 2010.

[94] Federico Cismondi, Andre S. Fialho, Susana M. Vieira, Shane R. Reti, Joao

M.C. Sousa, and Stan N. Finkelstein. Missing data in medical databases: Impute,

delete or classify? Artificial Intelligence in Medicine, 58(1):63–72, 2013.
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[150] Rafael G. Mantovani, André L. D. Rossi, Joaquin Vanschoren, Bernd Bischl, and
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[157] Vicente Garćıa, Ramón Mollineda, and Josep Sánchez. On the k-nn performance in

a challenging scenario of imbalance and overlapping. Pattern Analysis and Applica-

tions, 11(3-4):269–280, 2008.
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[159] Vicente Garćıa, J. S. Sánchez, A. I. Marqués, R. Florencia, and G. Rivera. Un-

derstanding the apparent superiority of over-sampling through an analysis of local

information for class-imbalanced data. Expert Systems with Applications, 158:1–19,

2020.
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[256] Enrique Leyva, Antonio González, and Raul Perez. A set of complexity measures

designed for applying meta-learning to instance selection. IEEE Transactions on

Knowledge and Data Engineering, 27(2):354–367, 2014.

[257] Hui Li, Hai-Bin Huang, Jie Sun, and Chuang Lin. On sensitivity of case-based

reasoning to optimal feature subsets in business failure prediction. Expert Systems

with Applications, 37(7):4811–4821, 2010.

[258] Ke-Sen Li, Han-Rui Wang, and Kun-Hong Liu. A novel error-correcting output codes

algorithm based on genetic programming. Swarm and Evolutionary Computation,

50:100564, 2019.

[259] Wentian Li, Jane E. Cerise, Yaning Yang, and Henry Han. Application of t-

sne to human genetic data. Journal of bioinformatics and computational biology,

15(4):1750017, 2017.

[260] Wei-Chao Lin and Chih-Fong Tsai. Missing value imputation: a review and analysis

of the literature (2006–2017). Artificial Intelligence Review, 53(2):1487–1509, 2020.

[261] Wei-Yang Lin, Ya-Han Hu, and Chih-Fong Tsai. Machine learning in financial crisis

prediction: a survey. IEEE Transactions on Systems, Man, and Cybernetics, Part

C (Applications and Reviews), 42(4):421–436, 2011.

[262] Xiaohui Lin, Huanhuan Song, Meng Fan, Weijie Ren, Lishuang Li, and Weihong Yao.

The feature selection algorithm based on feature overlapping and group overlapping.

In International Conference on Bioinformatics and Biomedicine, pages 619–624.

IEEE, 2016.

[263] Roderick J.A. Little and Donald B. Rubin. Statistical analysis with missing data.

John Wiley & Sons, 2014.

[264] Cheng-Lin Liu. Partial discriminative training for classification of overlapping classes

in document analysis. International Journal of Document Analysis and Recognition,

11(2):53–65, 2008.

384



References

[265] Jie Liu, Yan Li, and Enrico Zio. A svm framework for fault detection of the braking

system in a high speed train. Mechanical Systems and Signal Processing, 87:401–409,

2017.

[266] Shigang Liu, Yu Wang, Jun Zhang, Chao Chen, and Yang Xiang. Addressing the

class imbalance problem in twitter spam detection using ensemble learning. Com-

puters & Security, 69:35–49, 2016.

[267] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-

imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 39(2):539–550, 2008.

[268] Zhenhai Liu, Hanzi Wang, Yan Yan, and Guanjun Guo. Effective facial expression

recognition via the boosted convolutional neural network. In CCF Chinese Confer-

ence on Computer Vision, pages 179–188. Springer, 2015.

[269] Zhining Liu, Wei Cao, Zhifeng Gao, Jiang Bian, Hechang Chen, Yi Chang, and

Tie-Yan Liu. Self-paced ensemble for highly imbalanced massive data classification.

In International Conference on Data Engineering, pages 841–852. IEEE, 2020.

[270] Raul H.C. Lopes. Kolmogorov-smirnov test. In International Encyclopedia of Sta-

tistical Science, pages 718–720. Springer, 2011.
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in pattern classification and learning. In Congreso Español de Informática, pages

978–984, 2007.

[311] Jose G Moreno-Torres, Troy Raeder, Roćıo Alaiz-Rodŕıguez, Nitesh V Chawla, and
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Appendix A

Cross-Validation for Imbalanced

Datasets: Avoiding Overoptimistic

and Overfitting Approaches

This appendix provides supporting information to the work developed in Chapter 2. Ac-

cordingly, Section A.1 provides a more comprehensive description of related work (intro-

duced in Section 2.3), Section A.2 elaborates on some details of the conducted experiments

(as described in Sections 2.4 and 2.5.1), and Section A.3 provides additional analyses re-

garding relationship of the data complexity measures with the sample size and imbalance

ratio of the datasets (as discussed in Section 2.5.2).

A.1 Related Work

The reviewed works are divided into 3 categories: Learning from Imbalanced Data (Cate-

gory Learning), Comparing approaches in a specific context (Category Comparison) and

Solving a classification problem (Category Classification).

Learning from Imbalanced Data

Category Learning includes the research works of Van Hulse et al. [438] to Liu et al. [265],

as depicted in Table A.1. Van Hulse et al. [438] performed a review on learning from

imbalanced data considering 35 benchmark datasets (some from UCI repository, some

proprietary), 11 learners and 7 sampling techniques to understand how data sampling

can improve classification performance. Two years later, Van Hulse et al. [436] studied

the joint-impact of imbalanced data and noisy data on the learning performance of algo-

rithms, using also 11 learners and 7 sampling techniques and data from 5 NASA software
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projects plus 2 datasets from the UCI repository. Verbiest et al. [441] proposed a new

technique for imbalanced learning and compared it to 8 state-of-the-art methods, using 3

artificial datasets produced by Napierala et al. [320]. Garćıa et al. [160] suggested three

new surrounding neighbourhood-based SMOTE approaches to better handle the problem

of imbalanced data. They experimented over a large set of datasets (39 datasets from

KEEL Repository) with 3 different classifiers. Peng et al. [345] presented an imbalanced

data gravitation-based model capable of handling imbalanced domains. Their approach

was tested over 59 datasets from KEEL repository and compared with 3 oversampling

methods, 2 cost-sensitive classifiers, and 4 ensemble learning methods. Loyola-González

et al. [274] studied the impact of resampling strategies on the performance of 2 contrast

pattern-based learners, using 95 imbalanced datasets available on KEEL repository and 20

state-of-the-art resampling methods, including oversampling, undersampling, and hybrid

methods. Alejo et al. [27] developed a new approach to overcome the imbalanced data

issue and compared it to 15 state-of-the-art class imbalance approaches, testing them over

35 datasets. Rivera et al. [7] studied modifications to a priori algorithms Over-sampling

Using Propensity Scores (OUPS) and Safe-Level OUPS to increase their performance in

imbalanced scenarios. A comprehensive comparison of the proposed methods and SMOTE-

based approaches was performed using 45 publicly available datasets from UCI and KEEL

repositories. Sáez et al. [8] studied the application of well-known resampling algorithms,

such as SMOTE and ROS to 21 multi-class datasets collected from UCI repository, and

Douzas et al. [118] suggested a modification of Self-Organising Maps for Oversampling

(SOMO), and compared it with 5 other oversampling approaches on 26 datasets, also

from UCI repository. Shilaskar et al. [391] discussed the coupling of synthetic sampling

technique with the Modified Particle Swarm Optimization technique, which they com-

pared with 5 well-known machine learning algorithms, assessing their performance over

7 datasets. Liu et al. [265] proposed a Support Vector Machine (SVM) framework to

deal with the problem of imbalanced data in a specific context: improving fault detection

of breaking system in a train. However, their approach was first assessed using 15 pub-

lic datasets from KEEL repository, and compared with other popular SVM approaches

for imbalanced scenarios, including random undersampling, SMOTE, and Cost-Sensitive

SVM. For this reason, we have chosen to include this work preferably on the Learning

category.

Comparing approaches in a specific context

Included in the Comparison category are the research works of Seiffert et al. [380] to

Prusty et al. [357]. Seiffert et al. [380] studied the impact of class imbalance on the iden-

tification of faulty software, by applying several resampling techniques on a real-world

software quality dataset. Soufan et al. [404] proposed a novel method based on SMOTE

to improve the classification of high-throughput screening (HTS) experimental data. Their
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approach was compared with four other standard resampling solutions using 9 datasets

from HTS assays. Ah-Pine et al. [17] and Vinodhini et al. [442] assessed the usefulness of

resampling approaches for Twitter and e-commerce sentiment analysis, respectively, while

Liu et al. proposed a fuzzy-based oversampling method (FOS) to accurately detect spam

tweets [266]. Wagner et al. [450] performed a similar study for the prediction of machine

faults, using real-world data generated using worn/broken gears under normal and overload

conditions. Gong et al. [169] and Hamill et al. [179] applied several resampling approaches

including undersampling, oversampling, and SMOTE to address the imbalanced problem

in the prediction of ozone exceedances (Hong Kong area) and in the prediction of software

faults. Yildirim [471] compared several sampling methods for the prediction of albendazole

adverse event outcomes. Zhu et al. [485] compared the performance of several well-known

resampling strategies in the context of churn prediction, using 11 churn datasets. Dag

et al. [101] studied the potential of SMOTE and random undersampling to improve the

survival prediction of heart transplanted patients. Finally, Prusty et al. [357] modified

the standard SMOTE approach to Weighted-SMOTE (WSMOTE), and evaluated its per-

formance in the prediction of sodium cooled fast reactor events. Although this last work

contains also an evaluation over public datasets from other contexts, we have decided to

include it in the Comparison category rather than the Learning, given that this part of

the simulations is not comprehensive (only 5 datasets are used).

Solving a classification problem

The Classification category comprises the research works of Lopez-de-Uralde et al. [273]

to Awad et al. [39]. Lopez-de-Uralde et al. [273] focused on the classification of nano-

aggregates, while Fergus et al. [134] and Acharya et al. [355] considered the prediction of

preterm deliveries. Al-Bahrani et al. [21], Kaya et al. [230], and Rani et al. [431] studied

cancer classification; respectively, the prediction of colon, lung, and breast cancer diagnosis

or prognosis. Similarly, Wang et al. [453] focused on predicting the survivability of breast

cancer patients. At last, Sady et al. [72] focused on Chagas Disease survival, Oppedal et

al. [331] on Alzheimer’s Disease diagnosis, Dobbins et al. [116] on the detection of physical

activity in lifelogs, Ahmad et al. [18] on the classification of sub-Golgi protein, and Awad

et al. [39] on the hospital mortality of intensive care unit patients. With the exception

of the study of Acharya et al. [355], that used ADASYN to perform the oversampling of

imbalanced datasets, all of the other research works used SMOTE.
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Table A.1: Summary of related research on class imbalance.

Algorithms Datasets

Year Papers Oversampling Classifiers Metrics Features Samples IR CV

Learning from Imbalanced Data

2007
Van Hulse
et al. [438]

SMOTE; ROS;
CBO; Borderline;

kNN; C4.5;
NB; MLP;
LR; SVM;
RF; RBF

AUC; F-1 ;
G-Mean;
ACC SEN

{4 to 65} {214 to
20000}

{1.86 to
74.19} During

2009
Van Hulse
et al. [436]

SMOTE; ROS;
CBO; Borderline;

kNN; C4.5;
NB; MLP;
LR; SVM;
RF; RBF

AUC {8 to 64} {302 to
12964}

{4.03 to
38.53} During

2012
Verbiest et
al. [441]

SMOTE;
Borderline;
SMOTE+ENN;
SMOTE+TL;
Safe-Level;
SPIDER

kNN AUC 2
{600 to

800} {5 to 7} During

2012
Garcia et
al. [160]

AHC; SMOTE;
ADASYN;
ADOMS; ROS;
Borderline;
Safe-Level

kNN; MLP;
C4.5

AUC {4 to 19} {150 to
5472}

{1.82 to
39.11} During

2014
Peng et
al. [345]

SMOTE;
SMOTE+ENN;
SMOTE+TL

C4.5; kNN;
SVM

AUC;
G-Mean

{3 to 19} {129 to
5472}

{1.82 to
129.44} During

2016
Loyola-
Gonzalez
et al. [274]

AHC; ADASYN;
SMOTE;
ADOMS; ROS;
Borderline;
SMOTE+ENN;
SMOTE+TL;
Safe-Level;
SPIDER

Contrast
Pattern-
based

ACC; AUC {3 to 34} {101 to
4174}

{1.82 to
129.44} During

2016
Alejo et
al. [27]

ADASYN;
SMOTE;
ADOMS; ROS;
Borderline;
SMOTE+ENN;
SMOTE+TL;
Safe-Level;
SPIDER

ANN AUC {4 to 38} {1470 to
10944}

{1.05 to
46.75} During

2016
Rivera et
al. [7]

SMOTE;
LNSMOTE;
Borderline;
Safe-Level;
SLOUPS; OUPS

SVM; LDA;
ANN

SEN;
SPEC;
G-Mean

{92 to
5323} {6 to 33} {7.46 to

39.15} During

2016
Saez et
al. [8]

SMOTE; Ad-
aBoost.NC+ROS

C4.5; SVM;
kNN

ACC
{87 to
1728} {4 to 34} {1.48 to

164} During

2017
Douzas et
al. [118]

ROS; SMOTE;
Borderline;
ADASYN;
CBO+SMOTE

LR; Gradient
Boost
Machine
(GBM)

AUC; F-1 ;
G-Mean

{77 to
2310} {3 to 90} {1.25 to

30} During

2017
Shilaskar
et al. [391]

Our proposed
technique for data
balancing
employs synthetic
oversampling as
well as under
sampling

Genetic
algorithm;
Modified
particle
swarm
optimization;
SVM

AUC;
ACC; F-1 ;
G-Mean;
SEN;
SPEC

{5 to 40} {124 to
1387}

{2.80 to
20.1} After

2017
Liu et
al. [265]

SMOTE SVM

SEN;
PREC
F-1 ;
G-Mean

{3 to 10} {214 to
4174}

{1.82 to
129.44} During

To be continued on the next page. . .
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Table A.1: Continued from previous page.

Algorithms Datasets

Year Papers Oversampling Classifiers Metrics Features Samples IR CV

Comparing approaches in a specific context

2014
Seiffert et
al. [380]

ROS;
CBO+Random;
SMOTE;
Borderline

C4.5; RF;
kNN; LR;
RIPPER;
NB; RBF;
SVM; MLP

AUC 8 282 {4 to 12} During

2015
Soufan et
al. [404]

SMOTE;
MWMOTE

SVM; kNN;
NB; RF

AUC; F-1 ;
PREC;
F-0.5 ;
SEN;
SPEC

2940
{206 to
184641} {2 to 377} During

2016
Ah-Pine et
al. [17]

ADASYN;
SMOTE;
Borderline

LR; CART
G-Mean;
F-1 ; ACC

{1569 to
3918}

{1906 to
4519}

{1.68 to
3.14} During

2016
Wagner et
al. [450]

ROS; SMOTE SVM
G-Mean;
F-1

n.c.
{195 to

2572}×103
{4.77 to
13.19} After

2016
Gong et
al. [169]

ROS; SMOTE

ANN; SVM;
CART; RF;
AdaBoost;
Bagging;
Linear
Ensemble

WeightedACC;
G-Mean;
F-1

{18 to 22} 2149 42.58 During

2016
Pinar
Yildirim [471]

ROS;
SMOTE;Spread
Sub sample;
Stratified
Removed Fold

RBFNetwork;
IBK; ID3;
Randomtree

SEN;
PREC
F-1 ;
RMSE

8 12899
{38.25 to
588.50} After

2016
Liu et
al. [266]

ROS; Fuzzy
Oversampling
(FOS)

NB; SVM;
C4.5; RF;
kNN;
RUSBoost;
Ensemble

SENS;
False
Positive
Rate
(FPR);
PREC;
F-1

12 600×106 {2 to 20} During

2017
Zhu et
al. [485]

ADASYN;
SMOTE;
Borderline;
SMOTE+ENN;
SMOTE+TL;
MWMOTE

LR; SVM;
C4.5; RF

AUC {9 to 231} {2019 to
100462}

{5.90 to
54.56} During

2017
Hamill et
al. [179]

ROS; SMOTE
NB; C4.5;
ZeroR; Part

SEN;
PREC;
F-1 ; ACC

8 1153
{4.29 to

7.10} After

2017
Dag et
al. [101]

ROS; SMOTE
ANN; LR;
SVM; CART

AUC;
ACC;
SENS;
SPEC

122 15580
{1.15 to

7.48} During

2017
Vinodhini
et al. [442]

SMOTE
SVM;
Bagging;
Boosting

AUC;
G-Mean

{96 to
400}

{500 to
1025}

{2.70 to
7.20} During

2017
Prusty et
al. [357]

SMOTE;
WSMOTE

ANN
SENS;
F-1 ;

n.c.
{336 to
11183}

{8.6 to
42.01} During

Solving a classification problem

2010
Lopez-de-
Uralde et
al. [273]

SMOTE
NB; kNN;
SVM; C4.5

ACC; AUC 26 266
{1.40 to
13.33} After

2013
Al-Bahrani
et al. [21]

SMOTE
C4.5; LR;
ADTree;
REPTree; RF

ACC; AUC 13 105133
{1.38 to

3.66} After

2013
Fergus et
al. [134]

SMOTE
kNN; LR;
SVM; DT

AUC; CE;
SEN;
SPEC

{4 to 15} {169 to
300}

{6.89 to
7.89} After

To be continued on the next page. . .
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Algorithms Datasets

Year Papers Oversampling Classifiers Metrics Features Samples IR CV

2014
Wang et
al. [453]

SMOTE

LR; kNN;
C5;
PSO+LR;
PSO+C5;
PSO+kNN

G-Mean;
SENS;
SPEC;
ACC

20 215112 9.73 During

2015
Kaya et
al. [230]

SMOTE

LDA;
Adaboost;
NB; kNN;
SVM; RF

ACC; SEN;
SPEC

155 1010 n.c. During

2016
Rani et
al. [431]

SMOTE
C4.5; SVM;
kNN; LR; RF

ACC 10
{198 to

699}
{1.60 to

3.21} After

2016
Sady et
al. [72]

SMOTE SVM
ACC; SEN;
SPEC;
AUC

18 150 9 During

2017
Oppedal et
al. [331]

SMOTE RF
ACC; SEN;
PREC

n.c.
{52 to
110}

{1.61 to
4.27} After

2017
Dobbins et
al. [116]

SMOTE

linear
discriminant;
quadratic
discriminant;
uncorrelated
normal
density
based;
polynomial;
logistic; kNN;
DT; parzen;
SVM; NB

AUC;
Mean
Error Rate;
ACC;
SENS

n.c. n.c. n.c. After

2017
Acharya et
al. [355]

ADASYN SVM
ACC; SEN;
SPEC

{2 to 8} 300 6.89 After

2017
Ahmad et
al. [18]

SMOTE kNN

Matthews
correlation
coefficient
(MCC);
ACC; SEN;
SPEC

n.c. 304 2.49 After

2017
Awad et
al. [39]

SMOTE
RF; DT; NB;
PART

AUC {5 to 29} {1356 to
11722}

{3.79 to
7.36} After

n.c. – not clear/ unknown

A.2 Experimental Results

The experiments conducted in Chapter 2 consider the evaluation of several established

classifiers [475]: C4.5, CART, k-Nearest Neighbours (kNN), Support Vector Machines

(SVM), and Naive Bayes (NB). In particular, the following parameters were tested: for

kNN, k = {1, 3, 5} and the Heterogeneous Value Difference Metric (HVDM) distance; for

SVM with linear kernel, C parameter was tested from 1× 10−3 to 1× 103 (increasing by

a factor of 10); for SVM with Radial Basis Function Kernel (RBF), both C and σ were

tested from 1× 10−3 to 1× 103 (grid search for the best solution). To obtain the overall

results by method and classifier we performed the following steps:
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For each Method
Step 1

Dataset

d = 1, …,86
f = 1, …, 5

r = 1, …, 30

Dataset

Classification

Train f rRun

Test f rRun

Build Model

Evaluate Model Dataset

Dataset

f rRun

Train

Test

f rRun

Metrics

MetricsClassifier

Classifier

c

c

d

d

d

d

c = 1, …, 6

Figure A.1: Build the classification model c (c= 1, . . . , 6) with the Training Set of each
individual dataset d, fold f and run r (d= 1, . . . , 86; f = 1, . . . , 5; r= 1, . . . , 30). After
obtaining the classification model c we carried out the performance evaluation of the
model for the Training Set and Test Set.

For each Method

Step 2

Dataset

Dataset Train

Test f rRun

f rRun
Cross-Validation Average

Metrics

Metrics

Train Average

Test Average

(…)

(…)

Classifier

Classifier

c

c
Dataset

Dataset

rRun

Train

Test

rRun

Classifier

Classifier

Metrics

Metricsc

c

d

d

d

d

Figure A.2: Calculate the cross-validation metrics average on the Training and Test set of
each individual dataset d, run r and classifier c.

For each Method
Step 3

Dataset

Train

Test

Dataset

(…)

rRun

rRun

(…)

Classifier

Classifier

Metrics

Metrics
Run Average

Train Average

Test Average

Dataset

Dataset

c

c
Train Metrics

Test MetricsClassifier

Classifier c

c

d

d

d

d

Figure A.3: Compute the Run metrics average on the Training and Test set of each
individual dataset d and classifier c.

For each Method
Step 4

Metrics

Metrics

Overall Average

Train Average

Test Average Test Metrics

Train MetricsClassifier

Classifier

TrainDataset

TestDataset

d

d

c = 1, …, 6

(…)

(…)

Classifier

Classifier

c

c

c

c

d = 1, …, 86

Figure A.4: Finally, obtain the overall metrics average by classifier c, which is determined
based on the mean of each metric for all datasets.
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Table A.2: Training and Test AUCs for all oversampling algorithms and classifiers, regarding Approaches 1 and 2. The two best values for
each approach and classifier are marked in bold.

CART C4.5 k-NN SVM Linear SVM RBF NB

Method Approach 1 Approach 2 Approach 1 Approach 2 Approach 1 Approach 2 Approach 1 Approach 2 Approach 1 Approach 2 Approach 1 Approach 2

T
es

t

Baseline 0.8215±0.1297 0.8215±0.1297 0.7789±0.1602 0.7789±0.1602 0.8692±0.1148 0.8692±0.1148 0.9057±0.0999 0.9057±0.0999 0.9345±0.0839 0.9345±0.0839 0.7786±0.1437 0.7786±0.1437
ADASYN 0.9423±0.0701 0.8174±0.1267 0.9323±0.08 0.8206±0.1329 0.9628±0.0609 0.8853±0.1049 0.9269±0.0835 0.915±0.0862 0.9817±0.0482 0.9381±0.0794 0.8246±0.1242 0.7932±0.1306
ADOMS 0.942±0.0707 0.8229±0.1374 0.9322±0.0802 0.826±0.1389 0.9613±0.0633 0.8817±0.108 0.929±0.0803 0.9153±0.0879 0.9765±0.0543 0.9386±0.0801 0.8371±0.1197 0.7983±0.1364
AHC 0.9437±0.0668 0.8201±0.128 0.9351±0.0763 0.8187±0.1384 0.9647±0.0583 0.8824±0.1071 0.9362±0.0753 0.9171±0.0869 0.9827±0.0434 0.9382±0.0803 0.8399±0.1147 0.8135±0.1238
Borderline-SMOTE1 0.9525±0.0656 0.8125±0.1304 0.9445±0.0754 0.818±0.1378 0.9693±0.0528 0.878±0.1097 0.9498±0.0717 0.9148±0.0889 0.9831±0.0438 0.9354±0.0828 0.868±0.116 0.7899±0.1276
Borderline-SMOTE2 0.9519±0.0642 0.8125±0.1304 0.9453±0.0721 0.818±0.1378 0.9688±0.0524 0.878±0.1097 0.9506±0.0692 0.9148±0.0889 0.9832±0.0423 0.9354±0.0828 0.8693±0.1141 0.7899±0.1276
CBO+Random 0.9764±0.0415 0.7961±0.1374 0.9689±0.0506 0.8037±0.1383 0.9795±0.0416 0.8557±0.1163 0.9434±0.0733 0.9091±0.0952 0.993±0.0247 0.9381±0.0811 0.8486±0.1127 0.7889±0.1363
CBO+SMOTE 0.9601±0.0549 0.8271±0.1259 0.9492±0.0656 0.8263±0.1274 0.9772±0.0443 0.8827±0.1075 0.9489±0.0678 0.908±0.0939 0.9861±0.0354 0.9366±0.0805 0.8583±0.1069 0.7816±0.1306
MWMOTE 0.9336±0.0721 0.8327±0.1248 0.9252±0.0764 0.8383±0.1282 0.9545±0.0665 0.8959±0.0976 0.9433±0.0719 0.9181±0.0863 0.9745±0.0509 0.9361±0.0811 0.8598±0.1113 0.8042±0.1266
ROS 0.9607±0.06 0.7892±0.1451 0.952±0.0722 0.8089±0.1405 0.9652±0.061 0.8649±0.1156 0.9326±0.077 0.9171±0.0872 0.9875±0.0392 0.9386±0.0798 0.8339±0.119 0.8083±0.1285
Safe-Level-SMOTE 0.9611±0.0606 0.7916±0.1418 0.9497±0.0767 0.812±0.1373 0.965±0.0621 0.8649±0.1153 0.9313±0.0808 0.9177±0.0866 0.9893±0.0365 0.9398±0.0792 0.8326±0.1186 0.8149±0.1288
SMOTE 0.9449±0.0658 0.8244±0.1245 0.9346±0.0771 0.828±0.1296 0.9668±0.0548 0.8866±0.1055 0.9417±0.076 0.9188±0.0857 0.9821±0.0462 0.9392±0.0799 0.8502±0.1205 0.8106±0.1255
SMOTE+ENN 0.9544±0.053 0.8227±0.129 0.9449±0.0584 0.8275±0.1318 0.9804±0.0314 0.8871±0.1059 0.9532±0.0578 0.9182±0.0874 0.9868±0.0283 0.9374±0.0794 0.8596±0.114 0.8104±0.1239
SMOTE+TL 0.9509±0.0558 0.8325±0.1288 0.9399±0.069 0.8324±0.131 0.9806±0.0363 0.8927±0.1012 0.9496±0.065 0.9169±0.0883 0.9879±0.0304 0.9386±0.0781 0.8589±0.115 0.8114±0.1246
SPIDER 0.9507±0.0482 0.8092±0.1397 0.939±0.0626 0.8123±0.1409 0.974±0.0428 0.866±0.1157 0.9065±0.0954 0.9127±0.0912 0.9894±0.033 0.938±0.0798 0.7979±0.1255 0.8007±0.1282
SPIDER2 0.9434±0.054 0.8077±0.1424 0.9326±0.0663 0.8071±0.1377 0.9713±0.0489 0.868±0.1153 0.8999±0.0998 0.912±0.0908 0.9861±0.0366 0.9369±0.0796 0.789±0.1257 0.8009±0.1283

T
ra

in
in

g

Baseline 0.9662±0.0347 0.9662±0.0347 0.8697±0.1368 0.8697±0.1368 0.9695±0.0512 0.9695±0.0512 0.9163±0.0965 0.9163±0.0965 0.9688±0.0585 0.9688±0.0585 0.809±0.136 0.809±0.136
ADASYN 0.9936±0.0121 0.9942±0.011 0.9718±0.0433 0.9741±0.0403 0.9923±0.0216 0.9912±0.022 0.9319±0.0779 0.9301±0.078 0.9954±0.0221 0.9608±0.0697 0.8294±0.1206 0.8355±0.118
ADOMS 0.993±0.0115 0.9936±0.0101 0.9707±0.0452 0.9731±0.0419 0.99±0.0219 0.9877±0.0282 0.9343±0.0734 0.9322±0.074 0.9933±0.0263 0.9675±0.0596 0.8428±0.1171 0.8362±0.121
AHC 0.993±0.013 0.9938±0.0112 0.973±0.0431 0.9738±0.0405 0.9916±0.031 0.9882±0.0377 0.9413±0.0689 0.9384±0.0699 0.9971±0.0107 0.9689±0.0567 0.8442±0.1113 0.8495±0.1092
Borderline-SMOTE1 0.9939±0.0108 0.9942±0.0108 0.975±0.0391 0.9763±0.0361 0.9929±0.0158 0.9916±0.0211 0.9542±0.0631 0.9541±0.0612 0.9974±0.0091 0.9782±0.0455 0.8717±0.1113 0.8764±0.1086
Borderline-SMOTE2 0.9937±0.0115 0.9942±0.0108 0.975±0.0399 0.9763±0.0361 0.9915±0.021 0.9916±0.0211 0.9546±0.063 0.9541±0.0612 0.9965±0.0145 0.9782±0.0455 0.8715±0.1116 0.8764±0.1086
CBO+Random 0.9962±0.0091 0.9974±0.0069 0.9872±0.0254 0.9897±0.02 0.9959±0.0163 0.9922±0.0289 0.9465±0.0677 0.9458±0.0635 0.9981±0.0083 0.975±0.0454 0.8519±0.1086 0.8623±0.0963
CBO+SMOTE 0.9951±0.0111 0.9958±0.0094 0.9795±0.0358 0.9816±0.0314 0.9934±0.0187 0.9913±0.0272 0.952±0.0623 0.9486±0.062 0.9968±0.0102 0.9745±0.0449 0.8604±0.1043 0.8668±0.097
MWMOTE 0.9924±0.0117 0.9927±0.0117 0.9687±0.0432 0.9692±0.0428 0.9848±0.0295 0.9862±0.0284 0.9483±0.0645 0.9462±0.0654 0.985±0.0359 0.9693±0.0567 0.8642±0.1075 0.8675±0.1069
ROS 0.9946±0.0123 0.9958±0.0105 0.9807±0.0393 0.9832±0.0342 0.9921±0.0308 0.9869±0.0405 0.9371±0.0719 0.9346±0.0717 0.9963±0.0208 0.9671±0.0606 0.8388±0.1153 0.8434±0.1145
Safe-Level-SMOTE 0.9943±0.0133 0.9958±0.0107 0.9799±0.043 0.9833±0.0346 0.993±0.0302 0.9854±0.0441 0.9371±0.0726 0.9355±0.0716 0.9979±0.0097 0.9662±0.0612 0.8388±0.1147 0.8429±0.1142
SMOTE 0.9933±0.0119 0.994±0.011 0.9738±0.0417 0.9757±0.0394 0.992±0.0195 0.9915±0.0212 0.9466±0.0685 0.944±0.0705 0.9961±0.0177 0.9688±0.0567 0.8541±0.1163 0.8558±0.1132
SMOTE+ENN 0.9963±0.006 0.9966±0.0058 0.983±0.0219 0.9855±0.0188 0.9956±0.009 0.9965±0.0071 0.9572±0.0524 0.9558±0.0538 0.9982±0.0059 0.9786±0.0426 0.8638±0.1104 0.868±0.1067
SMOTE+TL 0.9946±0.0086 0.9956±0.0069 0.9792±0.0301 0.9813±0.027 0.9952±0.0116 0.9955±0.0117 0.9553±0.0559 0.9534±0.0575 0.9984±0.0048 0.9761±0.0454 0.8633±0.1105 0.8666±0.1055
SPIDER 0.9924±0.0122 0.9947±0.0087 0.9785±0.0402 0.9831±0.0312 0.9965±0.016 0.9925±0.0255 0.914±0.0914 0.9143±0.0887 0.998±0.01 0.9571±0.0735 0.8082±0.1239 0.8134±0.1222
SPIDER2 0.9927±0.0113 0.9945±0.0083 0.9764±0.0365 0.9795±0.031 0.9956±0.0159 0.9926±0.0262 0.9099±0.0943 0.9121±0.0905 0.9975±0.0107 0.9518±0.0808 0.801±0.1252 0.8084±0.1243
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Cross-Validation for Imbalanced Datasets: Avoiding Overoptimistic and Overfitting
Approaches

A.3 Data Complexity Analysis

Figure A.5 and A.6 show the obtained mean test AUC results for ROS and SMOTE

methods for all datasets, ordered by their sample size and IR, respectively. From these

simulation results, no relation was found with sample size or imbalance ratio. In terms of

sample size (Figure A.5), there is no clear pattern regarding the bias between Approaches

1 and 2: the difference seems marginal both for small datasets (92-150 instances) as well

as for larger datasets (> 2900 instances). Nevertheless, these conclusions refer to stan-

dard imbalanced datasets, and therefore new insights could be obtained from the analysis

of datasets with higher dimensionality and/or a smaller number of samples. Imbalance

ratio also does not seem to consistently influence the overoptimistic effect (Figure A.6):

for datasets with a low IR (1.38 - 2.00), the differences between Approach 1 and 2 are

derisory, since it is not necessary a significant amount of oversampling. We would expect

this difference (between Approach 1 and 2) would increase, as the IR increases. Indeed,

starting from balance scale BvsL, the difference starts to be considerable, but this is not

truly significant since the difference drops again for datasets with higher IR: some datasets

with higher imbalance ratios have small differences between both approaches (e.g., page-

blocks 1vs4 5, car vgood, and letterZ ). Finally, Figure A.7 shows the the obtained mean

test AUC results for ROS and SMOTE methods for all datasets, extending the analysis

of Figure 2.6.
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Figure A.5: Differences between test AUCs of Approach 1 and Approach 2: datasets are
ordered by their sample size.
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Figure A.6: Differences between test AUCs of Approach 1 and Approach 2: datasets are
ordered by their Imbalance Ratio (IR).
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Figure A.7: Differences between test AUCs of Approach 1 and Approach 2: datasets are
ordered by their original F1 complexity measure, considering all datasets.
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Appendix B

On the joint-effect of Class

Imbalance and Overlap:

A Critical Review

This appendix provides supporting information to the work developed in Chapter 5. Ac-

cordingly, Tables B.1 to B.3 provide a thorough examination of experimental results ob-

tained in related research regarding the joint-effect of class imbalance and overlap. In

particular, Table B.1 refers to the behaviour of classifiers on the typical and atypical do-

mains from Garćıa et al. [156, 157, 158, 161], and the domains by Prati et al. [70], and

Denil and Trappenberg [114]. In turn, Table B.2 refers to the behaviour of classifiers over

subclus and paw domains, whereas Table B.3 presents the obtained results in clover/flower

domains.
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Table B.1: Characterisation of the behaviour of classifiers from related work. In this table are included the typical and atypical domains from
Garćıa et al. [156, 157, 158, 161] and the domains by Prati et al. [70] and Denil and Trappenberg [114].

Typical Domains: Squares, IR = 4:1 Atypical Domains: Squares, IR = 4:1

Classifier Sensitivity Specificity Classifier Sensitivity Specificity

KNN

[156, 158]

[157, 161]

Sensitivity of 50%, 30% and

20% for higher percentages of

class overlap (60%, 80% and

100% respectively) for 1NN.

Faster deterioration was re-

ported for higher values of k (k

= 3, k = 9) [157].

Specificity decreases (100% to

80%) as overlap increases (from

0% to 100%) for 1NN. Higher

values of k seem to benefit

the majority class: specificity

around 100% to 90% for 0% to

100% overlap for k = 3 and sta-

ble at 100% for k = 9 [157].

KNN

[157, 158, 161]

Sensitivity increases as the minority class

gets denser (40% to 80%). Increasing the

value ok k benefits the minority class (range

of 40% to 90% for k = 3 and 40% to 100%

for k = 9) [157].

Specificity stable around 80%-95% as the mi-

nority gets denser. Specificity is always su-

perior to Sensitivity. Increasing the value of

k does not seem to impact the results [157].

MLP

[157, 158, 161]

Sensitivity around 40%, 20%

and 0% for higher percentages

of class overlap (60%, 80% and

100% respectively).

Specificity remains stable (near

100%) as overlap increases.
MLP

[157, 158, 161]

Sensitivity increases as the minority class

gets denser (40% to 100%). Sensitivity and

specificity start apart for the balanced con-

figuration (40% and 80% respectively) and

go hand-in-hand as the minority class be-

comes denser (80% to 100%).

Specificity stable around 80%-95% as the mi-

nority gets denser. Shows an inflection curve

where the specificity decreases for the first

configuration where classes interchange roles

(from the balanced configuration [75-100] to

the [80-100] configuration), before starting

to increase gradually.

C4.5

[157, 158, 161]

Sensitivity around 40%, 20%

and 0% for higher percentages

of class overlap (60%, 80% and

100% respectively).

Specificity remains stable (near

100%) as overlap increases.
C4.5

[157, 158, 161]

Sensitivity increases as the minority class

gets denser (40% to 100%). Sensitivity and

specificity are considerably different for the

balanced configuration (40% / 80%), yet sen-

sitivity rapidly increases to 100% in the fol-

lowing configurations, while specificity in-

creases gradually.

Specificity stable around 80%-95% as the mi-

nority gets denser. Shows an inflection curve

where the specificity decreases for the first

configuration where classes interchange roles

(from the balanced configuration [75-100] to

the [80-100] configuration), before starting

to increase gradually.

RBF

[157, 158, 161]

Sensitivity around 40%, 20%

and 0% for higher percentages

of class overlap (60%, 80% and

100% respectively).

Specificity remains stable (near

100%) as overlap increases.

Nevertheless, a slight decrease

is noticeable for intermediate

levels of overlap (around 2%).

RBF

[157, 158, 161]

Sensitivity increases as the minority class

gets denser (40% to 100%) but only sur-

passes specificity for the final configuration,

[95-100], and increases slowly.

Specificity stable around 80%-95% as the mi-

nority gets denser.

SVM [161]

Sensitivity of 50% for 40%

overlap and 0% for higher over-

lap levels (from 60% to 100%).

Specificity remains stable (near

100%) as overlap increases.
SVM [161]

Sensitivity increases as the minority class

gets denser, although very slowly: 0% for

the [75-100] (balanced) and [80-100] config-

urations, and 20% for [85-100]. For the final

two configurations, sensitivity rises to 90%

and 100%.

Specificity decreases as the minority class

gets denser, although slightly (100% to

90%).

To be continued on the next page. . .
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Table B.1: Continued from previous page.

Typical Domains: Squares, IR 4:1 Atypical Domains: Squares, IR = 4:1

Classifier Sensitivity Specificity Classifier Sensitivity Specificity

NB

[157, 158, 161]

Sensitivity around 40%, 20%

and 0% for higher percentages

of class overlap (60%, 80% and

100% respectively). A fast de-

crease is noted for class over-

lap over 60%: sensitivity below

20% was reported for 80% over-

lap [161].

Specificity remains stable (near

100%) as overlap increases.
NB

[157, 158, 161]

Sensitivity increases as the minority class

gets denser (80% to 100%). For a balanced

configuration, both classes present similar

recognition rates (around 80%) and as the

minority class gets denser, sensitivity as-

sumes higher (although close) values than

specificity.

Specificity stable around 80%-95% as the mi-

nority gets denser.

Atypical Domains: Concentric Circles, IR = 50:1 Other Domains

KNN [157]

RBF [157]

Sensitivity results are similar

to standard atypical situations.

Specificity stable on 100%.

For KNN, increasing the value

of k does not seem to impact

the results.

C4.5 [70]

For 1 and 3 SD, C4.5 achieved an AUC of:

91% and 99.9% (IR = 4:1, 5D)

87% and 99.6% (IR = 9:1, 5D)

C4.5 [157]

Sensitivity results are simi-

lar to standard atypical sit-

uations, although the perfor-

mance for balanced configura-

tions is lower in this domain

(around 10%).

SVM [114]

SVM is capable of finding parsimonious models in the presence of class

imbalance, whereas class overlap severely increases model complexity.

When domains are both imbalanced and overlapped, SVM revealed

a breaking point for α = 0.6 (IR = 1.5) and µ = 0.78.

MLP [157]
Sensitivity of 0% for all config-

urations.

NB [157]
Sensitivity of 100% for all con-

figurations.
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Table B.2: Characterisation of the behaviour of classifiers from related work (subclus and paw domains).

Subclus Domains Paw Domains

Classifier Sensitivity G-mean Classifier Sensitivity G-mean

MODLEM

[320]

Sensitivity of 88%, 56%, 34% and

20% for 0%, 30%, 50% and 70% of

borderline minority examples (IR =

7:1 and 5 subregions).

G-mean of 94%, 73%, 56% and 41% for

0%, 30%, 50% and 70% of borderline mi-

nority examples (IR = 7:1 and 5 subre-

gions).

MODLEM

[320]

Sensitivity of 83%, 61%, 45% and

29% for 0%, 30%, 50% and 70% of

borderline minority examples (IR =

7:1 and 3 subregions).

G-mean of 90%, 76%, 66% and 51%

for 0%, 30%, 50% and 70% of border-

line minority examples (IR = 7:1 and

3 subregions).

C4.5 [320, 405]

Sensitivity of 95%, 45%, 17% and

0% for 0%, 30%, 50% and 70% of

borderline minority examples (IR =

7:1 and 5 subregions) [320].

G-mean of 97%, 65%, 35% and 0% for 0%,

30%, 50% and 70% of borderline minor-

ity examples (IR = 7:1 and 5 subregions)

[320].

C4.5 [320]

Sensitivity of 52%, 26%, 18% and

0.6% for 0%, 30%, 50% and 70% of

borderline minority examples (C4.5,

IR = 7:1 and 3 subregions) [320].

G-mean of 67%, 33%, 32% and 1.5%

for 0%, 30%, 50% and 70% of border-

line minority examples (C4.5, IR =

7:1 and 3 subregions) [320].

Sensitivity results for 0%, 10% and 20% of borderline minority examples [405]:

96%, 91% and 85% (IR = 5:1 and 3 subregions)

94%, 90% and 75% (IR = 9:1 and 3 subregions)

96%, 87% and 76% (IR = 5:1 and 5 subregions)

90%, 81% and 66% (IR = 9:1 and 5 subregions)

C4.5-P [462]

C4.5-U [462]

Sensitivity of 90% and 91% (C4.5-P)

and 89% and 90% (C4.5-U) for 0%

and 30% of borderline minority ex-

amples (IR = 7:1, 3 subregions, 3D)

[462].

G-mean of 94% and 95% (C4.5-P)

and 94% (C4.5-U) for 0% and 30% of

borderline minority examples (IR =

7:1, 3 subregions, 3D) [462].

CART [309]

Sensitivity results for CART with 0% and 50% of borderline minority examples:

98% and 90% (IR = 4:1 and 5 subregions)

93% and 73% (IR = 10:1 and 5 subregions)

97% and 97% (IR = 4:1 and 5 subregions, 5D)

96% and 89% (IR = 10:1 and 5 subregions, 5D)

PART-P [462]

PART-U [462]

Sensitivity of 90% and 91% (PART-

P) and 89% and 90% (PART-U) for

0% and 30% of borderline minority

examples (IR = 7:1, 3 subregions,

3D).

G-mean of 92% and 93% (PART-P)

and 94% and 93% (PART-U) for 0%

and 30% of borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D).

SVM [309]

For 0% and 50% of borderline minority examples SVM achieved a sensitivity of:

Linear kernel: 48% and 40% (IR = 4:1 and 5 subregions)

Linear kernel: 33% and 12% (IR = 10:1 and 5 subregions)

RBF kernel: 90% and 85% (IR = 4:1 and 5 subregions)

RBF kernel: 69% and 54% (IR =10:1 and 5 subregions)

Linear kernel: 48% and 47% (IR = 4:1 and 5 subregions, 5D)

Linear kernel: 41% and 35% (IR = 10:1 and 5 subregions, 5D)

RBF kernel: 96% and 94% (IR = 4:1 and 5 subregions, 5D)

RBF kernel: 84% and 75% (IR = 10:1 and 5 subregions, 5D)

SVM [462]

Sensitivity of 98% and 99% for 0%

and 30% borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D).

G-mean of 99% for 0% and 30% bor-

derline minority examples (IR = 7:1,

3 subregions, 3D).

KNN [309]

For 0% and 50% of borderline minority examples KNN achieved a sensitivity of:

85% and 66% (IR = 4:1 and 5 subregions)

65% and 48% (IR = 10:1 and 5 subregions)

99% and 97% (IR = 4:1 and 5 subregions, 5D)

83% and 78% (IR = 10:1 and 5 subregions, 5D)

KNN [462]

Sensitivity of 95% for 0% and 30%

borderline minority examples (IR =

7:1, 3 subregions, 3D). Increasing the

value of k seems to improve sensitiv-

ity results.

G-mean of 97% and 96% for 0%

and 30% borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D). In-

creasing the value of k seems to im-

prove G-mean results.

NB [309]

For 0% and 50% of borderline minority examples NB achieved a sensitivity of:

53% and 46% (IR = 4:1 and 5 subregions)

0% and 0% (IR = 10:1 and 5 subregions)

100% and 100% (IR = 4:1 and 5 subregions, 5D)

96% and 93% (IR = 10:1 and 5 subregions 5D)

NB [462]

Sensitivity of 87% and 88% for 0%

and 30% borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D).

G-mean of 92% for 0% and 30% bor-

derline minority examples (IR = 7:1,

3 subregions, 3D).

To be continued on the next page. . .
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Table B.2: Continued from previous page.

Subclus Domains Paw Domains

Classifier Sensitivity G-mean Classifier Sensitivity G-mean

MLP [309]

For 0% and 50% of borderline minority examples MLP achieved a sensitivity of:

80% and 0% (IR = 4:1 and 5 subregions)

81% and 57% (IR = 10:1 and 5 subregions)

89% and 83% (IR = 4:1 and 5 subregions, 5D)

77% and 69% (IR = 10:1 and 5 subregions, 5D)

RBF [462]

Sensitivity of 95% and 94% for 0%

and 30% borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D).

G-mean of 97% and 96% for 0%

and 30% borderline minority exam-

ples (IR = 7:1, 3 subregions, 3D).

FLD [309]

For 0% and 50% of borderline minority examples FLD achieved a sensitivity of:

0% and 0% (IR = 4:1 and 5 subregions)

0% and 0% (IR = 10:1 and 5 subregions)

0% and 0% (IR = 4:1 and 5 subregions, 5D)

0% and 0% (IR = 10:1 and 5 subregions, 5D)
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Table B.3: Characterisation of the behaviour of classifiers from related work (clover/flower domains).

Clover/Flower Domains Clover/Flower Domains

Classifier Sensitivity G-mean Classifier Sensitivity G-mean

KNN [309, 462]

Sensitivity of 98% for 0% and 30%

borderline minority examples (1NN,

IR = 7:1, 5 subregions, 3D). In-

creasing the value of k seems to pro-

vide higher sensitivity results [462].

G-mean of 98% for 0% and 30% border-

line minority examples (1NN, IR = 7:1, 5

subregions, 3D). Increasing the value of k

seems to improve G-mean results [462].

C4.5 [320]

Sensitivity of 43%, 13%, 5% and 0.8%

for 0%, 30%, 50% and 70% of borderline

minority examples (C4.5, IR = 7:1 and

5 subregions) [320].

G-mean of 64%, 26%, 11% and 2% for

0%, 30%, 50% and 70% of borderline mi-

nority examples (C4.5, IR = 7:1 and 5

subregions) [320].

Sensitivity results for 0% and 50% of borderline minority examples [309]:

91% and 79% (IR = 4:1 and 5 subregions)

66% and 49% (IR = 10:1 and 5 subregions)

100% and 100% (IR = 4:1 and 5 subregions, 5D)

100% and 99% (IR = 10:1 and 5 subregions, 5D)

C4.5-P [462]

C4.5-U [462]

Sensitivity of 93% and 94% (C4.5-P)

and 90% and 91% (C4.5-U) for 0% and

30% of borderline minority examples (IR

= 7:1, 5 subregions, 3D [462].

G-mean of 96% (C4.5-P) and 94% and

95% (C4.5-U) for 0% and 30% of bor-

derline minority examples (IR = 7:1, 5

subregions, 3D [462].

FLD [309]

For 0% and 50% of borderline minority examples FLD achieved a sensitivity of:

0% and 0% (IR = 4:1 and 5 subregions)

0% and 0% (IR = 10:1 and 5 subregions)

0% and 0% (IR = 4:1 and 5 subregions, 5D)

0% and 0% (IR = 10:1 and 5 subregions, 5D)

MLP [309]

For 0% and 50% of borderline minority examples MLP obtained a sensitivity of:

93% and 91% (IR = 4:1 and 5 subregions)

79% and 74% (IR = 10:1 and 5 subregions)

100% and 99% (IR = 4:1 and 5 subregions, 5D)

99% and 99% (IR = 10:1 and 5 subregions, 5D)

CART [309]

Sensitivity results for 0% and 50% of borderline minority examples:

78% and 73% (IR = 4:1 and 5 subregions)

66% and 36% (IR = 10:1 and 5 subregions)

98% and 98% (IR = 4:1 and 5 subregions, 5D)

94% and 96% (IR = 10:1 and 5 subregions, 5D)

RBF [462]

Sensitivity of 93% and 98% for 0% and

30% borderline minority examples (IR =

7:1, 5 subregions, 3D).

G-mean of 96% and 99% for 0% and 30%

borderline minority examples (IR = 7:1,

5 subregions, 3D).

PART-P [462]

PART-U [462]

Sensitivity of 92% (PART-P) and

90% (PART-U) for 0% and 30%

borderline minority examples (IR =

7:1, 5 subregions, 3D).

G-mean of 95% (PART-P) and 94%

(PART-U) for 0% and 30% borderline mi-

nority examples (IR = 7:1, 5 subregions,

3D).

MODLEM [320]

Sensitivity of 57%, 43%, 28% and 21%

for 0%, 30%, 50% and 70% of border-

line minority examples (IR = 7:1 and 5

subregions).

G-mean of 74%, 64%, 51% and 42% for

0%, 30%, 50% and 70% of borderline mi-

nority examples (IR = 7:1 and 5 subre-

gions).

To be continued on the next page. . .
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Table B.3: Continued from previous page.

Clover/Flower Domains Clover/Flower Domains

Classifier Sensitivity G-mean Classifier Sensitivity G-mean

NB [309, 462]

Sensitivity of 99% for 0% and 30%

borderline minority examples (IR =

7:1, 5 subregions, 3D) [462].

G-mean of 98% for 0% and 30% border-

line minority examples (IR = 7:1, 5 sub-

regions, 3D) [462].

SVM [309,

462]

Sensitivity of 100% and 99% for 0% and

30% borderline minority examples (IR =

7:1, 5 subregions, 3D) [462].

G-mean of 100% and 99% for 0% and

30% borderline minority examples (IR =

7:1, 5 subregions, 3D) [462].

Sensitivity results for 0% and 50% of borderline minority examples [309]:

23% and 18% (IR = 4:1 and 5 subregions)

0% and 0% (IR = 10:1 and 5 subregions)

100% and 100% (IR = 4:1 and 5 subregions, 5D)

100% and 100% (IR = 10:1 and 5 subregions, 5D)

Sensitivity results for 0% and 50% of borderline

minority examples [309]:

Linear kernel: 47% and 31% (IR = 4:1 and 5 subregions)

Linear kernel: 46% and 40% (IR = 10:1 and 5 subregions)

RBF kernel: 95% and 92% (IR = 4:1 and 5 subregions)

RBF kernel: 88% and 66% (IR =10:1 and 5 subregions)

Linear kernel: 36% and 21% (IR = 4:1 and 5 subregions, 5D)

Linear kernel: 15% and 19% (IR = 10:1 and 5 subregions, 5D)

RBF kernel: 100% and 99% (IR = 4:1 and 5 subregions, 5D)

RBF kernel: 100% and 100% (IR =10:1 and 5 subregions, 5D)
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Appendix C

The Influence of Data Distribution

in Missing Data Imputation

This appendix provides supporting information to the work developed in Chapter 8. Ta-

ble C.1 refers to the imputation the results (predictive and distributional accuracy) ob-

tained with the studied classifiers, divided by data distribution, missing data generation

type, and missing rate. Table C.2 shows the Area Under the ROC Curve (AUC) results

obtained during our search for an interpretable and accurate decision tree model that pro-

vided useful heuristics for researchers. Finally, Figure C.1 shows a preview of the obtained

meta-model generated from data, where an example recommendation regarding the best

imputation model for the T3 generation type according to the Mean Squared Error (MSE)

metric is illustrated.
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Table C.1: Simulation results by distribution: means and standard deviations are shown for the winning methods regarding each distribution,
metric, missing percentage, and scenario. The color code contains information on matches: red encodes matches between all of the methods,
yellows refers to matches between three methods, and green refers to matches between two methods.

Distribution Metric MR T1 T2 T3 T4 T5 T6 T7

Beta

MSE

25% SOM[0.13408±0.08651] KNN[0.15884±0.12366] MM[0.17536±0.2294] MM[0.062625±0.01789] SOM[0.082621±0.070384] SOM[0.17736±0.15882] SOM[0.10788±0.10202]
5-10% DT[0.035882±0.0060517] DT[0.00022353±0.00018827] SOM[0.053841±0.054059] SOM[0.040822±0.026387] KNN[0.076636±0.075282] SOM[0.055708±0.021929] SOM[0.027941±0.031969]
15-20% SOM[0.10993±0.059654] KNN[0.13672±0.13294] SOM[0.12703±0.1298] MM[0.042514±0.0057678] KNN[0.1079±0.090925] MM[0.050106±0.019381] SOM[0.07512±0.06778]
Total MM[0.026292±0.016263] KNN[0.14489±0.1018] SOM[0.088418±0.093859] MM[0.049405±0.017943] KNN[0.11092±0.092744] MM[0.046586±0.017953] MM[0.060943±0.0737]
Total SVM SVM[0.059693±0.054636] SVM[0.057665±0.076594] SVM[0.11664±0.14135] SVM[0.076195±0.06865] SVM[0.064931±0.081053] SVM[0.083096±0.092313] SVM[0.049032±0.064667]

R2

25% SOM[0.81234±0.063703] KNN[0.10033±0.061011] SOM[0.53337±0.43429] SOM[0.51036±0.35432] SOM[0.36706±0.40121] SOM[0.48613±0.43868] MM[0.58653±0.46232]
5-10% KNN[0.79855±0.37056] SOM[0.19428±0.11996] KNN[0.73087±0.34426] SOM[0.744±0.40377] DT[0.35052±0.24689] KNN[0.67639±0.38377] KNN[0.72234±0.29822]
15-20% SOM[0.61621±0.40288] SOM[0.56294±0.15488] SOM[0.50698±0.42487] SOM[0.8159±0.13431] SOM[0.48519±0.26554] KNN[0.19446±0.24908] SOM[0.6015±0.35978]
Total SOM[0.66367±0.33746] SOM[0.4393±0.22218] MM[0.92747±0.024277] MM[0.76571±0.17243] DT[0.43019±0.25681] MM[0.83931±0.032833] SOM[0.64156±0.33141]
Total SVM SVM[0.57677±0.42639] SVM[0.63865±0.29104] SVM[0.59761±0.3568] MM[0.76571±0.17243] SVM[0.46988±0.2747] KNN[0.45974±0.36979] SVM[0.70593±0.31434]

DKS

25% KNN[0.51177±0.14653] SOM[0.1856±0.11273] KNN[0.25807±0.21523] MM[0.18235±0.05823] KNN[0.29789±0.14001] MM[0.14881±0.0084146] MM[0.12941±0.034688]
5-10% KNN[0.48934±0.33033] KNN[0.52296±0.42159] KNN[0.3719±0.12667] KNN[0.37264±0.13004] KNN[0.44087±0.20347] KNN[0.33231±0.10743] KNN[0.17244±0.055552]
15-20% KNN[0.47696±0.30718] SOM[0.19279±0.062948] KNN[0.26453±0.12089] SOM[0.22577±0.090675] SOM[0.168±0.068487] KNN[0.23173±0.095855] KNN[0.15344±0.037309]
Total KNN[0.48738±0.28659] KNN[0.47997±0.33989] KNN[0.31741±0.13645] KNN[0.35379±0.11404] SOM[0.21388±0.10171] KNN[0.29583±0.1054] KNN[0.16056±0.044999]
Total SVM SVM[0.40634±0.229] SVM[0.33984±0.23783] SVM[0.23809±0.065182] SVM[0.21037±0.10379] SVM[0.28123±0.14308] SVM[0.19536±0.04447] SVM[0.13064±0.036433]

Birnbaum-
saunders

MSE

25% SOM[0.021465±0.049302] SOM[0.0011127±0.0071926] SOM[0.020244±0.033922] SOM[0.017429±0.069685] SOM[0.0010677±0.0064629] SOM[0.018534±0.051243] SOM[0.013734±0.036051]
5-10% SOM[0.020785±0.030717] KNN[0.0001841±0.0020196] KNN[0.080911±0.042088] KNN[0.080392±0.070467] SOM[0.00021987±0.0018644] SOM[0.014267±0.013631] SOM[0.0040318±0.010471]
15-20% SOM[0.026252±0.070216] KNN[0.0011339±0.0095155] SOM[0.021162±0.035475] SOM[0.014337±0.045765] SOM[0.0011062±0.0079416] SOM[0.015805±0.025946] SOM[0.010581±0.021858]
Total SOM[0.023103±0.053174] KNN[0.0014±0.011468] SOM[0.019678±0.027814] SOM[0.016179±0.045302] SOM[0.00074576±0.0059268] SOM[0.015762±0.029679] SOM[0.0085972±0.022543]
Total SVM SVM[0.032876±0.061245] SVM[0.015085±0.019795] SVM[0.033332±0.050168] SVM[0.011219±0.040648] SVM[0.012966±0.015563] SVM[0.011807±0.03091] SVM[0.0044381±0.019663]

R2

25% SOM[0.95039±0.13108] SOM[0.80303±0.10018] SOM[0.95945±0.090071] SOM[0.97665±0.082168] SOM[0.97119±0.10857] SOM[0.9647±0.097472] SOM[0.95975±0.11836]
5-10% KNN[0.36447±0.23966] KNN[0.45158±0.35409] KNN[0.71642±0.18495] SOM[0.90733±0.10375] SOM[0.9718±0.1276] KNN[0.84777±0.22039] KNN[0.96816±0.098474]
15-20% SOM[0.95215±0.11041] SOM[0.3308±0.18377] SOM[0.95936±0.080163] SOM[0.95165±0.13433] SOM[0.96976±0.10881] SOM[0.96349±0.076289] SOM[0.95803±0.10782]
Total KNN[0.40405±0.24902] SOM[0.75087±0.19335] SOM[0.95882±0.065735] SOM[0.93831±0.11583] SOM[0.97086±0.1164] SOM[0.96318±0.071067] SOM[0.96501±0.10246]
Total SVM SVM[0.93992±0.14261] SVM[0.15803±0.11396] SVM[0.96513±0.096266] SVM[0.95361±0.13357] SVM[0.52457±0.31084] SVM[0.96846±0.098066] SVM[0.97483±0.10295]

DKS

25% SOM[0.047235±0.028516] SOM[0.78907±0.10993] SOM[0.49008±0.050215] SOM[0.23511±0.032482] SOM[0.19154±0.079873] SOM[0.19218±0.0536] KNN[0.20577±0.028675]
5-10% SOM[0.18736±0.095181] KNN[0.77899±0.21092] KNN[0.47717±0.032084] KNN[0.45008±0.13404] SOM[0.33937±0.094211] KNN[0.28089±0.056917] KNN[0.21365±0.032426]
15-20% SOM[0.074703±0.056041] KNN[0.97603±0.11703] KNN[0.48654±0.045399] SOM[0.26779±0.099231] KNN[0.30944±0.12324] SOM[0.17732±0.025547] KNN[0.21954±0.031646]
Total SOM[0.11404±0.093143] KNN[0.87357±0.20076] KNN[0.48379±0.0408] SOM[0.18825±0.085376] SOM[0.26732±0.108] SOM[0.18783±0.03974] KNN[0.21442±0.031742]
Total SVM SVM[0.1732±0.11051] SVM[0.67171±0.12784] SVM[0.33276±0.047188] SVM[0.17276±0.062565] SVM[0.26862±0.038111] SVM[0.13922±0.03255] SVM[0.1728±0.024868]

Generalized
Pareto

MSE

25% SOM[0.12429±0.058683] SOM[0.039012±0.03132] SOM[0.16785±0.14882] SOM[0.12613±0.068573] SOM[0.055824±0.07261] SOM[0.14074±0.11049] SOM[0.11509±0.083818]
5-10% KNN[0.099393±0.070874] KNN[0.057877±0.082377] KNN[0.058834±0.039903] KNN[0.084086±0.06917] SOM[0.012688±0.026483] KNN[0.055082±0.035704] DT[0.024717±0.027203]
15-20% SOM[0.11778±0.067827] SOM[0.020735±0.021997] SOM[0.17817±0.13331] SOM[0.13229±0.10787] SOM[0.017612±0.018688] SOM[0.070583±0.046026] SOM[0.080016±0.06346]
Total KNN[0.14832±0.083736] SOM[0.026585±0.028754] SOM[0.15961±0.13021] SOM[0.11016±0.089041] SOM[0.026101±0.045289] SOM[0.090764±0.089906] SOM[0.069044±0.067592]
Total SVM SVM[0.09678±0.060877] SVM[0.040265±0.060942] SVM[0.11069±0.1029] SVM[0.09385±0.085096] SVM[0.024944±0.046781] SVM[0.070569±0.080949] SVM[0.0494±0.062699]

R2

25% KNN[0.31494±0.21814] SOM[0.30291±0.1795] SOM[0.69369±0.29474] SOM[0.56081±0.25662] KNN[0.31921±0.24976] SOM[0.65012±0.29932] SOM[0.56729±0.32833]
5-10% KNN[0.34704±0.2168] KNN[0.27934±0.18701] KNN[0.72421±0.31827] KNN[0.54643±0.28408] DT[0.35109±0.34572] KNN[0.68639±0.30483] KNN[0.72023±0.28539]
15-20% KNN[0.36359±0.28192] KNN[0.24829±0.17094] KNN[0.55376±0.3573] SOM[0.50797±0.29441] SOM[0.35111±0.20932] KNN[0.51955±0.34354] SOM[0.57955±0.33978]
Total KNN[0.34721±0.23745] KNN[0.26538±0.17567] KNN[0.63201±0.34953] KNN[0.47041±0.27484] SOM[0.34132±0.21457] KNN[0.59809±0.33175] SOM[0.61191±0.3279]
Total SVM SVM[0.44224±0.23162] SVM[0.48076±0.24339] SVM[0.67196±0.26465] SVM[0.57031±0.27361] SVM[0.55232±0.27292] SVM[0.77665±0.23577] SVM[0.70174±0.30482]

DKS

25% SOM[0.28667±0.21815] KNN[0.37943±0.19232] KNN[0.3183±0.091516] SOM[0.20075±0.07564] KNN[0.27166±0.10797] KNN[0.21994±0.075433] KNN[0.13338±0.053145]
5-10% KNN[0.58817±0.25401] KNN[0.58923±0.30027] KNN[0.37071±0.12468] KNN[0.34478±0.12544] KNN[0.3221±0.096349] KNN[0.28805±0.13284] KNN[0.14271±0.071886]
15-20% SOM[0.33136±0.1788] KNN[0.48305±0.24122] KNN[0.34223±0.10977] KNN[0.32556±0.099312] KNN[0.2798±0.10288] KNN[0.23562±0.10427] KNN[0.12745±0.054671]
Total KNN[0.54074±0.24689] KNN[0.51294±0.26973] KNN[0.3508±0.11411] KNN[0.31643±0.11943] KNN[0.29707±0.10153] KNN[0.25862±0.11746] KNN[0.13481±0.061754]
Total SVM SVM[0.32924±0.21523] SVM[0.41802±0.20683] SVM[0.26729±0.074204] SVM[0.21249±0.12465] SVM[0.2212±0.073795] SVM[0.21203±0.079421] SVM[0.12018±0.044531]

tlocationscale

MSE

25% SOM[0.29993±0.048794] KNN[0.025715±0.0107] SOM[0.28576±0.10932] DT[0.22448±0.082407] KNN[0.046163±0.023216] SOM[0.28202±0.058801] SOM[0.16187±0.049711]
5-10% KNN[0.17558±0.10875] KNN[0.001267±0.0011107] KNN[0.11175±0.058643] KNN[0.15054±0.086996] KNN[0.0047826±0.003789] KNN[0.11835±0.090429] DT[0.031883±0.019104]
15-20% SOM[0.23042±0.092838] KNN[0.0090903±0.0049036] SOM[0.20911±0.047375] KNN[0.26433±0.10801] KNN[0.019182±0.014385] DT[0.16593±0.078741] SOM[0.10127±0.037534]
Total SOM[0.23335±0.090397] KNN[0.0095618±0.010442] SOM[0.22315±0.093604] KNN[0.21429±0.11501] KNN[0.020046±0.021268] DT[0.13887±0.078545] KNN[0.085641±0.062906]
Total SVM SVM[0.15164±0.091241] SVM[0.0065092±0.0087019] SVM[0.12913±0.093544] SVM[0.13774±0.10158] SVM[0.01042±0.013147] SVM[0.12615±0.09809] SVM[0.062004±0.057905]

R2

25% SOM[0.42857±0.13188] DT[0.20575±0.15913] SOM[0.25327±0.17943] SOM[0.30555±0.19805] DT[0.28489±0.17519] SOM[0.26923±0.17351] SOM[0.38936±0.18568]
5-10% KNN[0.61273±0.23195] KNN[0.20032±0.16577] KNN[0.63237±0.23067] KNN[0.73402±0.17866] DT[0.38036±0.25658] KNN[0.64464±0.23617] KNN[0.63358±0.21393]
15-20% KNN[0.4112±0.18087] DT[0.27675±0.17654] KNN[0.3865±0.19552] KNN[0.40473±0.22225] KNN[0.19124±0.16707] KNN[0.45022±0.22879] DT[0.49038±0.1842]
Total KNN[0.4766±0.23327] DT[0.25566±0.16944] KNN[0.51073±0.24469] KNN[0.57243±0.25499] DT[0.36116±0.22265] KNN[0.53526±0.25436] DT[0.53702±0.20949]
Total SVM SVM[0.58867±0.18233] SVM[0.41108±0.27757] SVM[0.58164±0.2761] SVM[0.61904±0.24778] SVM[0.50912±0.30612] SVM[0.63875±0.27308] SVM[0.64816±0.24281]

DKS

25% KNN[0.31457±0.077732] SOM[0.15253±0.039634] KNN[0.25225±0.05805] KNN[0.31809±0.10014] SOM[0.19467±0.069663] KNN[0.21909±0.044202] KNN[0.1505±0.04926]
5-10% KNN[0.48573±0.14615] KNN[0.25595±0.094595] KNN[0.30682±0.077902] KNN[0.42873±0.15319] KNN[0.31187±0.091828] KNN[0.25957±0.07297] KNN[0.16442±0.063837]
15-20% KNN[0.39025±0.11042] KNN[0.21414±0.064845] KNN[0.25564±0.048942] KNN[0.35527±0.11748] SOM[0.21831±0.056053] KNN[0.23192±0.053491] KNN[0.1477±0.049264]
Total KNN[0.42647±0.13972] KNN[0.22744±0.088427] KNN[0.2774±0.06817] KNN[0.37487±0.13416] SOM[0.22976±0.074349] KNN[0.24021±0.061625] KNN[0.15495±0.055397]
Total SVM SVM[0.30059±0.078585] SVM[0.1643±0.057645] SVM[0.20618±0.053451] SVM[0.25871±0.089711] SVM[0.18088±0.075642] SVM[0.19232±0.061031] SVM[0.11427±0.037078]
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Distribution Metric MR T1 T2 T3 T4 T5 T6 T7

Exponential

MSE

25% MM[0.18015±0] MM[0.069898±0] MM[0.17848±0] MM[0.18433±0] KNN[0.06419±0] MM[0.16401±0] MM[0.10974±0]
5-10% KNN[0.11248±0.084352] KNN[0.0079157±0.0073656] KNN[0.050127±0.019198] KNN[0.066428±0.042359] MM[2.5855e-06±1.3912e-06] KNN[0.043264±0.010078] KNN[0.037725±0.025976]
15-20% KNN[0.16942±0.10855] KNN[0.073144±0.054706] MM[0.14311±0.016504] MM[0.14109±0.031424] KNN[0.044859±0.054589] KNN[0.12511±0] MM[0.074189±0.017722]
Total KNN[0.15215±0.087714] KNN[0.061169±0.058521] MM[0.1549±0.02352] MM[0.1555±0.033421] KNN[0.049692±0.045608] KNN[0.070546±0.047788] KNN[0.086837±0.067835]
Total SVM SVM[0.11955±0.043218] SVM[0.041286±0.04166] MM[0.1549±0.02352] MM[0.1555±0.033421] SVM[0.046312±0.041861] SVM[0.13002±0.048538] SVM[0.075185±0.063515]

R2

25% MM[0.37543±0] MM[0.43676±0] MM[0.59969±0] MM[0.599±0] MM[0.44518±0] MM[0.41161±0] MM[0.56095±0]
5-10% KNN[0.30851±0.01563] KNN[0.22463±0.19068] KNN[0.83938±0.062947] KNN[0.39056±0] MM[0.69618±0.52623] KNN[0.62695±0.089893] KNN[0.56683±0.27193]
15-20% KNN[0.44839±0] KNN[0.47452±0] KNN[0.49459±0.31641] KNN[0.34635±0.21331] KNN[0.14781±0.098222] KNN[0.29067±0.25468] KNN[0.43661±0.22047]
Total KNN[0.33649±0.064004] KNN[0.27461±0.19939] KNN[0.63251±0.29447] MM[0.46468±0.16593] MM[0.53895±0.44148] KNN[0.49244±0.23277] KNN[0.46641±0.24782]
Total SVM SVM[0.33019±0.17257] SVM[0.3598±0.28986] SVM[0.56106±0.25684] SVM[0.4076±0.21106] SVM[0.58457±0.36101] SVM[0.41527±0.18274] SVM[0.52861±0.23829]

DKS

25% KNN[0.3088±0] KNN[0.34739±0.19938] KNN[0.31242±0.051506] KNN[0.32629±0.11411] KNN[0.28562±0.089407] KNN[0.22394±0.077973] KNN[0.093701±0.044531]
5-10% KNN[0.4581±0.2221] KNN[0.45504±0.2967] KNN[0.32731±0.11297] KNN[0.38286±0.083648] KNN[0.50447±0.29096] KNN[0.29034±0.10423] KNN[0.11872±0.084485]
15-20% KNN[0.22567±0.068356] KNN[0.49538±0.29476] KNN[0.31964±0.033964] KNN[0.2875±0.02192] KNN[0.41259±0.25117] KNN[0.23916±0.037599] KNN[0.099282±0.053055]
Total KNN[0.35574±0.18482] KNN[0.44965±0.25688] KNN[0.32127±0.070483] KNN[0.33945±0.080513] KNN[0.42395±0.23943] KNN[0.25659±0.075142] KNN[0.10594±0.060527]
Total SVM KNN[0.28403±0.064276] KNN[0.28426±0.1478] SVM[0.29538±0.064454] KNN[0.28115±0.027971] KNN[0.33163±0.17796] KNN[0.25242±0.078463] KNN[0.1031±0.057345]

Extreme
Value

MSE

25% MM[0.026669±0] MM[0.014987±0] SOM[0.19185±0.06539] SOM[0.19409±0.067024] MM[0.0058113±0] SOM[0.16335±0.080371] SOM[0.12099±0.040778]
5-10% KNN[0.031918±0.057599] SOM[0.0052123±0.0040884] SOM[0.11813±0.066164] KNN[0.0073832±0.0057008] KNN[0.0072573±0.0062623] KNN[0.02668±0.025922] SOM[0.029432±0.017325]
15-20% KNN[0.027228±0.01787] SOM[0.02186±0.0085461] SOM[0.17114±0.065924] SOM[0.17841±0.081099] SOM[0.031119±0.016616] SOM[0.1506±0.060151] SOM[0.079685±0.030819]
Total KNN[0.034001±0.04332] SOM[0.019786±0.015771] KNN[0.05177±0.056529] KNN[0.0098638±0.0074256] SOM[0.025636±0.02005] SOM[0.13439±0.066281] SOM[0.068259±0.04525]
Total SVM SVM[0.13408±0.070016] SVM[0.011849±0.012136] SVM[0.099988±0.063043] SVM[0.10566±0.061659] SVM[0.015006±0.015141] SVM[0.083643±0.053804] SVM[0.04291±0.03539]

R2

25% SOM[0.5332±0.15342] SOM[0.19942±0.1588] MM[0.92802±0] SOM[0.50906±0.1425] KNN[0.18003±0.1947] SOM[0.59974±0.12799] SOM[0.54942±0.15527]
5-10% KNN[0.63974±0.18196] KNN[0.21409±0.12084] MM[0.99401±0.0023476] KNN[0.67538±0.20976] KNN[0.26912±0.2213] SOM[0.76634±0.13343] KNN[0.66906±0.12857]
15-20% SOM[0.55678±0.13798] KNN[0.1674±0.14242] SOM[0.64302±0.14921] KNN[0.6014±0.23562] KNN[0.25929±0.32378] SOM[0.63667±0.15615] SOM[0.57731±0.13487]
Total MM[0.95597±0.047054] KNN[0.18363±0.12691] MM[0.96989±0.027293] KNN[0.64762±0.21075] KNN[0.24905±0.25173] SOM[0.66908±0.15728] SOM[0.6044±0.14058]
Total SVM MM[0.9474±0.049626] SVM[0.25901±0.14518] SVM[0.76796±0.13547] SVM[0.69871±0.14229] SVM[0.30808±0.17273] KNN[0.91601±0.043336] SVM[0.74415±0.11586]

DKS

25% KNN[0.26206±0.14809] SOM[0.25031±0.080384] KNN[0.26921±0.12392] SOM[0.30317±0.092503] KNN[0.23745±0.11245] KNN[0.24378±0.083372] KNN[0.20141±0.038849]
5-10% KNN[0.58352±0.26188] SOM[0.36856±0.1123] KNN[0.40758±0.086552] KNN[0.54129±0.2444] SOM[0.35451±0.10472] SOM[0.33002±0.097093] KNN[0.20965±0.038392]
15-20% KNN[0.39318±0.22376] SOM[0.30281±0.10064] KNN[0.27504±0.091844] SOM[0.3816±0.1048] KNN[0.31257±0.1217] SOM[0.25609±0.054107] KNN[0.19595±0.036834]
Total KNN[0.47081±0.25836] SOM[0.31277±0.10922] KNN[0.37471±0.10627] KNN[0.46275±0.24357] KNN[0.32597±0.12509] SOM[0.27618±0.082891] KNN[0.20257±0.03813]
Total SVM SVM[0.32551±0.1129] SVM[0.26035±0.095953] SVM[0.22945±0.066823] SVM[0.27531±0.11738] SVM[0.23487±0.08411] SVM[0.20048±0.059219] SVM[0.13177±0.031191]

Gamma

MSE

25% SOM[0.12736±0.063196] SOM[0.049688±0.033262] SOM[0.10914±0.054397] SOM[0.11258±0.053337] SOM[0.037903±0.012048] SOM[0.10874±0.060419] SOM[0.086792±0.040838]
5-10% KNN[0.054901±0.049353] KNN[0.008397±0.0088846] SOM[0.055464±0.026111] SOM[0.059117±0.023446] KNN[0.0039424±0.0044662] KNN[0.039695±0.029418] DT[0.019971±0.01157]
15-20% SOM[0.11324±0.047124] SOM[0.019438±0.0097678] SOM[0.098531±0.036625] SOM[0.10987±0.045988] SOM[0.019434±0.010679] SOM[0.092485±0.044854] SOM[0.054574±0.026108]
Total SOM[0.10497±0.051229] KNN[0.018548±0.016969] SOM[0.088953±0.044151] SOM[0.093705±0.048024] KNN[0.017815±0.020588] SOM[0.084836±0.049002] SOM[0.050437±0.037146]
Total SVM SVM[0.0899±0.063863] SVM[0.014608±0.016021] SVM[0.070511±0.059096] SVM[0.083407±0.064574] SVM[0.0097434±0.012152] SVM[0.069739±0.052203] SVM[0.037682±0.035213]

R2

25% SOM[0.73078±0.11682] DT[0.33936±0.13607] SOM[0.73804±0.16349] SOM[0.60188±0.17556] SOM[0.44291±0.24076] SOM[0.77797±0.1181] SOM[0.68672±0.15271]
5-10% KNN[0.82157±0.11268] KNN[0.32094±0.28362] KNN[0.78438±0.18448] KNN[0.78471±0.1527] KNN[0.25365±0.2984] KNN[0.83912±0.10675] KNN[0.77427±0.11548]
15-20% SOM[0.73792±0.096843] KNN[0.21653±0.23991] SOM[0.72984±0.17283] SOM[0.68209±0.12952] SOM[0.29316±0.14821] KNN[0.7101±0.13057] SOM[0.70807±0.14327]
Total SOM[0.75758±0.12978] KNN[0.26776±0.26503] SOM[0.75885±0.16431] SOM[0.65575±0.21999] SOM[0.3041±0.20325] KNN[0.78098±0.13742] SOM[0.73343±0.14265]
Total SVM SVM[0.72873±0.1332] SVM[0.47338±0.25773] SVM[0.73313±0.15104] SVM[0.64867±0.18145] SVM[0.5668±0.30816] SVM[0.75838±0.13618] SVM[0.76793±0.14365]

DKS

25% KNN[0.19477±0.10583] KNN[0.18932±0.097087] KNN[0.14612±0.053574] SOM[0.18894±0.068229] SOM[0.17785±0.07807] KNN[0.19285±0.038374] KNN[0.092541±0.037828]
5-10% KNN[0.28549±0.18633] KNN[0.18695±0.096743] KNN[0.18356±0.11291] KNN[0.33613±0.16167] KNN[0.28261±0.096674] KNN[0.20266±0.079138] KNN[0.08946±0.043087]
15-20% KNN[0.21623±0.11115] KNN[0.22024±0.1148] KNN[0.1561±0.075884] SOM[0.26244±0.09571] SOM[0.19971±0.082783] KNN[0.1897±0.041843] KNN[0.085143±0.037337]
Total KNN[0.24462±0.15338] KNN[0.20121±0.10461] KNN[0.16622±0.091496] SOM[0.28901±0.14342] SOM[0.22351±0.10255] KNN[0.19583±0.059788] KNN[0.088381±0.03973]
Total SVM KNN[0.19641±0.095478] SVM[0.19298±0.097232] SVM[0.19237±0.048418] SVM[0.21156±0.10433] SVM[0.17003±0.092394] SVM[0.16533±0.04976] KNN[0.071719±0.025221]

Generalized
Extreme
Value

MSE

25% SOM[0.1869±0.13039] KNN[0.053667±0.021234] SOM[0.14656±0.14037] SOM[0.12604±0.09554] SOM[0.024677±0.023336] SOM[0.097441±0.08591] SOM[0.088373±0.063958]
5-10% SOM[0.09084±0.091661] KNN[0.005652±0.0058568] KNN[0.093233±0.10507] SOM[0.081504±0.0801] SOM[0.0052291±0.0084082] SOM[0.054702±0.066271] SOM[0.01706±0.018474]
15-20% SOM[0.14855±0.12071] KNN[0.021877±0.019426] SOM[0.12247±0.10232] SOM[0.10765±0.092418] SOM[0.015757±0.020301] SOM[0.080487±0.07916] SOM[0.053127±0.043628]
Total SOM[0.13937±0.1199] KNN[0.020724±0.023076] SOM[0.11659±0.11079] SOM[0.10214±0.09006] SOM[0.014341±0.019465] SOM[0.075248±0.077887] SOM[0.047048±0.050044]
Total SVM SVM[0.1119±0.10285] SVM[0.0091382±0.012209] SVM[0.10486±0.097836] SVM[0.070122±0.080735] SVM[0.012045±0.019604] SVM[0.058937±0.069965] SVM[0.030437±0.043124]

R2

25% SOM[0.66046±0.23784] SOM[0.42441±0.21898] SOM[0.73116±0.24966] SOM[0.66999±0.25577] SOM[0.52606±0.28185] SOM[0.72944±0.25243] SOM[0.6849±0.25464]
5-10% KNN[0.60654±0.2732] KNN[0.23743±0.23188] KNN[0.78318±0.20879] KNN[0.67669±0.24484] KNN[0.37165±0.2961] KNN[0.78802±0.20445] KNN[0.80457±0.19592]
15-20% KNN[0.54328±0.26957] KNN[0.17887±0.14634] SOM[0.75861±0.21656] KNN[0.62154±0.27804] SOM[0.51208±0.30951] SOM[0.79489±0.1852] SOM[0.74984±0.22097]
Total KNN[0.58072±0.26903] KNN[0.20855±0.18805] SOM[0.77233±0.2271] KNN[0.64632±0.26059] SOM[0.5228±0.31977] SOM[0.79178±0.20814] SOM[0.75938±0.22199]
Total SVM SVM[0.72267±0.2403] SVM[0.3617±0.20976] SVM[0.77048±0.2248] SVM[0.76335±0.22278] SVM[0.52872±0.23915] SVM[0.80671±0.2181] SVM[0.82319±0.20355]

DKS

25% SOM[0.23269±0.10727] SOM[0.31133±0.19252] KNN[0.29019±0.14247] SOM[0.22138±0.077356] KNN[0.2293±0.09854] SOM[0.18171±0.058409] KNN[0.13938±0.056299]
5-10% KNN[0.49335±0.17422] KNN[0.50083±0.21561] KNN[0.34351±0.10102] SOM[0.34379±0.16971] KNN[0.33736±0.11902] KNN[0.27649±0.090408] KNN[0.14431±0.060216]
15-20% SOM[0.27917±0.1433] KNN[0.51203±0.31331] KNN[0.30874±0.11403] KNN[0.23981±0.10763] KNN[0.23961±0.10527] SOM[0.19683±0.065872] KNN[0.13937±0.058312]
Total KNN[0.4104±0.18178] KNN[0.482±0.26034] KNN[0.32377±0.11349] KNN[0.28136±0.12867] KNN[0.29148±0.12216] KNN[0.24197±0.086797] KNN[0.14148±0.058635]
Total SVM SVM[0.25101±0.12669] SVM[0.29341±0.18117] SVM[0.23628±0.068997] SVM[0.19045±0.103] SVM[0.19395±0.084765] SVM[0.1676±0.062978] SVM[0.10591±0.045244]

427



Distribution Metric MR T1 T2 T3 T4 T5 T6 T7

Inverse
Gaussian

MSE

25% SOM[0.23383±0.059971] KNN[0.044446±0.013928] SOM[0.19315±0.11143] SOM[0.16507±0.038429] KNN[0.045314±0.015153] SOM[0.15629±0.10149] SOM[0.13122±0.060476]
5-10% SOM[0.13512±0.09813] KNN[0.0041825±0.0039363] SOM[0.1112±0.069354] SOM[0.12305±0.068216] KNN[0.01113±0.011147] SOM[0.097197±0.05806] SOM[0.033217±0.023143]
15-20% SOM[0.14933±0.039587] KNN[0.018154±0.011665] SOM[0.16183±0.047467] SOM[0.19501±0.12242] KNN[0.038269±0.012208] SOM[0.10912±0.081383] SOM[0.084439±0.04437]
Total SOM[0.16001±0.076979] KNN[0.017824±0.017722] SOM[0.14958±0.0783] SOM[0.16531±0.095126] KNN[0.031544±0.018449] SOM[0.11819±0.080841] SOM[0.074689±0.054946]
Total SVM SVM[0.11959±0.10814] SVM[0.0091722±0.010681] SVM[0.079631±0.054892] SVM[0.088556±0.091583] SVM[0.013382±0.01503] SVM[0.066067±0.055992] SVM[0.053491±0.059131]

R2

25% SOM[0.54262±0.10406] SOM[0.28262±0.2885] SOM[0.5119±0.27536] SOM[0.56831±0.15544] SOM[0.34373±0.21208] SOM[0.68728±0.095103] SOM[0.52208±0.25557]
5-10% KNN[0.70029±0.25178] KNN[0.26867±0.22069] KNN[0.61401±0.29025] SOM[0.6883±0.23475] KNN[0.24203±0.17301] KNN[0.6073±0.35883] SOM[0.61962±0.24525]
15-20% SOM[0.53764±0.29502] KNN[0.28201±0.22042] SOM[0.58593±0.24679] SOM[0.54801±0.29065] KNN[0.21995±0.10652] SOM[0.58878±0.26125] SOM[0.55472±0.25537]
Total SOM[0.56553±0.2878] KNN[0.25429±0.20317] KNN[0.57241±0.25706] SOM[0.59658±0.24706] KNN[0.21691±0.14636] SOM[0.66973±0.21902] SOM[0.5709±0.24543]
Total SVM SVM[0.64487±0.27788] SVM[0.36232±0.20502] SVM[0.66454±0.28588] SVM[0.71068±0.27901] SVM[0.48875±0.23209] SVM[0.75134±0.23875] SVM[0.67644±0.27759]

DKS

25% SOM[0.32265±0.095683] SOM[0.35918±0.12032] SOM[0.26614±0.052122] SOM[0.23986±0.039366] SOM[0.20724±0.10274] SOM[0.17503±0.047405] KNN[0.14974±0.036365]
5-10% KNN[0.55316±0.18834] SOM[0.34274±0.089299] KNN[0.31444±0.10283] SOM[0.49972±0.21297] KNN[0.31103±0.15911] KNN[0.28151±0.082488] KNN[0.16629±0.05651]
15-20% SOM[0.33518±0.087746] SOM[0.36528±0.11124] SOM[0.27649±0.028831] KNN[0.30649±0.13619] SOM[0.3127±0.13042] KNN[0.19311±0.062219] KNN[0.14958±0.041089]
Total SOM[0.36807±0.12415] SOM[0.35516±0.09923] SOM[0.2846±0.053584] KNN[0.35774±0.136] SOM[0.31216±0.1451] KNN[0.23411±0.079957] KNN[0.15629±0.046352]
Total SVM SVM[0.2892±0.15771] SVM[0.23748±0.083778] SVM[0.22055±0.050719] SVM[0.23704±0.13386] SVM[0.21841±0.14383] SVM[0.18594±0.065535] SVM[0.12355±0.047442]

Logistic

MSE

25% SOM[0.23067±0.080653] KNN[0.037983±0.020412] SOM[0.18437±0.10059] SOM[0.17763±0.089864] KNN[0.048814±0.017073] SOM[0.19027±0.089282] SOM[0.10895±0.054652]
5-10% KNN[0.058375±0.097127] KNN[0.0027298±0.004944] KNN[0.051594±0.081962] KNN[0.056737±0.089122] KNN[0.004423±0.0046965] KNN[0.033279±0.046357] DT[0.029667±0.024278]
15-20% SOM[0.22754±0.092706] KNN[0.014946±0.012972] SOM[0.19239±0.11136] SOM[0.17582±0.099029] KNN[0.023196±0.014313] SOM[0.16764±0.10875] SOM[0.083893±0.044989]
Total SOM[0.208±0.085634] KNN[0.014681±0.017733] SOM[0.17366±0.097326] SOM[0.17084±0.095452] KNN[0.020994±0.019949] SOM[0.16026±0.093808] DT[0.070185±0.054418]
Total SVM SVM[0.10858±0.08016] SVM[0.010672±0.01375] SVM[0.084059±0.088888] SVM[0.076533±0.063986] SVM[0.015936±0.017751] SVM[0.082609±0.079296] SVM[0.040298±0.044068]

R2

25% SOM[0.53328±0.24893] KNN[0.46098±0.1659] SOM[0.56769±0.16375] SOM[0.45302±0.24809] KNN[0.67106±0.29456] SOM[0.52671±0.25561] SOM[0.59128±0.23163]
5-10% KNN[0.61331±0.31426] KNN[0.2397±0.13971] KNN[0.76432±0.20732] KNN[0.70898±0.19231] KNN[0.32687±0.32667] KNN[0.79687±0.21899] KNN[0.75841±0.22748]
15-20% SOM[0.6019±0.2552] KNN[0.38639±0.19044] KNN[0.65113±0.23167] SOM[0.52538±0.2847] KNN[0.68409±0.35536] SOM[0.52828±0.27258] KNN[0.66621±0.23999]
Total SOM[0.55163±0.30134] KNN[0.34714±0.18689] SOM[0.53447±0.21613] SOM[0.54819±0.2668] KNN[0.53281±0.37045] SOM[0.56627±0.25201] KNN[0.6874±0.24167]
Total SVM SOM[0.65593±0.31728] SVM[0.4903±0.23671] SVM[0.73785±0.15421] SVM[0.68846±0.20026] SVM[0.59951±0.31014] SVM[0.7226±0.22769] SVM[0.75549±0.20128]

DKS

25% KNN[0.20816±0.10337] KNN[0.12741±0.027172] KNN[0.20227±0.038381] KNN[0.15171±0.044841] KNN[0.19256±0.099547] KNN[0.18094±0.073059] KNN[0.11194±0.065154]
5-10% KNN[0.37953±0.20738] KNN[0.17997±0.069783] KNN[0.27996±0.070832] KNN[0.34468±0.20738] KNN[0.25632±0.11982] KNN[0.22307±0.099308] KNN[0.11516±0.079565]
15-20% KNN[0.25566±0.14476] KNN[0.16409±0.042624] KNN[0.21884±0.064022] KNN[0.21174±0.11209] KNN[0.20193±0.097132] KNN[0.20309±0.10643] KNN[0.10649±0.06975]
Total KNN[0.29907±0.18056] KNN[0.16355±0.057868] KNN[0.24229±0.071057] KNN[0.26963±0.17837] KNN[0.22312±0.1099] KNN[0.2077±0.098146] KNN[0.11105±0.072265]
Total SVM SVM[0.33779±0.11227] SVM[0.13066±0.056863] SVM[0.18785±0.057654] SVM[0.20435±0.1314] SVM[0.20097±0.080665] SVM[0.20991±0.079053] KNN[0.086586±0.046018]

Loglogistic

MSE

25% SOM[0.31509±0.082302] KNN[0.034257±0.0079697] SOM[0.21868±0.071822] SOM[0.2857±0.077598] KNN[0.043462±0.017891] SOM[0.28844±0.075417] SOM[0.16862±0.041144]
5-10% KNN[0.19796±0.080098] KNN[0.0051879±0.0043681] SOM[0.14978±0.065193] KNN[0.19085±0.066874] KNN[0.00588±0.0055186] KNN[0.15743±0.079126] SOM[0.04353±0.018913]
15-20% SOM[0.30186±0.04751] KNN[0.018405±0.0083098] SOM[0.23758±0.075667] SOM[0.25304±0.079388] KNN[0.021831±0.014262] DT[0.18696±0.030601] SOM[0.10553±0.024674]
Total SOM[0.28419±0.069167] KNN[0.017522±0.012838] SOM[0.20283±0.07929] SOM[0.24266±0.086317] KNN[0.019716±0.018621] SOM[0.20843±0.076244] SOM[0.096923±0.055113]
Total SVM SVM[0.21915±0.090173] SVM[0.0082424±0.0091472] SVM[0.1869±0.098448] SVM[0.18496±0.093205] SVM[0.013272±0.014392] SVM[0.15224±0.081629] SVM[0.072984±0.059711]

R2

25% SOM[0.39855±0.15047] KNN[0.073867±0.031859] SOM[0.38364±0.14318] SOM[0.39765±0.15794] SOM[0.15785±0.10411] SOM[0.34119±0.088436] SOM[0.3259±0.11861]
5-10% KNN[0.53761±0.24478] KNN[0.087662±0.10638] SOM[0.63251±0.14033] KNN[0.52333±0.21704] KNN[0.17647±0.22938] KNN[0.56027±0.15746] KNN[0.5113±0.14248]
15-20% SOM[0.43241±0.10766] SOM[0.076246±0.056041] SOM[0.50918±0.1592] KNN[0.40066±0.15901] KNN[0.10136±0.074234] SOM[0.37395±0.13832] KNN[0.3986±0.15025]
Total SOM[0.43801±0.12789] KNN[0.073624±0.080666] SOM[0.5203±0.17408] SOM[0.45465±0.13302] SOM[0.13906±0.10937] SOM[0.42886±0.14955] KNN[0.43021±0.16279]
Total SVM SVM[0.57426±0.20692] SVM[0.16397±0.12691] SVM[0.56024±0.23482] SVM[0.56802±0.16709] SVM[0.22856±0.16453] SVM[0.53591±0.20394] SVM[0.55638±0.20064]

DKS

25% SOM[0.33902±0.045861] SOM[0.20249±0.072087] SOM[0.19179±0.027843] KNN[0.27252±0.052247] SOM[0.22925±0.10404] SOM[0.17269±0.025815] KNN[0.11157±0.061786]
5-10% KNN[0.49615±0.14918] SOM[0.39629±0.092725] KNN[0.27485±0.082922] KNN[0.41167±0.07281] KNN[0.29568±0.14201] KNN[0.2556±0.05031] KNN[0.12476±0.065577]
15-20% SOM[0.43498±0.078611] KNN[0.25521±0.10047] KNN[0.22649±0.02644] KNN[0.33008±0.058918] KNN[0.23411±0.090347] KNN[0.22972±0.04348] KNN[0.11304±0.059516]
Total KNN[0.43194±0.12644] SOM[0.3283±0.10897] KNN[0.24658±0.065403] KNN[0.35664±0.084222] KNN[0.26352±0.11698] KNN[0.23674±0.051441] KNN[0.11743±0.061327]
Total SVM SVM[0.33502±0.095896] SVM[0.21959±0.1049] SVM[0.22005±0.053974] SVM[0.28198±0.078606] SVM[0.19719±0.081631] SVM[0.18939±0.06028] SVM[0.10598±0.04048]

Normal

MSE

25% SOM[0.17257±0.060297] KNN[0.040122±0.015429] SOM[0.11973±0.019687] SOM[0.17183±0.047606] KNN[0.10064±0.11499] SOM[0.15173±0.071929] SOM[0.12877±0.061526]
5-10% KNN[0.074144±0.069191] KNN[0.0021901±0.0018821] KNN[0.058609±0.053812] KNN[0.046442±0.023212] KNN[0.029159±0.036364] KNN[0.066958±0.053881] DT[0.031848±0.026626]
15-20% KNN[0.14394±0.035063] KNN[0.014973±0.0093485] SOM[0.13158±0.06466] SOM[0.12226±0.046825] KNN[0.055943±0.063791] SOM[0.092767±0.03244] DT[0.084173±0.039873]
Total KNN[0.11279±0.10398] KNN[0.015768±0.016563] SOM[0.12383±0.054811] KNN[0.079173±0.057877] KNN[0.051723±0.0648] KNN[0.10288±0.078258] DT[0.069049±0.050767]
Total SVM SVM[0.098714±0.067317] SVM[0.0090535±0.01582] SVM[0.094245±0.070304] SVM[0.10183±0.067767] SVM[0.034949±0.057221] SVM[0.08295±0.072688] SVM[0.057282±0.061052]

R2

25% KNN[0.64405±0.08992] KNN[0.20481±0.18339] KNN[0.58434±0.065367] KNN[0.58985±0.074843] MM[0.6106±0.5507] SOM[0.3763±0.38325] SOM[0.46283±0.30281]
5-10% SOM[0.67899±0.31335] KNN[0.19786±0.17034] KNN[0.65299±0.28476] KNN[0.54376±0.31659] MM[0.76335±0.40743] KNN[0.72141±0.15903] KNN[0.63948±0.26847]
15-20% SOM[0.67629±0.25402] KNN[0.2476±0.15359] KNN[0.55491±0.24486] SOM[0.63153±0.34355] KNN[0.1944±0.13951] KNN[0.62407±0.29525] KNN[0.54766±0.26007]
Total SOM[0.64812±0.30121] KNN[0.2186±0.15401] KNN[0.60992±0.24942] KNN[0.57473±0.23756] KNN[0.25424±0.13444] KNN[0.68593±0.2008] KNN[0.57772±0.26485]
Total SVM SVM[0.5922±0.22386] SVM[0.48555±0.34578] KNN[0.79638±0.11248] SVM[0.57694±0.25775] SVM[0.62088±0.27863] SVM[0.5564±0.27891] SVM[0.64246±0.28474]

DKS

25% KNN[0.33406±0.14964] SOM[0.18423±0.065444] KNN[0.15712±0.077283] KNN[0.26325±0.09656] KNN[0.17995±0.048675] KNN[0.20226±0.063552] KNN[0.11168±0.056446]
5-10% KNN[0.36813±0.19201] KNN[0.19547±0.089799] KNN[0.24849±0.11656] KNN[0.29651±0.1431] KNN[0.33546±0.16993] KNN[0.30391±0.15641] KNN[0.11214±0.081326]
15-20% KNN[0.36505±0.15219] SOM[0.16395±0.074144] KNN[0.19269±0.070964] KNN[0.23886±0.13045] KNN[0.23872±0.088472] KNN[0.23049±0.15469] KNN[0.10549±0.061385]
Total KNN[0.36144±0.16615] KNN[0.16962±0.086652] KNN[0.21595±0.099223] KNN[0.27016±0.12901] KNN[0.27433±0.13976] KNN[0.2579±0.14532] KNN[0.10939±0.067397]
Total SVM SVM[0.30611±0.083487] SVM[0.15814±0.058695] SVM[0.20377±0.070533] SVM[0.22989±0.07947] SVM[0.18005±0.069658] SVM[0.22308±0.1133] KNN[0.089736±0.045428]
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Nakagami

MSE

25% SOM[0.24573±0.092469] KNN[0.042796±0.0047218] SOM[0.22353±0.071786] SOM[0.26123±0.015421] KNN[0.055836±0.0041939] SOM[0.17784±0.069329] SOM[0.14782±0.052548]
5-10% KNN[0.096807±0.063624] KNN[0.0044026±0.0032892] KNN[0.083862±0.04554] KNN[0.11451±0.067799] DT[0.0086468±0.0060818] KNN[0.074937±0.066037] DT[0.028171±0.023468]
15-20% SOM[0.20819±0.095043] KNN[0.018813±0.00793] SOM[0.1513±0.080521] DT[0.095055±0.06164] KNN[0.03526±0.012336] SOM[0.16507±0.08418] DT[0.095912±0.041305]
Total SOM[0.22321±0.090798] KNN[0.016406±0.014475] SOM[0.18285±0.078323] KNN[0.18215±0.09641] DT[0.013271±0.0090994] SOM[0.17126±0.07073] DT[0.07244±0.058264]
Total SVM SVM[0.14827±0.10281] SVM[0.010709±0.01224] SVM[0.11307±0.08301] SVM[0.12874±0.090473] SVM[0.018864±0.016645] SVM[0.10678±0.08266] SVM[0.050427±0.051844]

R2

25% KNN[0.4804±0.179] KNN[0.26447±0.19387] SOM[0.52124±0.26789] DT[0.55749±0.18803] DT[0.17038±0.076754] SOM[0.61095±0.21368] SOM[0.49023±0.18889]
5-10% KNN[0.6154±0.16383] SOM[0.23086±0.1774] KNN[0.64435±0.20193] KNN[0.67237±0.18563] KNN[0.13593±0.1579] KNN[0.6873±0.22252] KNN[0.69027±0.20504]
15-20% SOM[0.60776±0.12259] KNN[0.2096±0.20243] KNN[0.51284±0.17464] KNN[0.55473±0.15817] KNN[0.25576±0.27514] SOM[0.77576±0.16909] KNN[0.55385±0.21228]
Total KNN[0.5527±0.16749] KNN[0.18375±0.18032] KNN[0.55374±0.19726] KNN[0.56153±0.19144] KNN[0.20201±0.21746] SOM[0.67078±0.16456] KNN[0.58721±0.22069]
Total SVM SVM[0.65378±0.16242] SVM[0.39552±0.2764] SVM[0.6616±0.20025] SVM[0.66102±0.20059] SVM[0.42986±0.31168] SVM[0.64871±0.18484] SVM[0.68817±0.22761]

DKS

25% SOM[0.30013±0.064635] SOM[0.18488±0.059985] KNN[0.19663±0.041729] KNN[0.24377±0.036715] SOM[0.17012±0.019519] KNN[0.17729±0.0047481] KNN[0.083537±0.037072]
5-10% KNN[0.41095±0.078661] KNN[0.35274±0.063325] KNN[0.26033±0.067774] KNN[0.41419±0.12224] SOM[0.32688±0.12925] KNN[0.23248±0.042803] KNN[0.089894±0.043876]
15-20% KNN[0.34857±0.053337] KNN[0.25013±0.063825] KNN[0.20999±0.028879] DT[0.29587±0.099355] SOM[0.24583±0.068421] KNN[0.22909±0.043475] KNN[0.083732±0.036008]
Total KNN[0.37605±0.069198] SOM[0.26661±0.11238] KNN[0.22837±0.056247] KNN[0.34313±0.10813] SOM[0.25662±0.10402] KNN[0.21943±0.043033] KNN[0.086158±0.038322]
Total SVM SVM[0.26647±0.085618] SVM[0.156±0.074783] SVM[0.17303±0.048392] SVM[0.20329±0.10169] SVM[0.14325±0.039972] SVM[0.16211±0.048626] SVM[0.067707±0.023084]

Lognormal

MSE

25% SOM[0.19458±0.14522] SOM[0.0043283±0] SOM[0.18993±0.089619] SOM[0.17849±0.20893] SOM[0.037919±0.046549] SOM[0.057392±0] SOM[0.10904±0.074506]
5-10% DT[0.12886±0.066762] KNN[0.01149±0.0093595] SOM[0.051878±0.042] KNN[0.11174±0.079967] SOM[0.00487±0.0051132] DT[0.067942±0.054183] DT[0.026594±0.028764]
15-20% SOM[0.16919±0.15812] MM[0.016257±0.027675] SOM[0.2015±0.14248] SOM[0.093466±0.084382] SOM[0.044343±0.032367] SOM[0.11296±0.10359] SOM[0.068828±0.051688]
Total SOM[0.16588±0.1316] MM[0.024807±0.034988] SOM[0.14905±0.11997] SOM[0.11724±0.12946] SOM[0.029758±0.032024] SOM[0.091233±0.093116] DT[0.053814±0.046421]
Total SVM SVM[0.13501±0.090681] SVM[0.015467±0.017751] SVM[0.11815±0.07257] SVM[0.11526±0.095918] SVM[0.011884±0.017391] SVM[0.059736±0.047049] SVM[0.039655±0.038552]

R2

25% SOM[0.46588±0.25821] DT[0.30277±0] SOM[0.59458±0.21153] SOM[0.48211±0.29491] SOM[0.26528±0.04575] SOM[0.71904±0.15083] SOM[0.59213±0.30249]
5-10% KNN[0.51695±0.28308] MM[0.39337±0.12939] KNN[0.58517±0.28236] KNN[0.56944±0.24553] MM[0.26044±0.058457] KNN[0.62415±0.20583] KNN[0.73021±0.22686]
15-20% SOM[0.44362±0.1966] DT[0.21943±0.025017] MM[0.89519±0] SOM[0.5607±0.26138] SOM[0.13672±0.041769] SOM[0.58618±0.32587] SOM[0.63959±0.28861]
Total SOM[0.48134±0.25623] MM[0.29097±0.12789] KNN[0.58041±0.27674] KNN[0.56565±0.23773] SOM[0.17647±0.071541] SOM[0.65787±0.25703] DT[0.64378±0.25915]
Total SVM SVM[0.63855±0.19506] SVM[0.31978±0.13102] SVM[0.65621±0.18099] SVM[0.67172±0.19599] SVM[0.43788±0.13919] SVM[0.74484±0.18528] SVM[0.78632±0.15368]

DKS

25% SOM[0.37963±0.17023] SOM[0.33933±0.14392] SOM[0.25461±0.088098] KNN[0.29773±0.10679] SOM[0.25±0.18424] MM[0.10714±0] SOM[0.19127±0.019963]
5-10% SOM[0.34532±0.046267] SOM[0.38147±0.067512] KNN[0.38148±0.10364] SOM[0.31711±0.19777] SOM[0.38187±0.14776] DT[0.34286±0.14252] DT[0.17401±0.045396]
15-20% MM[0.28186±0.099831] SOM[0.34813±0.10507] KNN[0.29388±0.072815] MM[0.16422±0.045064] SOM[0.25389±0.16477] MM[0.17375±0.019445] DT[0.16953±0.030972]
Total MM[0.26206±0.099372] SOM[0.35482±0.098882] KNN[0.34644±0.098899] MM[0.24654±0.16981] SOM[0.30431±0.15671] MM[0.22034±0.15899] DT[0.17293±0.035819]
Total SVM SVM[0.27985±0.11724] SVM[0.2948±0.11306] SVM[0.23881±0.055945] SVM[0.24981±0.12792] SVM[0.226±0.11689] SVM[0.17857±0.055734] SVM[0.11992±0.039297]

Rayleigh

MSE

25% SOM[0.11221±0.045803] SOM[0.0413±0] SOM[0.11405±0.041306] SOM[0.12382±0.03153] SOM[0.038277±0] SOM[0.1122±0.047357] SOM[0.070807±0.025519]
5-10% KNN[0.049792±0.020202] DT[0.0030724±0] DT[0.012625±0] SOM[0.023999±0] MM[0.00025394±0] DT[0.0074508±0] SOM[0.011432±0.0065786]
15-20% SOM[0.12471±0.015293] DT[0.015602±0] SOM[0.069435±0.029169] SOM[0.086168±0.055734] KNN[0.018484±0.004054] SOM[0.058464±0.019502] SOM[0.045821±0.017799]
Total KNN[0.068844±0.033734] SOM[0.025071±0.016268] KNN[0.051201±0.030578] KNN[0.066259±0.039872] KNN[0.021867±0.01309] KNN[0.061255±0.035966] KNN[0.033177±0.026051]
Total SVM SVM[0.093088±0.037517] SVM[0.014345±0.014197] SVM[0.048424±0.037088] SVM[0.066736±0.037967] SVM[0.011684±0.010418] SVM[0.057037±0.036027] SVM[0.035936±0.034009]

R2

25% SOM[0.81836±0] KNN[0.44686±0] MM[0.64475±0.2241] KNN[0.74258±0] MM[0.55671±0] SOM[0.76522±0] SOM[0.79478±0]
5-10% KNN[0.83743±0.063008] KNN[0.21621±0.087309] KNN[0.8552±0.071131] KNN[0.74064±0.2155] MM[1±0] KNN[0.85383±0.06712] KNN[0.82753±0.070125]
15-20% SOM[0.76866±0.017098] DT[0.32765±0] SOM[0.81971±0.049992] SOM[0.83758±0.025702] MM[0.36936±0] SOM[0.80078±0.017218] SOM[0.8151±0.03042]
Total SOM[0.77378±0.081995] SOM[0.26235±0.08276] KNN[0.80547±0.1045] SOM[0.82768±0.08797] KNN[0.23469±0.14057] KNN[0.82437±0.077433] SOM[0.83714±0.047303]
Total SVM KNN[0.81271±0.078082] SVM[0.35566±0.1135] SVM[0.83377±0.11491] SOM[0.85974±0.063718] SVM[0.49582±0.20851] SVM[0.77363±0.11622] SVM[0.78413±0.13318]

DKS

25% MM[0.21176±0] SOM[0.20334±0.13783] SOM[0.16667±0] SOM[0.18824±0] SOM[0.11765±0] SOM[0.15476±0] KNN[0.081958±0.032482]
5-10% KNN[0.43949±0.21254] KNN[0.2155±0.053923] KNN[0.2454±0.10164] KNN[0.3285±0.12603] SOM[0.19117±0.020796] KNN[0.2256±0.050108] KNN[0.077514±0.046132]
15-20% KNN[0.32156±0.0114] SOM[0.20343±0.017331] KNN[0.16717±0.013236] SOM[0.19608±0.027733] SOM[0.19363±0.0034648] KNN[0.20373±0.019084] KNN[0.071637±0.031057]
Total KNN[0.38944±0.17137] SOM[0.22873±0.074077] KNN[0.2047±0.078961] SOM[0.19347±0.020126] SOM[0.17745±0.035074] KNN[0.21021±0.03858] KNN[0.076052±0.035665]
Total SVM SVM[0.29221±0.10102] SVM[0.19904±0.057146] KNN[0.15165±0.0191] SVM[0.23204±0.086071] SVM[0.18893±0.045381] SVM[0.16807±0.043368] KNN[0.064373±0.024939]

Weibull

MSE

25% SOM[0.28053±0.12525] SOM[0.041129±0.012089] SOM[0.2176±0.087602] SOM[0.23355±0.11254] SOM[0.044181±0.012351] SOM[0.1905±0.085556] SOM[0.1532±0.055469]
5-10% SOM[0.1784±0.10292] KNN[0.0050438±0.0024482] SOM[0.13444±0.069267] SOM[0.15881±0.081248] SOM[0.0073923±0.0055479] SOM[0.11589±0.056405] SOM[0.041462±0.020679]
15-20% SOM[0.24337±0.12028] KNN[0.022734±0.0099898] SOM[0.19424±0.10873] SOM[0.20802±0.087099] SOM[0.022241±0.0090073] SOM[0.16677±0.073613] SOM[0.10327±0.042893]
Total SOM[0.23019±0.12059] KNN[0.020284±0.019258] SOM[0.18192±0.097296] SOM[0.19547±0.09435] SOM[0.017436±0.015518] SOM[0.15535±0.076236] SOM[0.090641±0.05769]
Total SVM SVM[0.1631±0.10521] SVM[0.014297±0.014988] SVM[0.11674±0.078372] SVM[0.13186±0.07791] SVM[0.016096±0.016822] SVM[0.092903±0.060153] SVM[0.058751±0.049271]

R2

25% SOM[0.46796±0.24024] SOM[0.252±0.21566] SOM[0.48059±0.2107] SOM[0.4568±0.21188] SOM[0.43957±0.30679] SOM[0.43421±0.22608] SOM[0.41666±0.20816]
5-10% KNN[0.67768±0.23303] DT[0.34728±0.13974] KNN[0.73485±0.22847] KNN[0.68098±0.19665] KNN[0.28489±0.24186] SOM[0.58747±0.20912] KNN[0.56846±0.18952]
15-20% SOM[0.48995±0.25551] KNN[0.10131±0.10922] SOM[0.53391±0.18747] SOM[0.48879±0.18234] SOM[0.33256±0.25622] SOM[0.53146±0.21941] SOM[0.43696±0.19194]
Total SOM[0.52894±0.24027] DT[0.32925±0.19459] SOM[0.55861±0.20053] SOM[0.50487±0.20098] SOM[0.34562±0.23612] SOM[0.52144±0.22185] SOM[0.46684±0.18576]
Total SVM SOM[0.80792±0.15584] SVM[0.35713±0.2483] SVM[0.69371±0.16997] SVM[0.63961±0.15651] SVM[0.39447±0.26926] SVM[0.66564±0.17214] SVM[0.65302±0.17023]

DKS

25% SOM[0.38619±0.075149] SOM[0.25789±0.085089] SOM[0.23304±0.043799] SOM[0.38756±0.11014] SOM[0.18594±0.053646] SOM[0.22152±0.058612] SOM[0.18806±0.054252]
5-10% SOM[0.56697±0.16915] SOM[0.36916±0.11758] KNN[0.36277±0.087945] SOM[0.54745±0.15595] SOM[0.33859±0.11208] DT[0.36708±0.069745] KNN[0.19983±0.061118]
15-20% SOM[0.46267±0.10747] SOM[0.26239±0.06349] SOM[0.28171±0.077781] SOM[0.44374±0.11371] SOM[0.23636±0.092481] SOM[0.2782±0.061985] KNN[0.18848±0.052554]
Total SOM[0.47874±0.14149] SOM[0.29606±0.10185] SOM[0.30882±0.09133] SOM[0.4639±0.14054] SOM[0.27163±0.1132] SOM[0.29824±0.091923] KNN[0.19414±0.055591]
Total SVM SVM[0.33994±0.098799] SVM[0.23248±0.11161] SVM[0.22076±0.066973] SVM[0.29096±0.1102] SVM[0.21058±0.089335] SVM[0.21332±0.078346] SVM[0.12676±0.040119]
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Table C.2: AUC results of a C4.5 decision tree, following a 10-fold cross-validation scheme
on different subsets of features.

Features AUC Features AUC

All Features 0.752 Distribution class

0.721

Distribution class

0.751

MissingRate

MissingRate Metric class

Metric class GenType class

GenType class GoF

GoF FeatureRatio

FeatureRatio Distribution class

0.675
SampleSize MissingRate

Distribution class

0.729

Metric class

MissingRate GenType class

GenType class Distribution class

0.665FeatureRatio Metric class

GoF GenType class

GenType class

0.725
Distribution class

0.655
GoF GenType class

SampleSize Distribution class 0.597

GenType class 0.586
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The Influence of Data Distribution in Missing Data Imputation

Generation Type Metric= T3 Distribution= MSE

SOM (25.0/13.0)

SOM (510.0/21.0)

SOM (10.0/5.0)= Exponential

SOM (160.0/19.0)
= Extreme Value

= Gamma

KNN (46.0/21.0)
<= 10

MM(69.0/42.0)
> 10

SOM (310.0/113.0)

= Generalized Extreme Value

= Generalized Pareto

KNN (21.0/13.0)<= 5

SOM (84.0/39.0)
> 5

SOM (30.0/4.0)= Inverse Guassian

= Logistic KNN (68.0/25.0)<= 20

SOM (17.0/9.0)
> 20

SOM (45.0/19.0)

= Log-Logistic

SOM (20.0/11.0)

= Log-Normal

KNN (18.0/9.0)<= 15

SOM (12.0/3.0)
> 15

KNN (21.0/10.0)<= 15

SOM (14.0/6.0)

> 15
= Rayleigh

KNN (9.0/3.0)

<= 15
SOM (6.0/2.0)

> 15

SOM (70.0/17.0)= Weibull

= t Location-scale
<= 15

KNN (15.0/6.0)<= 5

DT (30.0/17.0)
> 5

SOM (30.0/12.0)
> 15

…= T4

…= T5

…
= T6

…= T2

…
= T1

…
= T7

= Beta

MR

MR

MR

MR

MR

MR

MR
MR

= Normal

= Birnbaum-Saunders

= Nakagami

Figure C.1: Visualization of a decision tree generated from the subset of features
Distribution class, MissingRate, Metric class, and GenType class. From this ex-
ample, it is possible to assess the best imputation model for T3 generation according
to the MSE metric. The best imputation model depends on the data distribution (for
most distributions the best method is SOM), and on the missing rate at state (for certain
distributions, the best imputation model also depends on the considered missing rate).
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Appendix D

The Impact of Heterogeneous

Distance Functions on Missing

Data Imputation and

Classification Performance

This appendix provides supporting information to the work developed in Chapter 9. Ac-

cordingly, Table D.1 provides a summary of the existing literature on k-Nearest Neighbours

imputation (kNNI), focusing on the objectives of each study, the used kNNI parameters

(k value, use of kNN variants/frameworks, and considered distance functions), details re-

garding the experimental setup (considered missing mechanisms and missing rates), and

downstream task to be evaluated (classification performance or imputation quality). In

turn, Table D.2 provides an overview of the characteristics of the datasets used in prelim-

inary experiments.
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Table D.1: Summary of existing literature on kNN imputation. For each related work are identified the objectives of the study, the parameters
of the imputation approach, details regarding the experimental setup and the downstream task to be evaluated.

Study KNN imputation approach Experimental Data and Simulation Evaluation

Reference Objective1 k Variants or2

Frameworks

Distance

Measures

Considers3

MVs

# Datasets4

(Cont, Cat, H)
MCAR/MAR/MNAR MRs5 Class.6

Perf.

Imp.7

Perf.
Considerations

Batista and

Monard

(2001) [45]

Behaviour 3 N.A. Unk. • 1 (1/0/0) X/•/• 10:10:50 X •
Although not specifically

stated, distance function is

assumed Euclidean, as is the

default in the traditional

kNNI formulation.

Batista and

Monard

(2002) [46]

Behaviour 1, 3, 5, 10, 20,

30, 50, 100
N.A. Unk. • 3 (2/0/1) X/•/• 10:10:60 X •

Although not specifically

stated, distance function is

assumed Euclidean, as is the

default in the traditional

kNNI formulation. Not clear

how distance computation

was formulated for nominal

features.

Batista and

Monard

(2003) [47]

Benchmark 1, 3, 5, 10, 20,

30, 50, 100
N.A. Unk. • 4 (3/0/1) X/•/• 10:10:60 X •

Although not specifically

stated, distance function is

assumed Euclidean, as is the

default in the traditional

kNNI formulation. Not clear

how distance computation

was formulated for nominal

features.

Farhangfar et al.

(2008) [132] Benchmark 1 N.A. dO (Eq.9.2) X 15 (0/13/2) X/•/• 5, 10:10:50 X •

Considers only discrete data

(i.e., discrete numerical and

categorical data). Assumes

dj = 0 if both patterns have

the same numerical or nominal

values, otherwise dj = 1.

If either of the input values

is missing, it also returns

dj = 1.

Luengo et al.

(2010) [275]
Benchmark 10 N.A. Euclidean • 22 (9/3/10) X/X/• MAR: Natural

MCAR: 10%
X •

It is not clear how distance

computation was formulated

for heterogeneous datasets

(e.g., nominal features).

Jerez et al.

(2010) [212]
Application

NNI: 1

kNNI: k chosen

from CV

N.A. HEOM X 1 (0/0/1) •/X/• Natural X • If either of the input values

is missing, dj = 1.

To be continued on the next page. . .

434



T
h

e
Im

p
a
ct

of
H

eterog
en

eo
u

s
D

istan
ce

F
u

n
ction

s
on

M
issin

g
D

ata
Im

p
u

tation
an

d
C

lassifi
cation

P
erform

an
ce

Study KNN imputation approach Experimental Data and Simulation Evaluation

Reference Objective k Variants or

Frameworks

Distance

Measures

Considers

MVs

# Datasets

(Cont, Cat, H)
MCAR/MAR/MNAR MRs Class.

Perf.

Imp.

Perf.
Considerations

Zhang

(2011) [477]
Variant Unk. X

Minkowski

Simple Matching

Jaccard, Matches

Information-theoretic

• 9 (6/0/3) •/X/• 5, 10, 20, 40 X X

Distance function is

a combination of several

functions for each feature type.

If either of the input values

is missing in a given feature,

that feature is ignored

in distance computation.

Zhang

(2012) [478]
Variant k set according

to experiments
X Euclidean

GRA8
• 6 (2/2/2) •/X/• 10, 20, 40 X X

If both input values have the

same values for a categorical

attribute, GRAj = 1

(maximal similarity).

Otherwise, GRAj = 0

(minimal similarity).

GRA implies the definition

of a distinguishing coefficient,

for which no convincing

method has been suggested

so far.

Luengo et al.

(2012) [276]
Benchmark 10 N.A. Euclidean • 21 (3/7/11) •/X/• Natural X X

Nominal values are

considered as a list of integer

values, starting from 1 to the

number of different categories.

Silva and

Hruschka

(2013) [109]

Benchmark 10 X Euclidean • 4 (4/0/0) X/X/• 10, 30, 50, 70 X X Only continuous data is

considered in the experiments.

Eirola et al.

(2013) [125]
Behaviour N.A. N.A.

Statistical techniques are applied

to find an expression for the

expectation of the squared

Euclidean distance between

samples in a dataset with

missing values.

9 (9/0/0)

Unk. Statistical

techniques assume

MCAR or MAR.
5, 15, 30, 60 • X

The study focuses on distance

estimation for numerical data

with missing values. The

theoretical framework operates

under the assumption of a

multivariate normal distribution,

although the algorithm has

shown to be robust to violations

of the assumptions regarding

data distribution.

Tutz and

Ramzan

(2015) [427]

Variant k set by CV X Euclidean

Manhattan
• 4 (2 Cont/2 Unk.) X/•/• 5 • X

The computation of distances

does not use all the components

of the instances but only those

for which observations in both

instances are available.

To be continued on the next page. . .
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MCAR/MAR/MNAR MRs Class.

Perf.

Imp.

Perf.
Considerations

Santos et al.

(2015) [378]
Application 1 N.A. HEOM X 1 (0/0/1) Unk. Natural X • If either of the input values

is missing, dj = 1.

Garćıa-Laencina

et al. (2015) [202] Application 1 to 40 N.A. HEOM X 1 (0/0/1) •/X/• Natural X • If either of the input values

is missing, dj = 1.

Pan et al.

2015) [342]
Variant 1 to 20 X Euclidean

GRA
• 5 (2/2/1) X/X/X 5, 10, 20 X X

If both input values have the

same values for a categorical

attribute, GRAj = 1

(maximal similarity).

Otherwise, GRAj = 0

(minimal similarity).

GRA implies the definition

of a distinguishing coefficient,

for which no convincing

method has been suggested

so far.

Beretta and

Santaniello

(2016) [50]

Variant 2, 3, 10 X
Minkowski

Euclidean

Manhattan

• 1 (1/0/0) X/•/• 15 • X

Experiments focus mostly on

simulated continuous data

and only with 1 real-world

continuous dataset is

considered. Only complete

cases with no missing data

are available as donors.

Huang et al.

(2016) [197]
Variant Unk. X Euclidean • 8 (4/1/3) X/•/• 5:5:50 X •

Only the patterns with

complete information in all

attributes will serve as donors.

The features that have missing

values in the pattern to

impute are ignored in distance

computation.

Tsai and Chang

(2016) [425] Variant 10 X Euclidean • 29 (11/9/9) X/•/• 10:10:50 X •

Only the patterns with

complete information in all

attributes will serve as donors.

The features that have missing

values in the pattern to

impute are ignored in distance

computation.

Huang et al.

(2017) [196]
Variants 1 to

√
N

in odd numbers
X

Euclidean

Manhattan

GRA

• 8 (8/0/0) X/X/X 2.5, 5, 10, 20 X X
Focuses specifically on

improvements for estimating

continuous features.

To be continued on the next page. . .
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Study KNN imputation approach Experimental Data and Simulation Evaluation

Reference Objective k Variants or

Frameworks

Distance

Measures

Considers

MVs

# Datasets

(Cont, Cat, H)
MCAR/MAR/MNAR MRs Class.

Perf.

Imp.

Perf.
Considerations

Bertsimas et al.

(2017) [51] Variants 1 to 100 X Euclidean

Euclidean + dO

• 84 (54/12/18) X/•/X 10:10:50 X X
It is not clear how nominal

features are handled in kNNI

variants that use only the

Euclidean distance.

Poulos and Valle

2018) [348] Benchmark 3, 5

(source code)
N.A. Euclidean

(source code)
• 2 (0/1/1) X/•/• 10:10:40 X •

Missing values are introduced

only on categorical features.

Categorical features are

transformed using one-hot

encoding.

Abnane et al.

(2019) [15]
Application 1 to 5 X

Minkowski

Euclidean

Manhattan

Chebychev

• 6 (6/0/0) X/X/X 10:10:90 • X

The study deals only with

continuous features.

Therefore, datasets with

categorical features were

discarded.

Jadhav et al.

(2019) [207]
Benchmark 5

(VIM package)
N.A. dN (Eq.9.3)

(VIM package)
• 5 (5/0/0) Unk. 10:10:50 • X

Only continuous data is

considered. kNNI is done by

using the VIM package in R,

where the distance between

continuous features is

calculated as dN (Eq.9.3).

Cheng et al.

(2019) [89]
Variant 3, 5, 7, 9 X Euclidean • 8 (8/0/0) X/X/• 5:5:25 X • The used datasets consider

only continuous features.

Pereira et al.

(2020) [78]
Benchmark 5 N.A. Euclidean • 10 (5/0/5) •/•/X 10:10:40 • X

Categorical features are

transformed using one-hot

encoding.

Woznica and

Biecek

(2020) [464]

Benchmark
NNI: 1

kNNI: 5

(VIM package)

N.A. dN + dO
(VIM package)

• 13 (0/1/12) Unk. Natural X •

kNNI is done by using the

VIM package in R, where the

distance between continuous

features is calculated as dN
(Eq.9.3) and the distance

between categorical features

as dO (Eq.9.2).

Choudhury and

Kosorok

(2020) [92]
Variant k set by CV X Euclidean

GRA

Euclidean

(Unk.)

GRA (X)

3 (1/1/1) •/X/• 5, 10, 20 X X

It is not clear how nominal

features are handled in kNNI

variants that use only the

Euclidean distance. In GRA,

if either of the input values

is missing, GRAj = 0.

Jager et al.

(2021) [208]
Benchmark 1, 3, 5 N.A. Euclidean

(scikit-learn)
• 69 (14/5/50) X/X/X 1, 10, 30, 50 X X Considers one-hot encoding

for categorical features.

To be continued on the next page. . .
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Reference Objective k Variants or

Frameworks

Distance

Measures

Considers

MVs

# Datasets

(Cont, Cat, H)
MCAR/MAR/MNAR MRs Class.

Perf.

Imp.

Perf.
Considerations

Fouad et al.

(2021) [283]
Benchmark 2 to N X Euclidean • 15 (15/0/0) X/X/X 1, 5,10, 20 • X

The proposed imputation

techniques can only handle

continuous features, not

categorical features.

Our related research:

Santos et al.

(2020) [379]

(Chapter 9)

Benchmark 1 N.A.

HEOM, HEOM-R

HVDM, HVDM-R

HVDM-S, MDE

SIMDIST

X 61 (37/1/23) X/•/• 5, 10, 20, 30 X •

All distances handle

continuous and categorical

features, as well as missing

data. Some distinguish

situations where only one value

is missing or both are missing.

Santos et al.

(2022) [373]

(Chapter 10)

Behaviour 1, 3, 5, 7 N.A.

HEOM, HEOM-R

HVDM, HVDM-R

HVDM-S, MDE

SIMDIST

X 150 (50/50/50) X/•/• 5, 10, 20, 30 X X

All distances handle

continuous and categorical

features, as well as missing

data. Some distinguish

situations where only one value

is missing or both are missing.

Santos et al.

(2020) [385]

(Chapter 11)

Application 1, 3, 5, 7 N.A.

HEOM, HEOM-R

HVDM, HVDM-R

HVDM-S, MDE

SIMDIST

X 31 (0/0/31) X/•/• 5, 10, 20, 30 X •

All distances handle

continuous and categorical

features, as well as missing

data. Some distinguish

situations where only one value

is missing or both are missing.
1Objective of the study: Study of kNNI as an imputation model (“Behaviour”), Proposal or study of new approaches (modifications, adaptations, frameworks, optimisation techniques) to improve

kNNI (“Variants”), Application of kNNI to real-world domain (“Application”), Uses kNNI in a benchmark study of data imputation approaches (“Benchmark”).
2Variants or Frameworks: The study compares some well-established kNNI variants of frameworks (e.g., adaptations of the original kNNI formulation, weighting schemes).
3Considers MVs: The used distance function incorporates the computation of missing values.
4# Datasets: Number of total datasets (continuous/categorical/heterogeneous).
5MRs: Missing rates used in the experiments. A code of “10:10:50”, means that MRs are considered from 10% to 50%, in a step of 10, i.e., {10, 20, 30, 40, 50}%.

“Natural” means that missing values occur naturally in the dataset (not artificially generated).
6Class. Perf.: Imputation results are evaluated according to the benefits for classification performance (e.g., Accuracy, AUC, F1).
7Imp. Perf.: Imputation results are evaluated according to the quality of reconstructed values, i.e., imputation performance (e.g., MSE, RMSE, MAE).
9GRA: Grey Relational Analysis, which can be used to measure distance, by applying D = 1−GRA.
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Table D.2: Characteristics of collected datasets for preliminary experiments.

Dataset Size Features C/N IR

abalone 4174 8 (7/1) 1.89
acute-inflammations-nephritis 120 6 (1/5) 1.4
acute-inflammations-urinary 120 6 (1/5) 1.03
alzheimer-v1 317 9 (7/2) 1.5
arrhythmia 420 266 (205/61) 1.3
autism-adolescent 98 19 (1/18) 1.72
autism-adult 701 16 (1/15) 2.71
bc-coimbra 116 9 (9/0) 1.23
biomed 194 5 (5/0) 1.9
breast-tissue-2c 106 9 (9/0) 4.05
bupa 345 6 (5/1) 1.38
cleveland 0 vs 4 173 13 (13/0) 12.31
cryotherapy 90 6 (4/2) 1.14
ctg-2c 2126 21 (21/0) 11.08
dermatology-v2 182 34 (1/33) 1.56
dermatology 6 358 34 (34/0) 16.9
diabetic-retinopathy 1151 19 (16/3) 1.13
ecoli 336 7 (7/0) 8.6
ecoli1 336 7 (7/0) 3.36
ecoli2 336 7 (7/0) 5.46
ecoli4 336 7 (7/0) 15.8
ecoli 0 1 4 6 vs 5 280 6 (6/0) 13
ecoli 0 1 4 7 vs 2 3 5 6 336 7 (7/0) 10.59
ecoli 0 1 4 7 vs 5 6 332 6 (6/0) 12.28
ecoli 0 1 vs 2 3 5 244 7 (7/0) 9.17
ecoli 0 1 vs 5 240 6 (6/0) 11
ecoli 0 2 3 4 vs 5 202 7 (7/0) 9.1
ecoli 0 2 6 7 vs 3 5 224 7 (7/0) 9.18
ecoli 0 3 4 6 vs 5 205 7 (7/0) 9.25
ecoli 0 3 4 7 vs 5 6 257 7 (7/0) 9.28
ecoli 0 3 4 vs 5 200 7 (7/0) 9
ecoli 0 4 6 vs 5 203 6 (6/0) 9.15
ecoli 0 6 7 vs 3 5 222 7 (7/0) 9.09
ecoli 0 6 7 vs 5 220 6 (6/0) 10
ecoli 0 vs 1 220 7 (7/0) 1.86
fertility-diagnosis 100 9 (2/7) 7.33
haberman 306 3 (3/0) 2.78
heart-statlog 270 13 (7/6) 1.25
immunotherapy 90 7 (5/2) 3.74
kala-azar 68 6 (5/1) 5.8
kidney 158 24 (11/13) 2.67
language-impairment-ENNI 377 61 (59/2) 3.9
language-impairment-conti 118 60 (59/1) 5.21
language-impairment-gillam 667 61 (59/2) 2.92
lung-cancer-v1 27 56 (0/56) 2
lymphography-v1 142 18 (3/15) 1.33
new-thyroid-N-vs-HH 215 5 (5/0) 2.31
newthyroid-v1 185 5 (5/0) 4.29
newthyroid-v3 180 5 (5/0) 5
parkinson 195 22 (22/0) 3.06
pima 768 8 (8/0) 1.87
postoperative-SvsA 86 8 (1/7) 2.58
relax 182 12 (12/0) 2.5
saheart 462 9 (8/1) 1.89
spectf 267 44 (44/0) 3.85
thoracic 470 16 (3/13) 5.71
thyroid 3 vs 2 703 21 (21/0) 18
transfusion 748 4 (4/0) 3.2
vertebral-2c 310 6 (6/0) 2.1
wisconsin 683 9 (9/0) 1.86
wpbc 198 32 (32/0) 3.21

C/N: Number of Continuous/Nominal features
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