
Dinis Silva Costa Carvalho

Management tools of the re-commerce
system LoopOS

January 2024

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, developed in The Loop co. under the

supervision of Eng. João Rodrigues and advised by Professor António
Dourado from DEI and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of
Coimbra.

Dinis Silva Costa Carvalho

Management tools of the re-commerce
system LoopOS

January 2024

Dissertation in the context of the Master in Informatics Engineering,
specialization in Software Engineering, developed in The Loop co. under the

supervision of Eng. João Rodrigues and advised by Professor António
Dourado from DEI and presented to the Department of Informatics

Engineering of the Faculty of Sciences and Technology of the University of
Coimbra.

Dinis Silva Costa Carvalho

Ferramentas de gestão do sistema de
re-commerce LoopOS

Janeiro 2024

Dissertação no âmbito do Mestrado em Engenharia Informática, com
especialização em Engenharia de Software, desenvolvida na The Loop co.,
orientada pelo Eng. João Rodrigues e pelo Professor Antonio Dourado do

DEI e apresentada ao Departamento de Engenharia Informática da
Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Acknowledgements

First, I would like to thank my family, especially my parents, and brothers, for
supporting me throughout my academic journey and consistently believing in me.

I want to thank Inês Silva, whose unwavering belief in my abilities has consistently
pushed me to strive and overcome the greatest challenges. I am eternally grateful
for her support and presence in my life.

I am immensely grateful to João Rodrigues, Marta Mercier, and the entire LoopOS
team for allowing me to participate in this enriching project. Their belief in my
capabilities and support throughout my involvement has been instrumental in my
personal and professional growth.

I extend my heartfelt appreciation to my teammates in Team R, whose dedication,
hard work, and camaraderie have made this journey truly rewarding. Working
alongside them has been an enjoyable experience filled with intellectual stimulation
and shared camaraderie.

I wish to express my sincere gratitude to Professor António Dourado for his avail-
ability and valuable guidance throughout this project. His expertise and insights
have significantly shaped the project’s direction and ensured its success.

Last but certainly not least, I cannot thank enough my lifelong friends: João Teix-
eira, Frederico Macedo, Alexandre Santos, Abdellahi Brahim, Filip van der Kroft,
and Iggy Kepka. The best friendship has to offer. Without your presence, I would
not be the person I am today.

iv

Abstract

Existing retail channels have been optimized to push items through the supply
chain and deliver them to the customers. However, the rise of e-commerce and its
associated benefits, such as easy returns and circular economy opportunities, have
created a problem for retailers who have not adapted to this reverse flow. As a result,
the process of recovering items from customers is often manual and inefficient.

The Loop co.[15] is developing LoopOS, a circular economy framework, to solve
this problem. LoopOS integrates different aspects of the circular economy, such as
product submission, validation, delivery, certification, refurbishment, and re-entry
into the market, into a single, decentralized, and collaborative ecosystem.

This thesis explores the development process and implementation of two critical
components within the LoopOS environment: LoopOS Onboarding, which focuses
on simplifying the onboarding process for new users within the LoopOS platform
while also automating their environment creation within LoopOS, and LoopOS UI,
designed to standardize and enhance front-end development across various LoopOS
applications. The former addresses challenges in asset pipelines and front-end de-
velopment. It ensures seamless integration and modularity for LoopOS developers,
enabling them to focus on core functionality rather than front-end complexities. The
LoopOS UI significantly contributes to the modular architecture, providing a solid
foundation for implementing a new user interface in LoopOS applications.

In conclusion, this thesis achieves its stated objectives and showcases a comprehen-
sive approach to software development, from planning and execution to innovation
and future vision. The implemented solutions contribute to the ongoing devel-
opment of the LoopOS platform, highlighting the adaptability, collaboration, and
problem-solving skills crucial in a dynamic software development environment.

Keywords

Circular Economy, Web Application, Application Deployment & Management, Part-
ner Onboarding, Front-end Development

v

Resumo

Os canais de venda a retalho existentes foram otimizados para levar os itens ao
longo da cadeia de fornecimento e entregá-los aos clientes. No entanto, o aumento
do comércio eletrónico e dos seus benefícios associados, como devoluções fáceis e
oportunidades de economia circular, criaram um problema para os retalhistas que
não se adaptaram a esse fluxo reverso. Como resultado, o processo de recuperação
de itens dos clientes é frequentemente manual e ineficiente.

A Loop co.[15] está a desenvolver o LoopOS, um sistema de economia circular,
para resolver este problema. O LoopOS integra diferentes aspectos da economia
circular, como a submissão de produtos, validação, entrega, certificação, renovação
e reentrada no mercado, num ecossistema único, descentralizado e colaborativo.

Esta tese explora o processo de desenvolvimento e instanciação de dois componentes
fundamentais no ambiente LoopOS: o LoopOS Onboarding, que se concentra na
simplificação do processo de onboarding para novos usuários tal como a automati-
zação da criação dos seus ambientes dentro do LoopOS, e o LoopOS UI projetado
para padronizar e aperfeiçoar o desenvolvimento front-end em vários aplicações do
LoopOS. Este aborda desafios em “asset pipeline” e desenvolvimento front-end. Ele
garante integração e modularidade, permitindo que os desenvolvedores da LoopOS
se concentrem na funcionalidade principal em vez das complexidades do front-end.
O LoopOS UI contribui significativamente para a arquitetura modular, fornecendo
uma base sólida para implementar uma nova interface do usuário em aplicações do
LoopOS.

Em conclusão, esta tese atinge os seus objetivos declarados e mostra uma abordagem
detalhada ao desenvolvimento de software, do planeamento à execução, da inovação
à visão do futuro. As soluções implementadas contribuem para o desenvolvimento
contínuo da plataforma LoopOS, destacando a adaptabilidade, colaboração e ha-
bilidades de solução de problemas num ambiente de desenvolvimento de software
dinâmico.

Palavras-Chave

Economia Circular, Aplicação Web, Autenticação & Autorização, Instanciação e
Gestão de Aplicações, Integração de Parceiros, Desenvolvimento Front-end, Pipeline
de Recursos

vi

Contents

List of Figures x

List of Tables xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Structure . 3

2 Background 4
2.1 Circular Economy . 4
2.2 Methodology . 6
2.3 LoopOS . 7
2.4 Network Manager . 13

2.4.1 Application Deployment & Management 41
2.4.2 Security . 46

3 State of the Art 48
3.1 User Management . 48
3.2 Partner Management . 49
3.3 App Management . 51
3.4 Conclusion . 52

4 Requirements & Risk Analysis 55
4.1 Actors . 56
4.2 User Stories . 57
4.3 Functional Requirements . 58
4.4 Non-Functional Requirements . 61
4.5 Restrictions . 65
4.6 Risk Analysis . 65

4.6.1 Risk Identification . 65
4.6.2 Risk Analysis . 66
4.6.3 Risk Planning . 67

5 Framework 69
5.1 Team Organization . 69
5.2 Delivery Lifecycle & Technologies . 70
5.3 Work Plan . 74

5.3.1 First Semester . 74

vii

5.3.2 Second Semester . 76

6 Development 79
6.1 LoopOS Onboarding . 79
6.2 LoopOS UI . 109
6.3 Post-development Risks Analysis . 154

7 Testing 158
7.1 LoopOS Onboarding: Acceptance Tests 159
7.2 LoopOS Onboarding: Unit Tests . 162
7.3 LoopOS Onboarding: Non-Functional Requirement Tests 165
7.4 LoopOS UI: Acceptance Tests . 168
7.5 LoopOS UI: Unit Test . 169
7.6 LoopOS UI: Non-Functional Requirement Tests 171

8 Conclusion 174

References 179

Appendix A Actors: Intermediate Defense 185

Appendix B User Stories: Intermediate Defense - v1 186

Appendix C User Stories: Intermediate Defense - v1 188

Appendix D Functional Requirements: Intermediate Defense - v1 191

Appendix E Functional Requirements: Intermediate Defense - v2 192

viii

Acronyms

API Application Programming Interface.

CERN European Organization for Nuclear Research.

CI/CD Continuous Integration/Continuous Delivery.

CTO Chief Technology Officer.

DEI Departamento de Engenharia Informática.

ESA European Space Agency.

HR Human Resources.

NIF Fiscal Identification Number.

PM Product Manager.

PO Project Owner.

QA Quality Assurance.

R&D Research and Development.

RCE Remote Code Execution.

SSO Single Sign-On.

UI User Experience.

ix

List of Figures

2.1 Sharp price increases in commodities since 2000 have erased all the
real price declines of the 20th century [33]. 5

2.2 Butterfly diagram of the circular economy [33]. 6
2.3 LoopOS Architecture. 9
2.4 LoopOS Flow example [16]. 11
2.5 Network Manager: Welcome Page. 14
2.6 Network Manager: User Index Page. 15
2.7 Network Manager: User Show Page. 16
2.8 Network Manager: User Show Page - Inherited elements from affili-

ated User Group. 17
2.9 Network Manager: Partner Index Page. 18
2.10 Network Manager: Partner Show Page - Example implementation of

settings. 19
2.11 Network Manager: Partner Show Page - Example implementation of

associated Services to a Partner. 19
2.12 Network Manager: App Index Page. 20
2.13 Network Manager: App Show Page - Associated Releases and Header

styles settings. 21
2.14 Network Manager: App Release Index Page. 22
2.15 Network Manager: App Release Show Page - Example implementa-

tion of infrastructure settings schema. 22
2.16 Network Manager: App Release Show Page - Associated App Scopes

and App Instances. 23
2.17 Network Manager: App Instances Index Page. 24
2.18 Network Manager: App Instances Show Page - OAuth Application

associated. 24
2.19 Network Manager: Service Index Page. 25
2.20 Network Manager: Authentication Service Provider Index Page. . . . 26
2.21 Network Manager: Email Service Providers Index Page. 27
2.22 Network Manager: Email Template Page - Example of an email tem-

plate for a successful return with the Fnac Partner. 28
2.23 Network Manager: Email Show Page - Example of an email sent by

the Network Manager. 28
2.24 Network Manager: Invoice Service Providers Index Page. 29
2.25 Network Manager: Invoice Show Page - Partial example of the invoice

details of an item. 30
2.26 Network Manager: Shipping Service Providers Index Page. 31

x

List of Figures

2.27 Network Manager: Shipping Show Page - Partial example of the
shipping details of an item. 31

2.28 Network Manager: Payment Service Providers Index Page. 32
2.29 Network Manager: Payments Show Page - Partial example of the

shipping details of an item. 33
2.30 Network Manager: Incoming Payments Service Providers Index Page. 34
2.31 Network Manager: Payments Show Page - Example of the incoming

payment details of an item. 35
2.32 Network Manager: Settings Index Page. 36
2.33 Network Manager: Setting Show Page - Example of a settings imple-

mentation. 36
2.34 Network Manager: Cluster Show Page. 37
2.35 Network Manager: LoopOS Scripts Index Page. 38
2.36 Network Manager: LoopOS Scripts Show Page - Partner Group Items

Script. 39
2.37 Network Manager: LoopOS Scripts Show Page - Partner Group Items

Script input section. 39
2.38 Network Manager: LoopOS Scripts Show Page - Partner Group Items

Script generated logs. 40
2.39 Network Manager: LoopOS Scripts Show Page - Empty Boilerplate

Script. 41
2.40 Differences in isolation: Monolithic vs SOA vs Microservice. 42
2.41 UML Diagram: App Instance Infrastructure Deployment. 43
2.42 UML Diagram: Secure Code Execution Flow 45
2.43 Authentication Flow in LoopOS App Authentication [16]. 46
2.44 Authentication Flow in LoopOS User Authentication [16]. 47

3.1 Gusto’s customizable onboarding tasks [36]. 50

4.1 Non-Functional Requirements Scenario Diagram [8]. 61
4.2 Risk Management Process [63]. 65
4.3 Risk Matrix [47]. 67

5.1 LoopOS UI - Sidebar Creation: Task in Clickup. 71
5.2 LoopOS UI - Sidebar Creation: Merge Request in Gitlab. 72
5.3 Weekly sprint timeline overview. 73
5.4 Gantt chart depicting the execution and planning combined of the

first semester of this thesis. 75
5.5 Gantt chart depicting the planning and execution of the second semester

of this thesis. 77

6.1 Partner planned flow in LoopOS Onboarding. 80
6.2 Mockup of the Partner Registration Page with default information

that will be presented to all Partners independent of Partner Group . 81
6.3 Mockup of the Partner Registration Page after filling default informa-

tion and being presented with specific settings defined by the Partner
Group to be filled. 82

6.4 Mockup of the Onboarding Choice Page. 83
6.5 Mockup of the Wait Page. 84

xi

6.6 Flow chart diagram representing logic that keeps User settings valid
with its Partner or Partner Group association. 87

6.7 Relation between Partner Service and App Instance with Partner/-
Partner Group with and without polymorphism. 88

6.8 Diagram representing planned User authentication flow. 90
6.9 Authentication Flow in LoopOS App Authentication [16]. 91
6.10 UML diagram: Fetch settings endpoint example where settings are

not yet cached so the full request must be executed. 93
6.11 UML diagram: Example of a User login attempt to LoopOS On-

boarding. 94
6.12 LoopOS Onboarding: Final look of the Partner Landing Page. 96
6.13 LoopOS Onboarding: Final look of the Partner Registration Page. . . 98
6.14 LoopOS Onboarding: Final look of the Boilerplate Choice Page. . . . 99
6.15 UML diagram: Choose and trigger boilerplate. 100
6.16 Connection between CTT applications and Partner applications. . . . 101
6.17 Client submits the item(s) it wants to return. 102
6.18 Client pays for item return. 103
6.19 Partner receives item. 103
6.20 Partial LoopOS Flow example. 104
6.21 LoopsOS Core sidebar. 105
6.22 LoopOS Onboarding: Final look of the Wait Page. 108
6.23 Network Manager: Partner profile page. 110
6.24 Network Manager: User profile page. 110
6.25 Network Manager: Show User Page - Mockup. 111
6.26 LoopOS Core: Show Item Page - Mockup. 111
6.27 Network Manager: Show User Page - Macro Layouts. 113
6.28 LoopOS Core: Show Item Page - Macro Layouts. 113
6.29 LoopOS Hubs: Show Shipping Page - Macro Layouts. 114
6.30 Network Manager: User Index Page - Mockup. 115
6.31 Network Manager: User Show Page - Mockup. 115
6.32 LoopOS UI progressive development planning: Macro Layout imple-

mentation . 116
6.33 LoopOS UI progressive development planning: Sidebar Layout Im-

plementation & Refinement. 116
6.34 Network Manager: Show User Page split into Content and Header. . 117
6.35 Network Manager: Show User Page Header split into Action Section

and Info Section. 118
6.36 LoopOS UI progressive development planning: Micro layout imple-

mentation of Show Layout. 118
6.37 Header components across applications. 120
6.38 Network Manager: User Show Page Tabs Mockups. 123
6.39 LoopOS UI progressive development planning: Micro layout refine-

ment of Show Layout. 125
6.40 Network Manager: Index User Page split into Content and Header. . 126
6.41 Network Manager: Index User Page Header split into Action Section

and Info Section. 127
6.42 LoopOS UI progressive development planning: Micro layout refine-

ment of Show Layout. 128

xii

List of Figures

6.43 LoopOS UI progressive development planning - final architecture. . . 129
6.44 Network Manager implementation of User Show Page using LoopOS

UI. 130
6.45 Network Manager implementation of Index Show Page using LoopOS

UI. 131
6.46 Implementation example from Tailwind Website [66]. 133
6.47 Example from React Website[57]. 133
6.48 Example from Stimulus Website Stimulus. 134
6.49 Bundling diagram from Webpack website [71]. 137
6.50 Network Manager packs. 138
6.51 Network Manager manifest file. 138
6.52 Sidebar Main Anatomy. 144
6.53 Core: Sidebar Mockups - Item with drawer open. 145
6.54 Core: Sidebar Mockups - Item without drawer. 145
6.55 Core: Sidebar Mockups - Item highlight. 146
6.56 Sidebar Items Class Diagram. 147
6.57 LoopOS UI: Sidebar View Component Class Diagran. 151
6.58 LoopOS UI: Class Diagram. 152
6.59 Final View Components created. 153

7.1 Testing Pyramid [44]. 158
7.2 LoopOS Onboarding: Performance Testing - Measurement/Time Plot.166
7.3 LoopOS UI: Performance Testing - Measurement/Time Plot. 171

8.1 Network Manager Mockups - App Instance Dashboard. 176
8.2 Network Manager Mockups - App Instance Alerts. 177

xiii

List of Tables

3.1 State of the Art conclusion comparison. 53

4.1 Availability - Resilience to Failures. 62
4.2 Performance - Fast Response Times. 63
4.3 Performance - Fast Response Times. 64
4.4 Security - Role-Based Access Controls. 64
4.5 Mitigation strategies for the previous identified risks. 68

5.1 Task states through sprint lifecycle. 73

7.1 LoopOS Onboarding: Partner Group Functional Requirements. . . . 161
7.2 LoopOS Onboarding: Partner Functional Requirements. 161
7.3 LoopOS Onboarding: Endpoints. 162
7.4 LoopOS Onboarding: Endpoint Authentication Testing. 164
7.5 LoopOS Onboarding: Performance Testing - Average and Standard

Deviation Metrics. 167
7.6 LoopOS UI: App Developer Functional Requirements. 168
7.7 LoopOS UI: View Components Test Cases. 170
7.8 LoopOS UI: Performance Testing - Average and Standard Deviation

Metrics. 172
7.9 LoopOS UI: Security Testing. 173

D.1 AppReleases Functional Requirements - v1. 191
D.2 AppIntances Functional Requirements - v1. 191
D.3 DatabaseServer Functional Requirements - v1. 191
D.4 Partners Functional Requirements - v1. 191

E.1 AppReleases Functional Requirements - v2. 192
E.2 AppIntances Functional Requirements - v2. 192
E.3 Partners Functional Requirements - v2. 192
E.4 PartnerConsumptions Functional Requirements - v2. 192
E.5 PartnerPayments Functional Requirements - v2. 192
E.6 PartnerDocuments Functional Requirements - v2. 193
E.7 Self-Onboarding Functional Requirements - v2. 193
E.8 Templates Functional Requirements - v2. 193

xiv

Chapter 1

Introduction

The present dissertation was carried out in an academic-enterprise environment
as part of the Dissertation/Internship in Software Engineering, with a Master’s
degree in Informatics Engineering and a specialization in Software Engineering at
the Faculty of Sciences and Technology of the University of Coimbra.

The internship took place in the company The Loop co.[15] under the supervision
of Eng. João Rodrigues and Professor António Dourado from Departamento de
Engenharia Informática (DEI), where it initially consisted of the improvement of the
management application in LoopOS[16] (LoopOS Network Manager), but became
two unique products within LoopOS: LoopOS Onboarding and LoopOS UI.

The motivation (Section 1.1), the objectives (Section 1.2), and the structure of this
thesis (Section 1.3) will be presented in this chapter.

1.1 Motivation

The Loop Co. is a technology company founded in 2016 with the circular economy
project Book in Loop [14], a pioneering project in reusing school textbooks in Por-
tugal. Since then, The Loop Co. has expanded its areas of activity, now dedicating
itself to two fundamental areas: Circular Economy and Research and Development
(R&D).

Currently, the company works with major national and international partners, such
as Sonae, Portuguese Red Cross, European Organization for Nuclear Research (CERN),
and European Space Agency (ESA) on technological innovation projects and busi-
ness development, focusing on green tech.

Retailers face challenges when managing returns and entering the resale market
because traditional retail channels are designed for a uni-directional flow of goods.
With the rise of e-commerce and circular economy, The Loop co. recognizes the need
for a plug-and-play solution that simplifies refurbishing and reselling. To achieve
this, it created a centralized system that automates the management of all returns,
enabling each item to be directed to its optimal destination - LoopOS. This will
connect customers, retailers, and warehouses on a single platform, streamlining the

1

Chapter 1

return process and simplifying entry into the resale market.

LoopOS is a valuable tool for retailers looking to streamline their return process and
those looking to enter the resale market. For retailers already engaged in circular
economy initiatives, it will make expanding their operations easier. Although there
may be variations in how clients use the platform, LoopOS strives to design a system
that minimizes these differences.

Therefore, by standardizing the process of buying second-hand items, LoopOS in-
tends to achieve several benefits:

v A positive environmental impact by reducing the number of items that
end up in landfills.

v A social impact by providing more options for people to receive a fair price
for their used items.

v A business impact by enabling retailers to establish a profitable niche mar-
ket.

LoopOS addresses these challenges through the development of multiple applica-
tions, such as LoopOS Submission (for customers to submit the items) and LoopOS
Validation (for workers of the Partner using LoopOS to validate these items), each
managing specific steps in the item return and refurbishment process. However, as
multiple applications are instantiated per partners, a management issue arises in
handling instances, partners, users, and other aspects of this technological frame-
work.

To tackle this problem, LoopOS introduced the Network Manager, serving as the
orchestrator and manager of the entire LoopOS system. While the initial version
of the Network Manager successfully allowed manual user, partner, and application
instantiation from a centralized location, it encountered two significant issues as the
client base expanded:

• The manual instantiation of environments for partners became impractical
and unfeasible.

• The prioritizing functionality over user-friendliness in the Network Manager
to speed its completion, posed difficulties for users unfamiliar with the system.

This thesis aims to address these challenges.

1.2 Objectives

As stated before, my goal for this thesis is to solve two major issues with the Network
Manager by streamlining partner onboarding and environment instantiation and
enhancing the user-friendliness of the Network Manager.

The following are the established objectives:

2

Introduction

v Automated deployment and management of applications, clusters, and database
servers through the Network Manager.

v Creation of templates for easy configuration and setup of various environments.

v Development of a self-onboarding feature for Partners to create their online
platform.

v Implementation of new UI.

1.3 Structure

The thesis is structured in several chapters.

2. Background:
This chapter provides an introduction to the LoopOS project, its objectives,
and the context in which it operates. It outlines the fundamental concepts
and motivations that form the basis of this thesis.

3. State of the Art:
In this chapter, we explore the current state of technologies and practices in
the domain of LoopOS. It provides an in-depth analysis of existing solutions,
frameworks, and methodologies relevant to the project.

4. Requirements & Risks Analysis:
This chapter delves into a detailed analysis of the project’s requirements, in-
cluding functionalities and features crucial for the successful implementation
of LoopOS. It also addresses potential risks and challenges associated with the
project.

5. Framework:
The chosen framework for LoopOS is presented in this chapter. It outlines
the structural approach and methodology guiding the development process of
LoopOS.

6. Development:
The central chapter documents the development process of LoopOS Onboard-
ing and LoopOS UI. It highlights key milestones, challenges, and decision-
making processes. Technical aspects and coding practices are discussed to
provide insight into their construction.

8. Testing:
Focused on the testing phase, this chapter explores the strategies and method-
ologies employed to ensure the proper functionality, security, and performance
of the developed applications.

8. Conclusion:
The final chapter presents a comprehensive overview of the project, and po-
tential future developments, concluding this thesis on a reflective note.

3

Chapter 2

Background

Firstly, to grasp the context of this thesis thoroughly, it is essential to understand
the principles of circularity within a circular economy. This understanding will then
serve as a foundation for comprehending the architectural choices made in LoopOS
and the requisite features it encompasses.

Section 2.1 will, therefore, examine the drawbacks of the traditional linear resource
consumption model and explore the advantages of transitioning to a circular econ-
omy model. Moreover, it will establish the relevance of this discussion to LoopOS
and how its implementation takes advantage of the principles of circularity.

Section 2.2 will give context on the methodology used in the project and, conse-
quently, in this thesis.

Section 2.4 will give insight into the LoopOS overall architecture and a couple of
use cases to better understand how users interact with the system.

Section 2.4 will conclude this chapter by delving into the architectural complexities
and operational nuances of the Network Manager, defining its current state, in order
for an analysis of how it can be improved by comparing it to other technological
solutions can be conducted in the State of the Art chapter.

2.1 Circular Economy

Our industrial economy remains rooted in a linear model despite its evolution and
diversification. Materials are extracted from the Earth, manufactured into products,
sold to consumers, and eventually thrown away as waste when they no longer serve
their purpose [33].

This linear resource consumption model, established in the early days of industri-
alization, has exposed many companies to risks, including higher prices and supply
chain disruptions, leading to an increasing number of businesses recognizing the
need for change. These companies feel the pressure of unpredictable costs, height-
ened competition, and stagnant demand. This trend towards higher resource prices
started around the turn of the millennium, effectively reversing a century-long de-

4

Background

cline in the real costs of natural resources as observed in the graph in Figure 2.1.

Figure 2.1: Sharp price increases in commodities since 2000 have erased all the real
price declines of the 20th century [33].

Resource extraction and utilization, heavily reliant on fossil fuels, contributes to
high energy consumption and greenhouse gas emissions, posing a global challenge
[2]. The European Commission reports that resource extraction and processing
account for 90% of biodiversity loss, the design phase determines up to 80% of
product environmental impact, and only 11.7% of all materials used in the EU
came from recycled waste [21]. Furthermore, according to the US Environmental
Protection Agency, approximately 60 million metric tons deposited in landfills each
year of E-waste pose significant risks to humans, wildlife, and ecosystems [25].

Scholarly literature offers several definitions of circular economy [45]. However,
for this thesis, I have decided to reference the description provided by the Ellen
MacArthur Foundation. This UK-based charity organization aims to hasten the
transition towards a circular economy. They define the circular economy as an in-
dustrial system that aims to be restorative or regenerative by design and estimates
material savings worth over one trillion dollars [33]. The foundation has developed
the butterfly diagram to illustrate the two main cycles of the circular economy. Fig-
ure 2.2 showcases these two cycles: the technical cycle, which focuses on reusing,
repairing, remanufacturing, and recycling, and the biological cycle, which empha-
sizes returning nutrients from biodegradable materials to regenerate nature.

The adoption of the circular economy model is rapidly increasing globally due to
its various benefits. These advantages include its ability to impact the environment
positively, the availability of government incentives, the promotion of economic sta-
bility through the creation of resilient value chains, and the generation of new busi-
ness opportunities and high-quality jobs resulting in improved social welfare [21].
For example, China enacted a Circular Economy Promotion Law in 2008 [2], and
the European Union established a Circular Economy Strategy in 2015 to transition
towards a more resource-efficient economy. As of 2023, the European Union has
developed a comprehensive Circular Economy Framework, which includes the Euro-
pean Green Deal [18], the Circular Economy Action Plan [19], and the Sustainable
Product Initiative [20].

Additionally, several capital investments, like the Blackrock Global Fund, the Circu-

5

Chapter 2

Figure 2.2: Butterfly diagram of the circular economy [33].

lar Innovation Fund, and the Alphabet Corporate Bond, have aided the shift toward
a circular economy [2].

In conclusion, by developing a plug-and-play centralized system that allows retailers
to access the second-hand market and handle returns, reducing waste and ensuring
that materials are reused and recycled effectively, LoopOS benefits the circular econ-
omy. This approach promotes sustainability and responsibility in the retail industry
by assisting retailers in reducing their environmental impact while also promoting
new jobs [25]. By facilitating the expansion of the second-hand market, LoopOS
encourages the development of new jobs in the retail sector, such as refurbishment,
quality control, and customer support, contributing to economic growth and social
well-being.

2.2 Methodology

It is essential to delve into the methodology underpinning this project since it sig-
nificantly influenced decisions on problem-solving and planning timelines.

The Agile methodology was used to develop all applications in LoopOS. Agile
methodologies are characterized by an iterative and incremental process, simplic-
ity and ease of adoption, collaboration between all parties involved, and the ability
to produce high-quality software within given requirements, budgets, and timelines
[43]. In 2001, the Agile Manifesto was created to provide a set of principles and
values for software development teams to follow to improve their final products. It
emphasizes customer satisfaction through early and continuous delivery of valuable
software, welcomes changing requirements even late in development, and delivers
working software frequently with a preference for a shorter timescale [10].

6

Background

The closest agile-based software development method used was Scrum, a widely
used and practical approach to software development that emphasizes flexibility and
addresses common development challenges.[43] It follows a development lifecycle
that includes a series of month-long iterations called Sprints, making it ideal for
projects with emergent requirements. The framework outlines specific roles for team
members and provides guidelines for how these roles should function in a Scrum
environment. While Scrum is a lightweight methodology, it includes more rules
than Agile [58]. For example, it recommends having daily meetings to improve
communication and dividing work into Sprints to improve project efficiency [58].

The three primary roles in Scrum are the Product Owner, Scrum Master, and De-
velopers. The Product Owner manages and prioritizes the Product Backlog, while
the Scrum Master ensures the project runs smoothly and enforces Scrum practices
and rules. Developers are responsible for developing the product and achieving the
Sprint Goal. The Customer also creates the Product Backlog and provides ideas
and information for system features [43] [58].

It is important to note that the chosen methodology in LoopOS introduces an el-
ement of unpredictability. The nature of Agile and Scrum makes it challenging to
predict all aspects of the project in advance. The methodology’s volatility means
that objectives and priorities could undergo changes sprint by sprint, allowing for
adaptability, new requirements, and evolving project dynamics. This was the case
with this thesis, where the objectives became more precise with the course of the
project, and solutions to accomplish them changed. While initially, the sole focus
was on improving the Network Manager, this gave rise to the creation of LoopOS
Onboarding, an application within LoopOS specifically designed to address partner
onboarding and environment management, and LoopOS UI, a Rails Engine (an ap-
plication inside another application to extent its functionalities) to enhance the UI
across all LoopOS applications.

2.3 LoopOS

LoopOS is not a single piece of software. Multiple applications created separately
by The Loop Co. work together to fulfill the system’s goals. These apps consist of:

• LoopOS Submission: allows the customer to introduce their product into
the system.

• LoopOS Validation: assists in determining whether the product meets ac-
ceptance criteria.

• LoopOS Hubs: serves as a mediator for physical interactions so the client
can deliver their product if accepted.

• LoopOS Handling: for managing reverse logistics and circular economy
processes.

• LoopOS Exits: offers options to reintroduce products into the market.

7

Chapter 2

• LoopOS Core: acts as a central control panel for configuring and parame-
terizing the entire product journey within the system, regarding product cat-
egories, submission processes, validation criteria, pricing rules, and logistics
options.

The aforementioned applications can be deployed individually for each specific use
case, catering to the unique requirements of each partner (the companies that desire
to use the system). For instance, a large corporation might seek to integrate all
available applications into its business operations, enabling comprehensive support
for buying and selling used items. Alternatively, a local shop might utilize only the
Handling and Core applications, focusing on efficient stock management.

At the center of the entire LoopOS ecosystem is the LoopOS Network Manager. In
contrast with the other applications, the Network Manager is only deployed once.
It plays a crucial role in the infrastructure deployment and management of all ap-
plications across the various partners. Additionally, it ensures the authentication of
both users and applications and allows the custom configuration of the applications
to cater to each partner’s needs.

Moreover, although the Network Manager is not yet available for production (which
means only developers use it), it will adapt its functionality based on the user’s role.
For example, Partners will use the app to oversee and manage their applications and
have authority over their users. This includes grouping users and assigning specific
roles to regulate access to applications. While users will use the Network Manager
to edit their profile

Figure 2.3 illustrates the LoopOS architecture to better visualize the relation be-
tween apps.

8

Background

Fi
gu

re
2.

3:
Lo

op
O

S
A

rc
hi

te
ct

ur
e.

9

Chapter 2

To gain a deeper understanding of how a product operates within the LoopOS
ecosystem, it is crucial to comprehend its journey within a system that uses all of
the applications:

1. Getting a product into the system:
The LoopOS Submission App allows consumers to input information about
a product they want to sell or return. It streamlines the process by requesting
product information and condition details, enabling faster processing.

2. Validate that a product can get into the system:
The LoopOS Validation App assists in determining whether a product
meets the criteria for acceptance into the system. It guides workers through
item identification, condition and price evaluation, making it user-friendly
even for those with minimal training.

3. Deliver a product to the system:
Once a product is accepted, it can be sent through a LoopOS transport service
or taken to one of the LoopOS Hubs. The LoopOS Hubs App serves as a
mediator for any physical interaction between consumers and the LoopOS
network, offering options such as item pickup points, LoopOS Partners Drop
Shipment, and LoopOS Delivery.

4. Certify, Refurbish, and Store:
The LoopOS Handling App manages and guides operations related to re-
verse logistics and circular economy processes. It facilitates step-by-step prod-
uct certification, refurbishment, tracking of costs, upload of professional pho-
tos, and integration with Warehouse Management Systems (WMS) for storage.
The app allows non-specialized workers to efficiently carry out these processes
across various product categories.

5. Get the product out in the market again:
The LoopOS Exits offers multiple options to reintroduce products into the
market. Either through headless e-commerce API with platforms like Shopify,
through its own store and renting services (LoopOS Store & LoopOS Rent-
ing), or through the Partners own store, ensuring the product has another
chance to be sold or utilized.

To integrate all the apps, LoopOS relies on three key components:

1. LoopOS Core App: Serving as the central control panel for the circular busi-
ness, enabling the configuration and parameterization of the product journey
within the system. It enables the user to make crucial decisions regarding the
categories and types of products they want to circulate, the submission process
for consumers, the validation criteria, pricing and depreciation rules, collec-
tion points and transport services, physical checks by hub workers, handling,
etc. To quickly set up the circular business, the Loop co. devised LoopOS
Flows, a no-code logistics solution designed specifically for reverse logistics.

10

Background

Users can effortlessly create personalized flows by dragging and dropping var-
ious components like apps and services. Figure 2.4 shows an example of the
flow.

Figure 2.4: LoopOS Flow example [16].

2. LoopOS Network Manager: The focus of this thesis and central orchestra-
tor of the LoopOS ecosystem, it is the main app that addresses the challenges
of an ecosystem with such a distributed architecture.

3. LoopOS Services: Simplifies service management by including Service Providers
for services such as Transports, Email, SMS, Payments In, and Payments Out,
where each provider is associated with a specific service provision, cost method
and configuration to be able to access these services API. These services can be
chosen by the Partner and applied in the chosen Applications by the Network
Manager, in order to further customize each Partners LoopOS system.

Finally, the presented use cases offer a glimpse into the real-world applications of
LoopOS to showcase its functionality and impact on different stakeholders:

x Customer Putting a Product into the System:
Scenario: A customer, Alice, wants to sell her used smartphone through LoopOS.
She uses the LoopOS Submission App to input details about the product, such as
model, condition, and any additional information. The app streamlines the process,
making it easy for Alice to provide the necessary information.

Steps:

1. Alice opens the LoopOS Submission App and enters details about her smart-
phone.

2. The app guides her through the submission process, ensuring all required
information is provided.

11

Chapter 2

3. Once submitted, the product information is sent to the LoopOS Core App for
processing.

Outcome: The product details are now in the LoopOS ecosystem, awaiting valida-
tion.

x Worker Using LoopOS Apps to Handle Items:
Scenario: John, a worker at a LoopOS Hub, receives a set of products that have
passed validation and need further processing. He needs to certify, refurbish, and
store these items efficiently.

Steps:

1. John uses the LoopOS Validation App to confirm the acceptance of the prod-
ucts into the system.

2. The LoopOS Handling App guides him through the certification and refur-
bishment processes, ensuring each step is completed.

3. John uses the app to upload professional photos of the refurbished products
and updates their status accordingly.

Outcome: The certified and refurbished products are now ready for reintroduction,
with detailed records of their condition and certification process.

x LoopOS Workers Deploying Applications:
Scenario: LoopOS Workers are responsible for deploying applications to enhance
the system’s functionality based on partner requirements.

Steps:

1. LoopOS Workers access the Network Manager and deploy the applications the
Partner desires manually.

2. LoopOS Workers access the Network Manager and configures these applica-
tions according to the the partner’s business requirements manually.

Outcome: The LoopOS system is enriched with new applications tailored to the
specific requirements of Company XYZ.

x Partners Managing Employees and Permissions Through
Network Manager:
Scenario: A Partner, Company XYZ, uses the LoopOS Network Manager to man-
age employees, assign permissions, and create user groups for streamlined access
control within the customized LoopOS system.

12

Background

Steps:

1. Partners log into the LoopOS Network Manager with their administrative
credentials.

2. They navigate to the “User Management” section to create user groups based
on the organizational structure or specific roles within Company XYZ.

3. Partners assign appropriate permissions to each user or user group, defining
access levels to various features and modules of the LoopOS system.

4. Partners set up and manage employee profiles, including adding new users and
modifying existing ones as the organizational structure evolves.

Outcome: Company XYZ effectively manages its employees through the LoopOS
Network Manager. Partners have established user groups, defined permissions, and
maintained control over access to LoopOS services and applications. This results in
a well-organized and secure system where employees have the necessary access to
perform their roles efficiently.

These use cases highlight the flexibility and scalability of the LoopOS ecosystem,
catering to both end-users and partners with specific business requirements.

In conclusion, LoopOS is a multifaceted ecosystem of interconnected applications
designed to facilitate and streamline the circular economy processes by working to-
gether to seamlessly meet the diverse needs of partner companies, ranging from
large corporations to local businesses. Nevertheless, conducting a more comprehen-
sive analysis of the Network Manager is essential, which we will delve into in the
next chapter.

2.4 Network Manager

Before delving into the State of the Art, it is essential to fully comprehend the ex-
isting Network Manager implementation, application deployment and management
processes, and authentication and authorization mechanisms. Automation and im-
provement efforts are futile without understanding the underlying systems.

As mentioned earlier, due to its urgent nature, the Network Manager was initially
developed with a focus on the back-end. The first iteration of this product was
exclusively intended for developers to manually create environments, resulting in
suboptimal usability and user experience. For example, the only permission levels
applied here are in terms of access to this application, where acess to individual
pages is not restricted.

More specifically, this initial version of the Network Manager was created leverag-
ing AVO [4], a Content Management System for Ruby on Rails. It facilitates the
construction of a practical front-end, freeing up the backend’s development time.
Figure 2.5 showcases the welcome page of the Network Manager.

13

Chapter 2

Figure 2.5: Network Manager: Welcome Page.

Along with thoroughly examining the Network Manager’s inner workings, this sec-
tion will also present visual representations of these components to highlight the
need for a better user experience. It should be noted the data presented in these
depictions is purely fictional since they have been collected from development envi-
ronments.

14

Background

x User Management: User, User Group

Users represent individuals who interact with the LoopOS ecosystem. Each user is
associated with a Partner, reflecting their affiliated company. The Network Manager
allows the edit of user basic profile information, including email, name, and avatar.
Figure 2.6 showcases the user index page presenting user details and its affiliation.

Figure 2.6: Network Manager: User Index Page.

Users can be linked to App Instances, representing specific instances of applications
that belong to a Partner. This allows for granular control over user access to indi-
vidual application instances. For example, a User connected only to a Core instance
belonging to a “CTT” partner can not access a Handling app instance belonging to
the same partner. Additionally, the user can not access another instance belonging
to a different Partner.

15

Chapter 2

Moreover, users can be linked to App Scopes, which define their permissions within
specific applications. These permissions determine the level of access and actions a
user can perform within an application. For example, using the same example as
before, if the user has only the App Scope can_view_items, this is the only action
he can perform inside the assigned Core instance. Figure 2.7 showcases an example
of a user associated with multiple App Instances and multiple App Scopes.

Figure 2.7: Network Manager: User Show Page.

16

Background

On the other hand, User Groups provides an efficient mechanism for assigning App
Scopes and App Instances to multiple users simultaneously. This eliminates the need
to manage permissions and access for individual users one by one, streamlining the
user administration process. Figure 2.8 showcases App Instances and App Scopes
belonging to a User that were inherited from the affiliated User Group.

Figure 2.8: Network Manager: User Show Page - Inherited elements from affiliated
User Group.

17

Chapter 2

x Partner Management: Partner

Partners are any individual organization that interact with LoopOS. They are
the highest business logic aggregator in LoopOS and can be linked to Users, App
Instances, Partner Services, and Email Message Templates. Figure 2.9 showcases
the partner index page presenting partner details, and Figure 2.10 illustrates how
settings can be created and edited. The Network Manager also enables adding
providers from multiple services while creating a way to log all access to these
services. Figure 2.11 illustrates an example of Services and how these services are
presented in the Partner Show Page.

Figure 2.9: Network Manager: Partner Index Page.

18

Background

Figure 2.10: Network Manager: Partner Show Page - Example implementation of
settings.

Figure 2.11: Network Manager: Partner Show Page - Example implementation of
associated Services to a Partner.

19

Chapter 2

x App Management: App, App Release, App Instance, App Scope

Apps are the central control panel for configuring and parameterizing the entire
product journey, defining which apps are available to the LoopOS system showcased
in figure 2.12. Each App can be linked to many App Releases. Figure 2.13 illustrates
a LoopOS Exists App and its associated releases and the header style values to
configure its header.

Figure 2.12: Network Manager: App Index Page.

20

Background

Figure 2.13: Network Manager: App Show Page - Associated Releases and Header
styles settings.

App Releases is a specific app version from GitLab [73] linked to a docker image,
belonging to an App and having one or many App Instances. Figure 2.14 showcases
the App Release Index page. It has public, private, and infrastructure setting schema
in order to define which settings the associated instances must have, as seen in
Figure 2.15. In addition, they have many App Scopes that represent user scopes
supported by each app. Figure 2.16 illustrates the associated App Scopes and App
Instances. A scope typically represents the ability to perform a specific or group of
specific actions in the app.

21

Chapter 2

Figure 2.14: Network Manager: App Release Index Page.

Figure 2.15: Network Manager: App Release Show Page - Example implementation
of infrastructure settings schema.

22

Background

Figure 2.16: Network Manager: App Release Show Page - Associated App Scopes
and App Instances.

Finally, App Instances represents a specific deployment of an App to be used by a
specific partner. App instances have infrastructure settings (DevOps settings such
as secrets), public settings accessible by all parties (for now, accessed by other App
Instances by requesting this data through an endpoint open in the Network Man-
ager), and private settings that can only be changed by LoopOS personnel (currently,
accessed only by the App Instance itself, requesting this data through an endpoint
open in the Network Manager). These settings must obey the corresponding setting
schema from the associated App Release.

In addition, App Instances are associated with an Oauth Application to manage
their security. These contain the essential data required for an App Instance to
connect to the Network Manager.

Most notably, App Instances have two key features: they can be deployed and kept
in sync with their corresponding Gitlab image with the “SyncInfrastructureJob” and
can have code executed on them, commanded from the Network Manager. This will
be explained in Sub-section 2.4.1 - Application Deployment & Management.

23

Chapter 2

Figure 2.17: Network Manager: App Instances Index Page.

Figure 2.18: Network Manager: App Instances Show Page - OAuth Application
associated.

24

Background

x Service Management: Authentication, Email, Invoice, Shipping, Payments, In-
coming Payments

The Network Manager facilitates the addition of Services, enabling LoopOS to ex-
pand its capabilities and address a wider range of business needs. This includes
services such as authentication, email, invoice management, shipping, and payment
processing. Figure 2.19 illustrates the Service index page.

Figure 2.19: Network Manager: Service Index Page.

25

Chapter 2

Authentication: Holds external authentication providers available for sign up and
sign in, in the LoopOS ecosystem. Figure 2.20 illustrates the current authentication
providers, apart from its own, present in the Network Manager.

Figure 2.20: Network Manager: Authentication Service Provider Index Page.

26

Background

Email: Holds the email providers which will send the email (illustrated in Figure
2.21), the email templates from which the emails will be created from (illustrated
in Figure 2.22) and all the emails sent by that provider (illustrated in Figure 2.23).
Each email has logs saving the success of actions at specific timestamps. Also, since
most of the emails sent will be in regards to items operating on the other apps, these
emails can also save a URL to that specific item in the corresponding Core app.

Figure 2.21: Network Manager: Email Service Providers Index Page.

27

Chapter 2

Figure 2.22: Network Manager: Email Template Page - Example of an email tem-
plate for a successful return with the Fnac Partner.

Figure 2.23: Network Manager: Email Show Page - Example of an email sent by
the Network Manager.

28

Background

Invoices: Holds the invoice providers (showcased in Figure 2.24) which will create
the invoices and all the invoices created by each provider. Each invoice contains es-
sential information such as General details, including the item id and its correspond-
ing URL in the Core App, creation timestamp, and status to track the transaction’s
progress, also containing more specifics of the invoice, such as its name, description,
amount, VAT, and quantity, to provide a more comprehensive overview and client
data, such as the client’s data for identifying the involved party. In addition, extra
data offers additional context such as the application id. Figure 2.25 illustrates how
some of these details are presented to the user.

Figure 2.24: Network Manager: Invoice Service Providers Index Page.

29

Chapter 2

Figure 2.25: Network Manager: Invoice Show Page - Partial example of the invoice
details of an item.

Shipping: Holds the shipping providers (illustrated in Figure 2.26) which will
handle and track the shipping of the products and all the shippings being tracked
by provider. The general information includes item id and its corresponding URL in
the Core App, its reference, creation timestamp, status, shipping type, and request
ID. Specific shipping details cover the name, sender and recipient details, as well as,
extra data, provides additional context such as the application id. Each shipping is
linked to one or many shipping package that saves the package status, tracking code,
weight, and shipping reference. Logs document actions upon these objects, such as
sending notifications and creating return guides. Additionally, each shipping as a
shipping return guide pdf attached with all this information. Figure 2.27 illustrates
how some of these details are presented to the user.

30

Background

Figure 2.26: Network Manager: Shipping Service Providers Index Page.

Figure 2.27: Network Manager: Shipping Show Page - Partial example of the ship-
ping details of an item.

Payments: Hold the payment provides (illustrated in Figure 2.28), which will
handle the payments to pay the customer for an item and all the payments by
each provider. The general information includes the item ID and its corresponding

31

Chapter 2

URL in the Core App, the reference, creation timestamp, payment type, authors,
amount, and status (since there is the possibility the payments must be approved
first). Payment data covers reference details and other useful information in order
to complete the operation. Logs document actions upon these payments. Figure
2.29 illustrates how some of these details are presented to the user.

Figure 2.28: Network Manager: Payment Service Providers Index Page.

32

Background

Figure 2.29: Network Manager: Payments Show Page - Partial example of the
shipping details of an item.

33

Chapter 2

Incoming Payments: Hold the incoming payment providers (illustrated in Figure
2.30), which will handle the payments coming from the customers and the incom-
ing_payments per provider. The general information includes item id and its cor-
responding URL in the Core App, created timestamp payment type, the Partner,
the amount, and status (since, for example, payments can expire), and payment-
specific details, such as the request ID. Logs document actions upon these incoming
payments. Figure 2.31 illustrates how some of these details are presented to the
user.

Figure 2.30: Network Manager: Incoming Payments Service Providers Index Page.

34

Background

Figure 2.31: Network Manager: Payments Show Page - Example of the incoming
payment details of an item.

Most notably, any of these services created can be immediately linked to a Partner,
giving it access to all its features. Hence, each provider added is an additional
possible service for the Partner to use, thus enhancing the customization of LoopOS.

Finally, the Network Manager allows to configure general settings for the Manager.
Figure 2.32 showcases the current implemented settings. Each setting has five prop-
erties: name, its description, the data with the content of the setting, in which App
it is enabled and a boolean field if it is available to use in Terraform. The last field is
crucial to the deployment of LoopOS, since its used to configure aspects of the Ter-
raform deployment, from Kubernetes secrets, Gitlab credentials to Rancher cluster
and project id, in order to deploy the App Instances dynamically. In addition, other
settings that are not available to Terraform can vary from Email Template will be
used to invite the user, to settings necessary to use certain services, for example, the
key and secret to allow the Network Manager to make call to certain Email Provider
API’s. Figure 2.33 illustrates how the settings of the beefree email service provider
can be set.

35

Chapter 2

Figure 2.32: Network Manager: Settings Index Page.

Figure 2.33: Network Manager: Setting Show Page - Example of a settings imple-
mentation.

36

Background

x Clusters Management: Cluster

Currently, Kubernetes configurations and additional data are managed for all in-
stances within a single cluster. However, each partner will have their dedicated
cluster in the future. Most notably, inside each Cluster is a kubeconfig that con-
tains the configuration information for connecting to a Kubernetes cluster. It in-
cludes the cluster’s name, the server URL, and the authentication information for
a user account. It also defines a context, which is a combination of a cluster and a
user, and it is used to specify which cluster and user to employ when connecting to
Kubernetes. Figure 2.34 illustrates how these details are presented to the user.

Figure 2.34: Network Manager: Cluster Show Page.

37

Chapter 2

x LoopOS Scripts: Script, Validator, Boilerplate

LoopOS Scripts, can be of 3 types: Script, Validator & Boilerplate. They can be
executed in two modes: shared mode where script is executed with access to all the
resources of the application it runs on (like models/services etc), or isolated mode
(default), where it will run outside the context of rails so it won’t have access to any
resources within the application. This can be set by checking the isolated checkbox
while creating/updating the scripts.

The Script type is used for code that can be identified as scripts. That is, a piece
of code that can be executed successfully or failed due to some error. The success
or error message can be shown using successful or failed methods. Figure 2.35
showcases the index page of LoopOS Scripts with examples of scripts already being
used in the Network Manager.

Figure 2.35: Network Manager: LoopOS Scripts Index Page.

For example, using the script type, i aided in the development of the “Partner Group
Items Script”, as can be see in Figure 2.36. This script exports items from a chosen
partner group (illustrated in Figure 2.37) to a CSV file by retrieving item data from
all partners in the group, combining the data into a single CSV file, and logging
the export process. These logs save the script’s outcome and the generated file,
showcased in Figure 2.38.

38

Background

Figure 2.36: Network Manager: LoopOS Scripts Show Page - Partner Group Items
Script.

Figure 2.37: Network Manager: LoopOS Scripts Show Page - Partner Group Items
Script input section.

39

Chapter 2

Figure 2.38: Network Manager: LoopOS Scripts Show Page - Partner Group Items
Script generated logs.

Validator kind is used for code that can be identified as a validator. For example,
a code that is used to validate a zip code. If a zip code is valid, it will return true,
else, it will return some error. Similar to the script type, success or error messages
can be shown using successful or failed methods. Moreover, in validator, files can
also sent to parameters for validation.

Most notably, the Boilerplate type was created to provide a customizable structure
for creating and invoking methods to be used for creating a Partner environment
in LoopOS. The method takes in four arguments: user, optionally partner, partner
group, and extra_info. Its primary objective is to generate and update a log based
on a predefined template containing message, percentage . Boilerplate is used to
define custom methods tailored to specific requirements while ensuring consistent
log generation and updates based on the provided parameters.

Chapter 6 - Development will delve into my creation and implementation of a
boilerplate-type script (illustrated in Figure 2.39) that, by exploiting all these me-
chanics implemented before, significantly contributed to the successful automation
of partner environment deployment.

40

Background

Figure 2.39: Network Manager: LoopOS Scripts Show Page - Empty Boilerplate
Script.

In the subsequent sections, I explore two primary domains overseen by the Network
Manager: Application Deployment & Management and Security. A thorough com-
prehension of the Network Manager’s role within the LoopOS system is established
by building upon the earlier context and delving into these areas. This compre-
hensive understanding sets the stage for presenting the decisions and developments
undertaken to achieve the objectives outlined in this thesis.

2.4.1 Application Deployment & Management

In recent years, microservice architecture has become popular due to its numerous
advantages, including improved availability, fault tolerance, and horizontal scalabil-
ity (increasing the capacity of a system by adding additional machines). Further-
more, the adoption of container technologies, such as Kubernetes [3] and Docker
[29], have further boosted the momentum of microservices, especially in cloud-based
environments. As a result, many prominent companies like Amazon, Bestbuy.com,
Coca-Cola, eBay, Etsy, Gilt.com, Netflix, Spotify, Uber, and Zalando have success-
fully adopted this architecture [28].

In LoopOS, although the applications serve a distinct purpose in the ecosystem,
they are not strictly microservices since there is a degree of centralized control
and interdependence between them. However, they do not follow a strict monolith
architecture since they are different applications with different responsibilities.

This system follows a Service-oriented architecture (SOA) [30] pattern, where ap-
plications are built as a collection of services. Each service encapsulates a specific

41

Chapter 2

business capability and communicates with other services through a well-defined
interface, typically over a network protocol, using the HTTPS network protocol in
this particular case. Figure 2.40 demonstrates the differences in isolation between
Monolithic, SOA, and Microservice architecture.

Figure 2.40: Differences in isolation: Monolithic vs SOA vs Microservice.

In the scientific literature, plenty of methods exist to deploy these services [31]. The
Network Manager, the sole application that deploys, manages, and coordinates the
various other applications, is thus considered an Orchestrator.

The LoopOS technological ecosystem is deployed with Rancher [55], a container
management platform. Rancher provides a centralized management interface for
multiple Kubernetes [3] clusters, enabling the orchestration of containers across
different environments. In the case of LoopOS, within Rancher, there is only one
Kubernetes cluster, which has multiple pods. Each pod represents either a specific
application instance or a containerized tool that supports that application instance.
For example, a PostgreSQL [35] database container could be deployed within a pod
to provide data storage for an application.

Rancher uses Terraform [46], an Infrastructure as Code (IaC) tool, to provision and
manage the infrastructure resources required by the LoopOS applications. Terraform
allows for declarative infrastructure provisioning, meaning that the desired state of
the infrastructure is defined in a configuration file. Terraform automatically creates
or updates the necessary resources to match the desired state.

The Network Manager interacts with Rancher and Terraform to automate the de-
ployment process for LoopOS applications.

Applications are created in the Network Manager interface and linked to a Git-
Lab image via the creation of an App Release. The following breakdown and the
accompanying Figure 2.41 provide a comprehensive explanation of the deployment
process:

42

Background

Figure 2.41: UML Diagram: App Instance Infrastructure Deployment.

1. Create an App Instance: A new App Instance is created in the Network
Manager with the status set to to_create. This indicates that the infrastruc-
ture for the app instance still needs to be provisioned.

2. Trigger SyncInfrastructureJob: The SyncInfrastructureJob is manually
triggered or scheduled to run. This job fetches the latest Terraform configu-
ration file from the GitLab repository associated with the app release.

3. Merge Terraform Variables: The job merges the necessary Terraform vari-
ables from various sources:

• App Instance Infrastructure Settings: These settings are specific to the
app instance and define the infrastructure requirements, such as the de-
ployment type, resource configuration, and networking setup.

• Env-Wide Settings: These settings apply to all app instances within a
particular environment and may include overarching configurations like
region, availability zone, and external dependencies.

• Infrastructure Generated Data: These data elements are generated dur-
ing the infrastructure provisioning process and may include instance IDs,
IP addresses, and other unique identifiers.

• Container Image and Hostnames: These values specify the container im-
age to deploy and the hostnames for the application instances.

43

Chapter 2

4. Fetch Kubernetes Configuration: The job fetches the Kubernetes con-
figuration (kubeconfig file) for the cluster associated with the app instance.
This file is necessary to connect to the cluster and manage the application
resources.

5. Initialize Terraform: Terraform is initialized, which sets up the working
directory and configures Terraform to use the backend configuration. The
backend configuration specifies where Terraform stores state information about
the infrastructure.

6. Select Terraform Workspace: The job selects the Terraform workspace
corresponding to the app instance’s ID. This ensures that changes are applied
to the correct environment and avoid conflicts with other deployments.

7. Generate Terraform Plan: A Terraform plan is generated, which describes
the changes that will be made to the infrastructure. This plan includes the
resources that will be created, updated, or destroyed.

8. Apply Terraform Plan: The generated Terraform plan is applied to the
infrastructure. This process makes the actual changes to the cluster, creating
or updating the necessary resources.

9. Update App Instance Status: Upon successful completion of the Ter-
raform plan application, the app instance’s status is updated to reflect the
successful creation or update of the infrastructure. This indicates that the
app is ready for use.

10. Handle GitLab Repository Changes: If there is a change in the GitLab
repository associated with the app release, the SyncInfrastructureJob is trig-
gered again to re-fetch the updated Terraform configuration and apply the
changes to the infrastructure. This ensures that the infrastructure remains
consistent with the latest code changes.

Hence, the deployment process within the LoopOS ecosystem is seamlessly or-
chestrated by the Network Manager, which serves as the central hub for creating,
managing, and coordinating various applications by leveraging the integration with
Rancher and GitLab, enabling a robust Continuous Integration/Continuous Deploy-
ment (CI/CD) pipeline.

In addition, as stated before, the Network Manager can execute code directly to
these instances - Remote Code Execution (RCE). This is achieve due to App In-
stance model having a Rails Concern (extends the methods of certain class) entitled
KubeDeploymentInstanceConcern, that extends the App Instance methods to han-
dle its corresponding Pod. One specific method, is called run_code which executes
the chosen code on the chosen LoopOS Core inside its Kubernetes Pod.

The following detailed breakdown and the accompanying Figure 2.42 provide a com-
prehensive explanation of RCE:

44

Background

Figure 2.42: UML Diagram: Secure Code Execution Flow

1. Retrieve the pod information: The method retrieves the pod information
for the core instance which returns the Kubernetes pod object for the core
instance.

2. Prepare the commands: The method splits the provided code string into
individual commands and escapes any special characters that could cause is-
sues when running the commands in the Kubernetes pod.

3. Execute the commands: The method executes the commands by first storing
them in a file to prevent command injection attacks and then using the rails
runner command to execute the commands stored in the file.

4. Check for success: The method checks if the execution of the commands
was successful by searching for a special secret string that was included in the
code. If the secret string is found, the method returns true, indicating that
the code execution was successful. Otherwise, it returns false.

In conclusion, not also is it possible to manage and deploy App Instances to Kuber-
netes it is also possible to execute code in any LoopOS Core instances, while also
employing mitigation strategies to minimize the risk of command inject attacks by
storing commands in a file to prevent direct execution by the Kubernetes pod, using
rails runner to execute the commands in a controlled Rails application environment,
escaping special characters before storing the commands to prevent misinterpreta-
tions and checking for success using a secret string in the output to ensure command
integrity.

45

Chapter 2

2.4.2 Security

Authentication involves verifying the identity of a person or entity to ensure that
they are who they claim to be. Authorization, conversely, entails granting permission
to a person or entity to perform a specific action or access a particular resource [32].

Different mechanisms exist for authenticating applications and individual users within
the LoopOS ecosystem. This is a common practice in systems where both appli-
cations and users need to access resources, and different authentication flows are
tailored to the specific needs of each entity.

It is important to note that both processes involve the validation of credentials by
the Network Manager before granting access tokens. The access tokens serve as a
form of authorization for the client application to access specific resources within
LoopOS.

LoopOS utilizes two distinct authentication flows: one for Apps Authentication and
the other for Users Authentication. LoopOS implements the Client Credentials Flow
Pattern for Apps Authentication, a standard OAuth2.0 flow for authenticating client
applications [24]. An illustration of this process is present in Figure 2.43.

Figure 2.43: Authentication Flow in LoopOS App Authentication [16].

1. When an application wants to authenticate with LoopOS for accessing re-
sources, it sends its credentials, including the client_id and client_secret,
directly to the authorization server (Network Manager) over a secure channel
(HTTPS).

2. The authorization server validates the client credentials and generates an ac-
cess token if they are valid.

3. Once the access token is generated, the authorization server sends it back to
the client application.

The client application then includes this access token in its requests to LoopOS to
access protected resources as proof of the client application’s identity and permis-
sions.

LoopOS verifies the access token in incoming requests from client applications. It
checks the integrity and authenticity of the token and decodes the token to extract
information about the client application and its permissions.

46

Background

The Network Manager lists all applications and their respective client_id and client_se-
cret, so when it receives them, it can validate the applications. Assignment of the
client_id and client_secret is done manually. However, in the future, this will be
done automatically by the Network Manager.

On the other hand, LoopOS employs the Password Grant Type Pattern, a standard
OAuth2.0 flow for Users Authentication[23]. The following are the steps required
for user authentication, and an illustration of this process is present in Figure 2.44.

Figure 2.44: Authentication Flow in LoopOS User Authentication [16].

1. When a user wants to authenticate with LoopOS, the client application collects
the user’s credentials, which include a username and password.

2. The client application then securely sends the user’s credentials to the autho-
rization server (Network Manager) over a protected channel.

3. The authorization server validates the user’s credentials. The authorization
server issues an access token to the client application if the credentials are
valid. The access token contains information about the authenticated user
and their permissions.

47

Chapter 3

State of the Art

Effectively orchestrating and managing users, partners, and applications is essen-
tial for success in the LoopOS ecosystem. The Network Manager plays a pivotal
role in this orchestration. This State of the Art delves into the user, partner, and
application management, drawing comparisons between the Network Manager and
other leading platforms. By identifying strengths and areas for improvement, I
aim to comprehensively outline the Network Manager’s capabilities and establish a
foundation for enhancing them to meet this thesis objectives.

3.1 User Management

Comprehensive user management is crucial to orchestrate an ecosystem with such a
distributed architecture and diverse user base, as many different users and applica-
tions need to interact with the system.

The Network Manager achieves this by providing a structured and efficient frame-
work for managing user access, permissions, and settings using Users, User Groups,
and App Scopes.

However, to implement a comprehensive solution for user management, it is crucial
to analyze the Network Manager’s user management capabilities by comparing them
to other software solutions.

For this analysis, I chose Human Resources (HR) management software solutions.
While these management tools primarily focus on employee management, the capa-
bilities embedded within these solutions provide a relevant benchmark for evaluating
the Network Manager user management system, access control, user monitoring, and
self-service portals.

The following HR management software solutions have been selected for comparison:

• BambooHR [7]: HR platform offering a comprehensive suite of features,
including access control, performance management, and engagement tools.

• Gusto [37]: Payroll, benefits, and human resource management software com-

48

State of the Art

pany that provides businesses with a comprehensive suite of tools to manage
their employees.

• Leapsome [48]: A versatile people management platform encompassing per-
formance management, employee engagement, development and recruiting.

• 15Five [1]: A goal-setting and progress-tracking platform that facilitates goal
setting, progress tracking, feedback exchange, team alignment, and communi-
cation.

An analysis of these software solutions compared to the Network Manager revealed
the following:

In terms of access control, all software solutions have access control features that are
simpler than the Network Manager’s. The Network Manager has a more compre-
hensive granular access control system based on roles, permissions, and user states
and includes user-specific and group-based access. This system grants permissions
to the apps a user can access and their actions within those apps. However, a gap
in its access control system is the lack of any granular access control to the pages
on the Network Manager itself.

Concerning user management, all software solutions offer user creation, modification,
and termination. However, most software solutions provide a survey for users to
complete when their accounts are terminated.

Regarding self-service portals, the only features standard to the other software so-
lutions missing from the Network Manager are a place in the user profile to leave
feedback for their Partner and/or PartnerGroup to review. This feature could be
beneficial to implement in the Network Manager.

Finally, all these platforms provide user analytics. In the Network Manager case,
this feature could provide insights into user behavior, such as which applications are
frequently used and where the user encounters most difficulties.

In conclusion, all five platforms offer customizable user management features to
adapt to the unique needs of different organizations. However, the Network Man-
ager’s ability to define and assign permissions across multiple applications and its
support for user groups and settings inheritance provides a more granular and flex-
ible approach to user management. However, the Network Manager lacks access
control in its pages, user feedback collection, and user analytics. These additional
features could further enhance the Network Manager’s user management capabilities
and make it an even more comprehensive solution.

3.2 Partner Management

Partner Management is pivotal to ensure the seamless operation of the LoopOS
ecosystem. With so many Partners, it is essential to implement an effective Partner
management that covers all their needs.

49

Chapter 3

However, similar to user management, to implement a comprehensive solution for
partner management, it is crucial to analyze the Network Manager’s approach by
comparing them to other software solutions.

For this analysis, I chose partner management software solutions to support busi-
nesses in building and managing successful partner ecosystems, considering these
benchmarks: partner onboarding, partner collaboration, partner performance track-
ing, and service-linking. The chosen management solutions were:

• Salesforce Partner Management [61]: A specialized platform for man-
aging partner relationships, encompassing deal registration, lead sharing, and
co-marketing initiatives.

• Zoho Partner Portal [74]: A platform designed for onboarding and manag-
ing partners, fostering collaboration and communication through a dedicated
portal.

• PartnerStack [50]: A platform that streamlines the management and au-
tomation of partner programs, covering recruitment, onboarding, and com-
pensation.

• Impact [41] : A platform for managing and tracking affiliate marketing
programs, enabling campaign optimization and performance analysis.

An analysis of these software solutions compared to the Network Manager revealed
the following:

Partner Onboarding is currently not implemented in the Network Manager. This
feature would allow partners to create their own accounts and begin using the system
without waiting for an administrator to approve their requests. While the aforemen-
tioned platforms offer different onboarding approaches, the Network Manager could
implement standard onboarding features, such as a task list for partners to complete
and open-ended feedback collection through polls. Figure 3.1, available in Gusto’s,
a solution from the previous section, is an example of this implementation.

Figure 3.1: Gusto’s customizable onboarding tasks [36].

50

State of the Art

Partner collaboration is a key feature of all four platforms. However, the Network
Manager should not implement all partner collaboration features available on other
platforms, as this is not its main goal. Instead, the Network Manager should focus on
implementing the ability for partners to share information with each other. Partners
should be able to decide which other partners and/or partner groups can access their
information, including shipping and invoice documentation.

Partner performance tracking is a complex feature implemented in all four plat-
forms. However, the Network Manager should take a more straightforward, focused
approach to tracking partner performance. The Network Manager can provide valu-
able insights into partner performance without overwhelming partners with too much
data by focusing on trends such as user acquisition, application usage, revenue, and
customer satisfaction. Partners should be able to control which data is shared with
their partner groups.

The Partner should be able to see it consumptions by tracking and logging the
usage of various services, items, or resources offered by LoopOS to the partner, its
Payments for availing LoopOS services or any other payment-related activities. This
could include subscription fees, usage charges, service fees, or any other financial
transactions between the partner and LoopOS. The Partner should also be able
to add and see any relevant documents or files associated with a partner within
the LoopOS platform. These documents could include contracts, agreements, legal
documents, certificates, or other files specific to the partner.

Regarding Service Linking, the Network Manager also provides a unique ability
to provide services from various areas and apply them to available applications
immediately. This makes it a powerful tool for businesses that need to rapidly
deploy and manage various services. Once a service has been provisioned, it can
be immediately applied to any application in the LoopOS ecosystem. It provides a
comprehensive framework for service linking, which includes Auth, Email, Shipping,
Invoice, Incoming and Outgoing Payments. This automation eliminates the need
for manual integration, however, services can be added per request of the partners.
For example, the CTT - Correios de Portugal [22] authentication service was added
to the available authentication services as per the request of this company.

Finally, although the aforementioned platform offers a complete list of possibilities
within these services, the Network Manager will expand its service-linking capabili-
ties with more services in the future.

3.3 App Management

App Management is a critical component of the Network Manager, essential for the
seamless operation of the LoopOS technological ecosystem, enabling a robust and
reliable environment for LoopOS applications.

For this analysis, I chose cloud-based software platforms to deploy and manage
applications, considering these benchmarks: centralized management, deployment,
monitoring, scaling, and performance. The chosen platforms were:

51

Chapter 3

• Heroku [39]: A cloud-based platform tailored for building, deploying, and
managing apps, offering a broad range of language support and flexible scaling
options.

• Azure App Service [6]: Microsoft’s platform for building and managing
web apps and services, providing integrated development tools and automated
scaling capabilities.

• Google App Engine [13]: Google’s platform for building and running web
apps on Google’s infrastructure, leveraging automatic scaling and load bal-
ancing.

• Amazon Web Services Elastic Beanstalk [62]: A platform designed for
deploying and managing web apps on AWS, simplifying resource provisioning
and scaling.

An analysis of these software solutions compared to the Network Manager revealed
the following:

The Network Manager employs Rancher and Kubernetes for deploying and over-
seeing its applications, ensuring high performance, dynamic scaling, and automated
deployment, aligning with the capabilities of other platforms. Nevertheless, in terms
of monitoring, the Network Manager currently lacks more advanced monitoring fea-
tures.

The key distinction lies in the primary objective of the Network Manager’s appli-
cation deployment compared to these platforms. Instead of facilitating user-desired
applications, the Network Manager focuses on deploying predefined applications
(LoopOS Handling, LoopOS Validation, etc.). This deployment is tailored to part-
ners’ specific needs, emphasizing inter-communication and security among these
applications.

In conclusion, the Network Manager stands out as a robust system, leveraging
Rancher and Kubernetes to offer application management similar to other plat-
forms. While there is room for enhancement in monitoring features, the Network
Manager’s unique strength lies in its specialized approach to application deploy-
ment. It prioritizes deploying pre-defined applications that are custom-tailored to
meet partners’ specific needs.

3.4 Conclusion

The Network Manager distinguishes itself as a comprehensive and specialized solu-
tion within the LoopOS ecosystem. While other platforms excel in specific aspects
of user management, partner management, and app management, none fully en-
compass the unique combination of features provided by the Network Manager. Its
granular user management capabilities, focused partner collaboration features, and
specialized approach to deploying predefined applications set it apart. Table 3.1
summarizes this unique combination.

52

State of the Art

Table 3.1: State of the Art conclusion comparison.

Platform User Management Partner Management App Management
Network
Manager 4 4 4

BambooHR 4 6 6

Gusti 4 6 6

15Five 4 6 6

Salesforce
Partner
Manage-
ment

6 4 6

Zoho Part-
ner Portal 6 4 6

Partner-
Stack 6 4 6

Heroku 6 6 4

Azure App
Service 6 6 4

Google App
Engine 6 6 4

Ama-
zon Web
Services
Elastic
Beanstalk

6 6 4

Analyzing the Network Manager’s capabilities compared to relevant software solu-
tions has provided valuable insights into its strengths and areas for potential im-
provement.

The Network Manager provides a granular and flexible approach to access control,
permissions, and settings using Users, User Groups, and App Scopes in user manage-
ment. While it outperforms HR management software solutions in certain aspects,
it can benefit from incorporating access control in its pages, user feedback collection,
and user analytics to enhance its overall user management capabilities.

Partner management within the Network Manager also demonstrates strong capa-
bilities, particularly in service-linking, where it offers a comprehensive framework
for linking various services to applications seamlessly. However, further enhancing
its partner features, such as seeing its relevant documents, partner consumption,
adding partner onboarding, and simplified partner performance tracking, would fur-
ther elevate the Network Manager’s effectiveness in managing its extensive partner
ecosystem.

Regarding app management, although the Network Manager’s unique strength lies
in its specialized approach to deploying predefined applications tailored to the spe-
cific needs of partners, its monitoring features should be enhanced. For example,
receiving resource alerts and seeing real-time CPU and memory usage per App In-
stance.

53

Chapter 3

In conclusion, the Network Manager is a robust and flexible system, offering a dis-
tinct set of capabilities contributing to the LoopOS ecosystem’s seamless operation.
However, certain areas demand improvement, particularly in Partner Onboarding,
Application Monitoring, and overall User Experience. While not explicitly addressed
in a dedicated section, the inability of Partners and Users to intuitively navigate the
Network Manager renders the provision of new features largely ineffective. The quick
development of the Network Manager through the use of AVO came at the expense
of usability. This approach may have sufficed during the initial developer-centric
phase, but as Partner and User adoption increases, the application must prioritize
user-friendliness, intuitiveness, and ease of use.

Chapter 4 - Requirements and Risks will address the identified areas for improve-
ment. It will define the actors involved, translate the necessary improvements into
user stories and requirements, and prioritize them based on urgency and feasibility
within the scope and time frame of this thesis.

54

Chapter 4

Requirements & Risk Analysis

Unlike the other LoopOS applications, only one instance of the Network Manager
runs at any given time. This instance is responsible for coordinating all the other
instances of different applications. This uniqueness requires careful planning of new
releases and almost complete backward compatibility. in the first semester of this
thesis occured an initial elicitation of actors, user stories, and requirements that was
split into two cycles - version one (v1) & version two (v2) - encompassing planning,
developing, and testing. However, due to the nature of the Agile methodology
implemented, the project’s objectives became more clear during the second semester
of this thesis. Actors, User Stories, and Functional Requirements identified in the
first semester of this thesis will be presented in the Appendix to minimize verbosity
while Risks and Non-Functional Requirements have been completely changed.

It should be noted that some requirements, such as creating Partner Documents,
Partner Consumptions, and Partner Payments, could not be met. Other, such as
Templates and Self-Onboarding, were achieved by creating the LoopOS Onboarding
Application and the creation of a Boilerplate Script.

As such, I decided it was necessary to create new Functional and Non-Functional
Requirements, with new ways to be tested, new User Stories and new Risks. I also
divided these into two: LoopOS Onboarding and LoopOS UI, since these were the
two main focuses of development.

Starting with LoopOS Onboarding, its primary objective was to facilitate the on-
boarding of partners, encompassing individual partners with no established connec-
tions to other companies, who would be presented with LoopOS’s default settings
and companies onboarding to use the services of a company they were already col-
laborating with. A real-world example of this application was CTT - Correios de
Portugal [22], who sought to employ LoopOS to manage its packages. To accomplish
this, they aimed to onboard partners who would employ their transportation ser-
vice (e.g., clothing stores handling returns through CTT) by having them complete
specific settings, such as the address of the comapny the product would be returned
to.

As the Onboarding App development neared completion, the Network Manager
project took a new direction, prioritizing a full-scale User Experience (UI) overhaul.

55

Chapter 4

This shift prompted the creation of a Rails Engine (LoopOS UI) to manage the front-
end aspects of not only the Network Manager but also all LoopOS applications. This
Engine centralizes common styles, scripts, and assets, thus becoming a single source
of truth in front-end development and allowing individual apps to focus on their
unique components. Each app instantiates this Engine, a central hub for accessing
any required component by requesting its corresponding builder. For example, the
Network Manager can swiftly obtain a sidebar using the provided code snippet in
Listing 4.1. Here, top_menu and bottom_menu are arrays of hashes containing
sidebar items and their associated subitems:
<%= render LooposUi::SidebarLayoutComponent.new do |

component| %>
<% component.top_sidebar(menu: top_menu) %>
<% component.bottom_sidebar(menu: bottom_menu) %>

<% end %>

Listing 4.1: Network Manager Sidebar using LoopOS UI sidebar builder.

Any changes to the overall UI can be implemented directly in LoopOS UI, en-
suring consistency across all applications. This streamlined approach is enabled by
adopting Continuous Integration/Continuous Delivery (CI/CD) practices, which au-
tomatically propagate code updates from the Git repository into the Engines within
each app.

Hence, the subsequent sections will detail the Actors, User Stories, and Functional
and Non-Functional Requirements implemented, Restrictions and Risks for both the
LoopOS Onboarding and LoopOS UI.

4.1 Actors

The following are the actors identified for the LoopOS Onboarding and LoopOS UI.

y LoopOS Onboarding

v Partner Group: A company which will manage its Partner through LoopOS.

v Partner: A company that will use LoopOS to manage its returns using the
services belonging to its affiliated PartnerGroup.

y LoopOS UI

v App Developer: A developer that will use LoopOS UI to implement layouts
and components in their respective applications.

Similar to the following sections, the actors elicited in the intermediate defense are
present in the appendix.

56

Requirements & Risk Analysis

4.2 User Stories

Understanding the motivations and needs of various actors is crucial for the success-
ful development of any project. User stories thus provide a valuable framework for
capturing requirements and understanding and communicating the intended out-
comes.

Based on the actors mentioned in the previous section, the following user stories
will be structured: “As a [actor], I [want to], [so that]” [17]. As before, the user
stories planned for the intermediate defense are split into two versions (v1 & v2)
and are in the appendix to demonstrate how the project and the thesis evolved. The
following will present the User Stories for the applications I developed during this
thesis:

y LoopOS Onboarding

• As a Partner Group, I want to customize the Onboarding landing page with
my brand’s logo, colors, and styles, so that I can provide a branded and
engaging onboarding experience for my Partners.

• As a Partner Group I want to define which settings I want my Partners to
fill in during its Onboarding process, so that I can streamline the onboarding
experience and ensure that essential information is captured,

• As a Partner Group, I want to have my services available in the applications
by Partners create, so that they can deploy their business logic with my
services

• As a Partner, I want to have the option to access the Onboarding app
in multiple languages, including English and Portuguese, so that I can my
experience can be tailored to my preferences.

• As a Partner, I want to register on the Onboarding platform by providing
necessary information such as my brand’s name, logo, and user-specific details,
so that I can have my own identity within the system.

• As a Partner, I want to select from a list of tailored boilerplates representing
specific business logic, so that I can ensure the apps chosen align with my
brand’s requirements.

• As a Partner, I want to be informed about the progress of app creation
through a dedicated wait page, so that I know my environment is being
created.

57

Chapter 4

• As a Partner, I want to receive an email notification upon successfully com-
pleting the onboarding process, so that I can have a seamless transition to
using the newly created apps.

• As a Partner, I want to access a list of newly created apps after complet-
ing the onboarding process, so that I can easily navigate and use my new
applications.

y LoopOS UI

• As an App Developer, I want to seamlessly integrate the LoopOS UI Engine
into my application, so that I can leverage its features to enhance the user
interface of my application without extensive development effort.

• As an App Developer, I want to support a progressive implementation ap-
proach for rendering components, so that I can gradually integrate LoopOS
UI into my application, making the adoption process more flexible and man-
ageable.

• As an App Developer, I want to dynamically implement sidebars using
LoopOS UI, so that I can customize the layout and navigation of my appli-
cation based on specific requirements and user preferences.

• As an App Developer, I want to dynamically implement the header of show
pages using LoopOS UI, so that I can create a consistent and aesthetically
pleasing user interface for displaying the header of individual pages.

• As an App Developer, I want to dynamically implement the content of
show pages using LoopOS UI, so that I can have flexibility in presenting and
arranging content on individual pages.

• As an App Developer, I want to dynamically implement the header of index
pages using LoopOS UI, so that I can ensure a uniform and engaging design
across pages displaying lists or collections.

• As an App Developer, I want to dynamically implement the content of
index pages using LoopOS UI, so that I can efficiently design and structure
the content presentation on pages displaying lists or collections.

4.3 Functional Requirements

The literature on requirements has many definitions of functional requirements or
quality attributes. This thesis will focus on the definition of “Software Engineering”

58

Requirements & Risk Analysis

by Software Engineer Professor Ian Sommerville, which states: “statements of the
services that the system must provide or are descriptions of how some computations
must be carried out.” [63].

Additionally, prioritization is crucial regarding requirements, so when it comes time
to implement them, it is essential to understand which ones take precedence. Priori-
tization helps ensure that the most critical requirements are addressed first, allowing
the development to focus the efforts and resources effectively. The MoSCoW method
based on the book “DSDM, Dynamic Systems Development Method” by Jennifer
Stapleton [64] will be used to accomplish this.

MoSCoW is a simple method of prioritization that can be used to divide the re-
quirements into four categories:

- Must: Non-negotiable needs for the project. Mandatory.

- Should: Essential to the product, project, or release, but they are not vital.
If left out, the product or project still functions. However, the initiatives may
add significant value.

- Could: Nice to have, but not necessary to the core function of the product.

- Will not have (this time): Not a priority for the project’s current time-
frame.

The requirements are split into the features that each actor can use. A unique
ID identifies each requirement, its actor, and its version. The following are the
fundamental functional requirements identified during the requirements elicitation
phase, which in turn shaped how these features were planned and developed:

y LoopOS Onboarding

PartnerGroup Requirements:

FR1 (Should Have): The PartnerGroup should be able to customize the
Onboarding landing page with their brand’s logo, colors, and styles.

FR2 (Must Have): The PartnerGroup should be able to define which set-
tings they want their Partners to fill in during the onboarding process.

FR3 (Must Have): The PartnerGroup should be able to provide their Part-
ners with their services created in LoopOS.

Partner Requirements:

FR4 (Must Have): The Onboarding app should be accessible in multiple
languages, including English and Portuguese.

59

Chapter 4

FR5 (Must Have): Partners should be able to register on the Onboarding
platform by providing necessary information such as their brand’s name, logo,
and user-specific details.

FR6 (Should Have): Partners should be able to select from a list of tailored
boilerplates representing specific business logic, generating from App Instances
to LoopOS Flows.

FR7 (Could Have): Partners should be informed about the progress of app
creation through a dedicated wait page.

FR8 (Must Have): Partners should receive an email notification upon suc-
cessfully completing the onboarding process.

FR9 (Should Have): Partners should be able to access a list of newly created
apps after completing the onboarding process.

y LoopOS UI
App Developer Requirements:

FR10 (Must Have): Enable App Developers to seamlessly integrate the
LoopOS UI Engine into their applications.

FR11 (Must Have): Support a progressive implementation approach for
rendering components.

FR12 (Must Have): Provide App Developers with the ability to dynami-
cally implement sidebars using LoopOS UI.

FR13 (Should Have): Provide App Developers with the ability to dynam-
ically implement the header of show pages using LoopOS UI.

FR14 (Could Have): Provide App Developers with the ability to dynami-
cally implement the content of show pages using LoopOS UI.

FR15 (Could Have): Provide App Developers with the ability to dynami-
cally implement the header of index pages using LoopOS UI.

FR16 (Could Have): Provide App Developers with the ability to dynami-
cally implement the content of index pages using LoopOS UI.

Similar to the previous sections, to demonstrate how the project and the thesis
evolved, the requirements planned for the intermediate defense are present in the
appendix.

60

Requirements & Risk Analysis

4.4 Non-Functional Requirements

The literature on requirements has many definitions of non-functional requirements
or quality attributes. As before, this thesis will focus on the definition in “Software
Engineering” (2016) by Professor Ian Sommerville, which states: Non-Functional
Requirements “often constrain the system being developed and the development
process used. These might be product requirements, organizational requirements,
or external requirements. They often relate to the system’s emergent properties and
apply to the system as a whole” [63].

This section will outline the non-functional requirements identified for the LoopOS
UI and LoopOS Onboarding, following the structure presented in Figure 4.1:

Figure 4.1: Non-Functional Requirements Scenario Diagram [8].

• Source of stimulus: This is some entity (a human, a computer system, or
any other actuator) that generated the stimulus.

• Stimulus: The stimulus is a condition that needs to be considered when it
arrives at a system.

• Environment: The stimulus occurs within certain conditions. The system
may be overloaded or running when the stimulus occurs, or another condition
may be true.

• Artifact: Some artifact is stimulated. This may be the whole system or some
pieces of it.

• Response: The response is the activity undertaken after the arrival of the
stimulus.

• Response measure: When the response occurs, it should be measurable in
some fashion so that the requirement can be tested.

This section, will only present the non-functional requirements identified as the
highest priority and crucial for adequately implementing the desired system within
the scope of this Thesis.

61

Chapter 4

While some non-functional requirements may overlap, similar to the previous sec-
tions, I will divide them into LoopOS UI and LoopOS Onboarding due to being two
separate pieces of software with distinct testing approaches.

y LoopOS Onboarding

Availability: the state in which a system remains free from failure, ensuring its users, be it
humans or other systems, experience uninterrupted functionality and avoid the associated
consequences.

• The LoopOS Onboarding should be resilient to failures, with measures in place to
handle errors gracefully and prevent data loss or corruption.

Table 4.1: Availability - Resilience to Failures.

Source of stimulus System event (e.g. software error)
Stimulus A failure occurs within the LoopOS Onboarding.
Environment The system is running and serving users.
Artifact The LoopOS Onboarding system components (software).

Response The LoopOS Onboarding should be resilient to failures, with
measures in place to handle errors gracefully and prevent data
loss or corruption.

Response measure Application downtime.

Akin to other LoopOS applications, LoopOS Onboarding is deployed using Rancher. This
orchestration platform employs Prometheus and Grafana to monitor its clusters [54].

v Prometheus:
An open-source monitoring platform specifically designed for containerized work-
loads. Records real-time metrics in a time series database, enabling flexible queries
and real-time alerting. It is commonly used for monitoring Kubernetes clusters and
offers powerful features for managing and analyzing containerized environments [52].

v Grafana:
Allows the creation of observability dashboards using various data sources, includ-
ing metrics from Prometheus. It provides a flexible and customizable interface for
visualizing and analyzing data, making it suitable for monitoring and tracking user
and application behavior, including error types and frequencies [34].

DigitalOcean [27], a cloud computing platform that hosts LoopOS, recommends for critical
workloads that require high availability to have an uptime of 99.95% [26]. This translates
to allowed downtime/unavailability periods with an average of 22 minutes per month.
After completing the LoopOS Onboarding, this requirement will be tested passively by
using Prometheus for the following months until the delivery of this thesis.

The success case for this requirement will be an average monthly downtime equal to or
lower than 22 minutes.

62

Requirements & Risk Analysis

Performance: the timely response of a system to various events arising from multiple
sources, where resource consumption fulfills service requests amidst concurrent servicing.

• The LoopOS Onboarding should have fast response times, providing a seamless user
experience and minimize delays in loading pages or executing tasks.

Table 4.2: Performance - Fast Response Times.

Source of stimulus User
Stimulus The user interacts with the LoopOS Onboarding, such as load-

ing pages or executing tasks.
Environment The system may have varying levels of user concurrency and

data loads.
Artifact The LoopOS Onboarding interface and underlying system

components (e.g., api calls).

Response The LoopOS Onboarding should have fast response times,
providing a seamless user experience and minimizing delays
in loading pages or executing tasks.

Response measure Page load time

The LoopOS Onboarding will depend highly on Application Programming Interface (API)
calls to obtain and transmit the information required from and to the Network Manager.
These API calls can be highly costly if not performed correctly for user wait time and the
Network Manager resource consumption. Hence, the LoopOS Onboarding should imple-
ment measures such as effective caching strategies to reduce the load on the underlying
infrastructure and improve response times.

The average page load time in 2023 is 2.5 seconds on desktop [67] [49] [60]. However, this
number can vary widely depending on the type of website, the user’s location, and the
internet connection speed.

Since Rancher employs optimized load balancing, these tests can be performed without
additional traffic (load) on the system.

To assess the loading times of the web pages within the platform, the Development Tools
of the Firefox browser can be employed, effectively capturing the overall loading duration
of each page. This testing will be conducted on all LoopOS Onboarding pages post-
completion, encompassing 20 measurements per page. The final outcome will be derived
by averaging these measurements.

The success case for this requirement will be an average page load equal to or lower than
2.5 seconds.

y LoopOS UI

Performance: the timely response of a system to various events arising from multiple
sources, where resource consumption fulfills service requests amidst concurrent servicing.

• The LoopOS UI should have fast response times, providing a seamless user experi-
ence and minimize delays in loading pages or executing tasks.

63

Chapter 4

Table 4.3: Performance - Fast Response Times.

Source of stimulus User
Stimulus The user interacts with the LoopOS UI, such as loading pages

or executing tasks.
Environment The system may have varying levels of user concurrency and

data loads.
Artifact The LoopOS UI interface and underlying system components

(e.g., components and assets).

Response The LoopOS UI should have fast response times, providing
a seamless user experience and minimizing delays in loading
pages or executing tasks.

Response measure Page load time

LoopOS UI will change how the application is deployed to handle components, but it
should not significantly add add more load time to the pages.

The testing of this requirement will follow a similar approach of LoopOS Onboarding.
The testing will be conducted on all implemented Network Manager pages, encompass-
ing 20 measurements per page. The final outcome will be derived by averaging these
measurements.

The success case for this requirement will be an average page load equal to or lower than
2.5 seconds.

Security: encompasses the system’s capacity to withstand unauthorized usage while en-
suring uninterrupted service delivery to authorized users.

• The LoopOS UI should have role-based access controls.

Table 4.4: Security - Role-Based Access Controls.

Source of stimulus User (administrator)
Stimulus The administrator configures access permissions for different

user roles within the LoopOS UI system.
Environment The system is running, and administrative actions are being

performed.
Artifact The access control mechanisms within theLoopOS UI system.

Response The LoopOS UI should have role-based access controls, al-
lowing administrators to define fine-grained permissions for
different roles.

Response measure User Scopes.

LoopOS UI should add the ability to control which pages the user can access depending
on its role. Users should be able to access its partner profile page, for example.

One possible way to implement this requirement is by using Pundit [53]. A minimal autho-
rization through object-oriented design and pure Ruby classes, that would allow LoopOS
UI to verify whether a user is authorized to perform specific actions, such as creating,
editing, or deleting resources, and restrict user access to specific views or components
based on their permissions.

64

Requirements & Risk Analysis

The success case for this requirement will be that users can access the proper pages
and perform authorized actions based on their roles, enhancing the overall security and
usability of the LoopOS UI.

4.5 Restrictions

The Loop Co. placed certain restrictions upon my work to follow company policies and
better integrate with the system already in place.

This means that all my work will be conditioned to the use of Ruby on Rails and the
company’s desired gems (libraries like Rubocop [9] to enforce consistent code style and
detect potential issues) as well as the use of Clickup for management, Microsoft Teams
for communication and Visual Studio Code due to also having extensions used by the
company.

4.6 Risk Analysis

As stated in “Risk analysis and management: a vital key to effective project management”
[47]: “While we can never predict the future with certainty, we can apply a simple and
streamlined risk management process to predict the uncertainties in the projects and
minimize the occurrence or impact of these uncertainties. (...) This improves the chance
of successful project completion and reduces the consequences of those risks.”

In this section, by applying robust risk management processes, we delve into the funda-
mental aspects of risk management, focusing on Risk Identification (Subsection 4.6.1),
Risk Analysis (Subsection 4.6.2) and Risk Planning (Subsection 4.6.3) as can be seen in
figure 4.2.

Figure 4.2: Risk Management Process [63].

4.6.1 Risk Identification

The Risk Identification present in this thesis will focus on the paper “Taxonomy-Based
Risk Identification” [11] since most of the literature uses it as a basis for risk management
models.

65

Chapter 4

The paper groups different risk sources into diverse categories and provides a question-
naire called TBQ (Taxonomy-Based Questionnaire) that allows for performing a system-
atic identification process. This involves breaking down the system, being analyzed into
its parts, and examining each piece for potential risks. Presenting this questionnaire to
multiple project members facilitates the identification of risks.

However, the full implementation of this questionnaire would be out of the scope of this
thesis. Hence, the risk identification will consider only the main aspects of the taxonomy
defined by the authors:

• Product Engineering: The technical aspects of the work to be accomplished.

• Development Environment: The methods, procedures, and tools used to pro-
duce the product.

• Program Constraints: The contractual, organizational, and operational factors
within which the software is developed but which are generally outside of the direct
control of the local management.

To be easily identified in further sections, each risk presented will have a code that will
follow the pattern: R - #risk_number:

[R-1] Requirements: Incomplete or unclear requirements leading to incorrect imple-
mentation or unsatisfied customer needs.

[R-2] Requirements: Infeasible requirements that cannot be implemented within the
available resources or technology constraints.

[R-3] Code and Unit Test: Poor coding practices that make the code difficult to main-
tain or modify.

[R-4] Development Process: Insufficient product control leading to deviations from
the original project scope.

[R-5] Development System: Lack of experience.

[R-6] Work Environment: Communication breakdowns leading to misunderstandings
and missed deadlines.

[R-7] Resources: Tight schedule leading to potential quality issues or delays due to
balancing the internship and university work.

[R-8] Development Halt: Company’s need to allocate resources to other parts of LoopOS
may lead to delays.

[R-9] Changes in Planning: Changes in the way of accomplishing objectives may lead
to overall changes in the thesis (Objectives, State of the Art, Requirements, etc.).

4.6.2 Risk Analysis

Once risks are identified, it is possible to conduct a rigorous risk analysis to assess each
risk’s likelihood and potential impact. This analysis will allow us to make informed deci-
sions about risk treatment strategies, considering factors such as cost-benefit.

66

Requirements & Risk Analysis

This thesis follows the proposed metrics from “Risk analysis and management: a vital
key to effective project management” [47], which classify risks based on their rating and
probability. The rating of a risk reflects its potential impact on the project, while the
probability reflects the likelihood of the risk occurring. There are three risk ratings or
impact: C (Marginal), B (Moderate) and A (Critical). There are also four probability
levels: low (0% < x < 30%), medium-low (30% � x < 60%), medium-high (60% � x < 80%)
and high (80% � x � 100%). These metrics can be used to assess a project’s overall risk and
prioritize risks for mitigation. Its implementation to the risks identified in the previous
section can be observed in figure 4.3.

Figure 4.3: Risk Matrix [47].

4.6.3 Risk Planning

However, risk analysis alone is insufficient to safeguard against potential threats. Risk
planning is crucial to implementing measures to reduce the probability and impact of
identified risks. It is possible to minimize exposure to this project’s various risks by
effectively mitigating risks.

The mitigation strategies for the risks identified in the first section of this chapter can be
viewed in table 4.5.

67

Chapter 4

Table 4.5: Mitigation strategies for the previous identified risks.

Risk ID Risk Mitigation Strategy
R-1 Perform detailed requirements gathering and analysis, and ensure clear communication

with stakeholders throughout the project.
R-2 Communicate if a requirement seems unlikely to be completed on time, to be reassigned

or be given help.
R-3 Adopt good coding practices and conduct thorough unit testing to ensure code maintain-

ability and ease of modification.
R-4 Establish a well-defined development process that includes robust project control mea-

sures.
R-5 Training on required tools, and leverage experienced team members to mentor.
R-6 Foster a culture of open and effective communication among team members, establish clear

expectations and timelines for deliverables and use communication software or conduct
in-person meetings.

R-7 Prioritize tasks based on their level of importance and urgency and promptly communicate
when these deadlines seem infeasible.

R-8 Aid in the development of other project areas so the development may processed.
R-9 Maintain thorough documentation of the initial thesis focus and any subsequent modifi-

cations. This documentation serves as a reference point, ensuring clarity on its evolution
and the reasons behind each adjustment.

68

Chapter 5

Framework

This chapter will start by outlining the team organization, followed by exploring the
delivery lifecycle employed throughout the development. This chapter will conclude by
presenting the scheduled and achieved timeline of the first semester and second semester
of this thesis.

5.1 Team Organization

A well-structured and coordinated team is essential to execute the project and achieve its
objectives successfully. This section overviews the team members involved in the LoopOS
project and their respective roles and responsibilities.

v Project Owner (PO) - Joana Ribeiro & Ricardo Morgado:
They bear the business responsibility for successful project implementation and are
responsible for gathering user requirements, managing stakeholder expectations, and
ensuring that the developed system aligns with the business goals.

v Chief Technology Officer (CTO) - João Rodrigues:
Plays a crucial role in guiding the technical direction of the project by providing
technical expertise and by leading the decision-making process related to the sys-
tem’s architecture, technology stack, and overall development strategy.

v Product Manager (PM) - Marta Mercier :
Responsible for coordinating the activities of the development team, managing
project timelines and deliverables, and ensuring effective communication among
team members.

v Backend Tech Lead - Daniel Gonçalves:
Leads the development and implementation of the backend infrastructure of the
system, ensuring the delivery of high-quality, scalable, and robust software systems.

v Frontend Tech Lead - Pedro Reis:
Leads the development of the user interface and the client-side functionality, ensur-
ing a cohesive user experience and the successful integration of frontend and backend
components.

69

Chapter 5

v Design Lead - Rafaela Silva:
Focuses on overseeing the design aspects of the project, being responsible for creating
an intuitive and appealing user interface that aligns with user needs and business
requirements, by also working closely with the frontend tech lead to ensure the
design is implemented accurately and effectively.

v Backend Developers:
Under the guidance of the Backend Tech Lead, they are Responsible for implement-
ing server-side logic, database management, and integration with external systems
to provide reliable and scalable backend solutions.

v Frontend Developers:
Under the guidance of the Frontend Tech Lead, they are responsible for implement-
ing the user interface, implementing responsive designs, and ensuring smooth user
experiences in web applications.

v Designers:
Under the guidance of the Design Lead, they are responsible for developing visually
appealing, consistent, and intuitive user-friendly interfaces.

v Intern:
As an intern in this company, my main responsibilities revolve around completing
the objectives of my thesis by the development of the LoopOS Onboarding and
LoopOS UI while also participating in the improvement and testing of other LoopOS
applications, in accordance with the company’s needs.

Collaboration and synergy among team members are vital to the project’s success. Regular
communication, feedback exchange, and shared decision-making enable the team to deliver
a high-quality system that meets the requirements of all stakeholders.

5.2 Delivery Lifecycle & Technologies

Weekly sprint planning is a crucial step in the agile development process, ensuring that the
team is focused on the right tasks and working collaboratively and efficiently. This section
outlines each phase’s phases, task states, weekly overview, and end-state conditions.

To facilitate this process, the company employed two essential tools: ClickUp [12], a com-
prehensive productivity platform used to manage and track tasks for each sprint, and
GitLab[73], a robust software repository management platform that hosted each appli-
cation repository while enabling the creation of Merge Requests. These facilitate the
deployment of branches created for each task into the main branch of each repository.

It is important to acknowledge that the product lifecycle evolved throughout the thesis
development process. Several modifications were implemented to enhance productivity
and overall predictability of the product. One significant change involved forming cross-
functional teams, which I was part of. This structural shift enabled the optimization of
various phases, including the Planning phase. Team members now convene in person to
review and refine each other’s planning efforts collaboratively. Additionally, the Testing
phase was improved by incorporating a “Team review” step, where team members gathered
to review each other’s tasks before they proceeded, enabling earlier detection of potential
issues.

70

Framework

Thus, the current weekly sprint planning process is divided into five phases, encompassing
all company roles. However, there may be slight variations in the execution of these phases.
For instance, some senior Backend Developers may be responsible for deploying the merge
requests to the main branch of the corresponding application repository if approved during
the Execution phase. Hence, the following will detail these phases from my perspective:

1. Backlog Definition: This phase entails identifying and prioritizing the tasks. At
the beginning of developing LoopOS Onboarding and LoopOS UI, I divided the
work into manageable tasks and assigned them appropriate priorities after devising
a plan for each application. These tasks were then split into each sprint.

2. Planning: This phase entails a detailed planning and estimation of all tasks as-
signed to that sprint, encompassing the creation of sub-tasks, defining an execution
plan, identifying potential risks, and formulating two test plans: one for the devel-
opers who will conduct the 1QA testing and another for the Project Owners who
will evaluate it upon its arrival at the Staging review. Since the Project Owners
belong to the business team, their test plan requires less technical planning. Figure
5.1 illustrates the Sidebar Creation task for LoopOS UI with these elements.

Figure 5.1: LoopOS UI - Sidebar Creation: Task in Clickup.

3. Execution: This phase involves implementing tasks, creating Merge Requests,
reviewing team members’ pending merges, and addressing feedback or issues/bugs
that might appear. Figure 5.2 showcases a merge request for the Sidebar Creation
task of LoopOS UI.

71

Chapter 5

Figure 5.2: LoopOS UI - Sidebar Creation: Merge Request in Gitlab.

4. Review: This phase involves performing first-tier quality assurance (1QA) testing
and updating the state to “Team Review” if testing passes or updating the state to
”Issue/Bug” with details if testing fails. In “Team Review” the task is tested again
with the team.

5. Closing: This phase involves launching the final release versions, updating local
development, double-checking release stability by the Project Oweners, and revert-
ing back if issues arise. This phase is usually assigned to Project Managers and
Project Owners.

Tasks are tracked through different states as they move through the sprint phases. Table
5.1 these states in the order they should be followed.

72

Framework

Table 5.1: Task states through sprint lifecycle.

State Description
Backlog In the backlog awaiting prioritization and definition
Planning Being planned and estimated
Pending Waiting for approval or feedback
To Do Ready for implementation

In Progress Actively being implemented
Issue/Bug Task has encountered an issue or bug that needs to be resolved
Pending Waiting for review or approval

MR Review Merge request is awaiting review
MR Ready Merge request is ready for merging
Deploying Being deployed to the test environment

1st QA In first-tier QA testing
1st QA Testing Being tested in the first-tier QA environment
Team review Awaiting review by the team

Ready Ready for deployment to production
Ready for release Ready to be handed over for release

Ready for production Ready for deployment to production
Stg review in staging environment for review

Ready for production Ready for deployment to production

Additionally, each phase has a predefined time slot within the week, as can be seen in
Figure 5.3.

Figure 5.3: Weekly sprint timeline overview.

Finally, to determine the success of each phase in the spring, the following conditions must
be met:

• Planning: All tasks are defined and in a “to-do” state.

• Execution: All tasks in the “1st QA” state.

73

Chapter 5

• Review: Firstly, all tasks in the “team review” state. After “Team Review,” all
tasks are in the “ready” state.

• Closing: All tasks in the “ready for production” state.

With the delivery lifecycle of the product outline, it is possible to advance to the Work
Plan section.

5.3 Work Plan

This section presents the expected and actual plans for the first and second semesters,
taking into account the methodology used, the delivery lifecycle, and the estimated time
required to complete the work.

5.3.1 First Semester

The planning for the first semester of this thesis was as follows:

1. Survey of state of the art in terms of microservices and authentication/authorization
solutions and multi-application system management.

2. Identification and analysis of project requirements and constraints.

3. Study of application development in Ruby on Rails.

4. Drafting of the development plan.

5. Monitoring the UI/UX team on the development of UI mockups for the modules to
be developed.

6. Preparation for the intermediate defense.

Out of all the mentioned points, the only unfinished task was the collaboration with the
UI/UX team.

There was also some development of the Network Manager. The focus was creating and
updating models, databases, and visualization components using Avo [4], a Ruby on Rails
gem. Improvements were made to the Partner Model and User Model, including intro-
ducing new AVO resources, controllers, and policies.

Additionally, the UserGroup Model was implemented alongside its corresponding avo
components. Substantial progress was also made in developing the Cluster module and
AppManagement module, which involved creating essential models such as AppScope,
AppRelease, and AppInstance, all supported by avo resources, controllers, and policies.
Collectively, these updates significantly improved the overall functionality of the Network
Manager.

Finally, the combination of both charts for a better comparison can be viewed in Figure
5.4.

74

Fram
ework

Figure 5.4: Gantt chart depicting the execution and planning combined of the first semester of this thesis.

75

Chapter 5

5.3.2 Second Semester

The second semester was planned as follows:

1. Development: Continue working on the project’s development phase, implementing
the required features and functionalities.

2. Test Plan: Start creating a comprehensive test plan that outlines the testing strate-
gies, methodologies, and test cases to be executed, testing functional and non-
functional requirements.

3. Functionality Testing: Begin executing the functionality testing as per the test plan.
Test each feature and functionality of the project to ensure they work as intended.

4. Final Report: Encompasses developments throughout the semester, including de-
tails of the implemented components and conducted tests and their corresponding
results. Moreover, it incorporates the necessary modifications to the thesis based
on the intermediate revisions.

5. Final Presentation: Showcase the project’s development process, testing outcomes,
and key findings.

However, as was described in previous sections, the objectives of this thesis persited
through out its process, but the way to achieve them changed. Instead of spliting the
work in two versions of the Network Manager, two applications were created: LoopOS
Onboarding and LoopOS UI.

In the initial phase and between working on applications, I contributed to minor feature
development, bug fixes, and testing across various applications within the LoopOS. For
instance, I ensured that App Scopes were unique by name, made App Releases searchable
by their version, generated PDF documents with shipment details and sent them by email,
and performed tests on the Network Manager API. However, these contributions lie outside
the scope of this thesis and will not be discussed further.

The planned and implemented Gantt chart of the second thesis semester can be seen in
Figure 5.5.

76

Fram
eworkFigure 5.5: Gantt chart depicting the planning and execution of the second semester of this thesis.

77

Chapter 5

As discussed in the previous section, each task underwent multiple testing phases, including
those I conducted. For example, when developing endpoints for LoopOS Onboarding, I
employed a Ruby gem called Rspec [59] to create automated tests, which will be detailed
in Chapter 7 - Testing. Similarly, in the case of LoopOS UI, the View Components [69],
the framework employed to create the new User Experience (UI), were also tested using
its own methods.

Consequently, Functional Requirement testing was performed throughout the develop-
ment process. Furthermore, as will be elaborated upon in the development of LoopOS
Onboarding, an additional testing phase was conducted at the end.

It is worth noting that due to the company’s focus on enhancing the UI of the Network
Manager, Non-Functional Requirement (NFR) received less emphasis, and in return, the
development of LoopOS UI took priority. However, NFR testing did occur in the first
weeks of January, although not in the ideal depth, and can also be found in Chapter 7 -
Testing.

Therefore, the following chapter will delve into the execution of LoopOS Onboarding and
LoopOS UI and conduct a risk analysis post-development, addressing the risks identified
in the previous chapter.

78

Chapter 6

Development

The second semester focused on implementing two prominent features: LoopOS Onboard-
ing and LoopOS UI. The planning and development will be discussed in detail in the
following sections.

6.1 LoopOS Onboarding

To enable partners to create LoopOS accounts and to automate the deployment and
management of the LoopOS applications they wish to use within their system, LoopOS
Onboarding was the first application development.

u Planning
The inaugural client to implement LoopOS Onboarding was CTT Returns, a novel
solution offered by CTT. Its goal was to empower its partner brands and other users
to effortlessly manage the return process using the LoopOS platform. Hence, there
was an immediate need to create an aggregator entity higher in hierarchy to the
Partner: the Partner Group.

The Partner Group’s main function is representing organizations that work with
multiple partners and desire to offer their services through LoopOS. Partner Groups
can be linked to Partners, Users, Partner Services, and App Instances while also hav-
ing settings, user settings schema in order to control the associated user’s settings,
and partner settings schema to control the associated partner settings.

In addition, in planning with the Design Team and then properly verified by the
Project Owners, it was decided the LoopOS Onboarding would have four distinct
pages that and would be tightly integrated with the Network Manager role in cre-
ating new partners and deploying and managing LoopOS applications. The entire
onboarding process would implemented in Ruby on Rails to ensure smooth and effi-
cient compatibility with other applications. Figure 6.1 presents the planned Partner
journey on LoopOS Onboarding

79

Chapter 6

Figure 6.1: Partner planned flow in LoopOS Onboarding.

The following is a brief description of the four pages:

y Page 1 - Landing Page:

The Partner starts by creating an account in LoopOS. In the use case of CTT, there
should be a Single Sign-On (SSO) so Partners can use their CTT account to link to
a new account in the Network Manager. The Partner begins their journey on the
LoopOS Onboarding Landing page, a central information hub and a gateway for
signing in. This page should offer Partner Groups extensive customization options,
allowing them to tailor the onboarding experience to their unique branding and
preferences. The Partner then decides to sign in, and he is redirected to the Network
Manager to handle authentication. If approved, the Partner is redirected to the
Registration Page in LoopOS Onboarding.

80

Development

y Page 2 - Registration Page:

The Partner Registration page serves as the heart of the onboarding process. The
Partner provides partner-specific data and settings, including crucial information
like the package return address. This information is essential for establishing a
functional and personalized onboarding experience. Figures 6.2 and 6.3 are mockups
of this page.

Figure 6.2: Mockup of the Partner Registration Page with default information that
will be presented to all Partners independent of Partner Group

81

Chapter 6

Figure 6.3: Mockup of the Partner Registration Page after filling default information
and being presented with specific settings defined by the Partner Group to be filled.

82

Development

y Page 3 - Boilerplate Choice Page:

To cater to the diverse needs of the Partner Groups, this page presents a selection
of boilerplates tailored to the Partner Groups, each representing specific business
logic according to their needs. For example, for CTT, is a Return boilerplates that
deploys and configures the LoopOS applications to handle the return process. After
choosing the Partner is redirected to the Wait Page. The mockup for this step can
be seen in Figure 6.4.

Figure 6.4: Mockup of the Onboarding Choice Page.

83

Chapter 6

y Page 4 - Wait Page:

The Wait Page provides real-time updates on the LoopOS applications creation and
configuration progress, keeping Partners informed about the status of their newly
deployed applications. A notification is displayed upon successful app creation,
ensuring transparency and a sense of accomplishment. Once complete, Partners are
presented with a list of their newly deployed applications, providing easy access and
navigation. This streamlined approach ensures they can instantly use the needed
applications to streamline operations and achieve business goals. The mockup for
this step can be seen in Figure 6.5.

Figure 6.5: Mockup of the Wait Page.

84

Development

u Development
With this initial planning done, my development started with creating the Partner
Group in the Network Manager. Several steps were taken to implement the necessary
changes and establish relationships within the existing data model.

Firstly, I created the new model, following the Model-View-Controller pattern. Most
notably, the Partner Group includes name, logo, partner settings schema, and user
settings schema, which can be associated with Partners, Users, App Instances, and
Partner Services.

Then, I modified the Partner model by adding a new optional belongs_to part-
ner_group relation. Furthermore, settings and user_settings_schema fields were
incorporated, and subsequent logic was implemented to ensure that this new setting
field adhered to the schema of Partner Group if the relation existed.

For example, if a Partner belongs to a Partner Group, and the Partner Group schema
is as presented in Listing 6.1:
{

"required": [
"return_address",
"valid_return_days"

],
"properties": {

"return_address": {
"type": "string"

},
"valid_return_days": {

"type": "integer"
}

}
}

Listing 6.1: Partner Groups’ partner_setting_schema

Then the Partner settings must obey it so, for example, as seen in Listing 6.2:
{

"return_address" : "1234 Main Street",
"valid_return_days" : 15

}

Listing 6.2: Partners’ setting

Simultaneously, the User model was modified to include a relationship with both
Partner and Partner Group, with the logic in place to respect the schema of these
entities, depending on which one is present or if both are.

I applied a similar logic to the User and the Partner model regarding obeying set-
tings_schema. It covers two event hooks with the following steps:

Before Creation:

85

Chapter 6

1. Populate Settings: The populate_settings method is invoked to populate
the settings field with the default values for the schema. This ensures that the
object has some initial settings, even if they are not explicitly provided in the
creation request.

2. Parse JSON Fields: The parse_json_fields method is called to parse the
settings field into a hash format if it is not already a hash. This ensures
that the settings are consistent and structured before saving the object to the
database.

Before Save:

1. Parse JSON Fields: Repeatedly, the parse_json_fields method is invoked
to ensure that the settings field is always in a consistent hash format. This
happens before creating and saving the object, ensuring the settings are prop-
erly parsed and formatted.

2. Check Settings Changes: The check_settings_changes method is executed
to check if the settings have changed since the last save operation. If any
changes occur, the settings are validated against the schema to ensure they
adhere to the expected structure and values.

Finally, due to the User having the possibility of obeying two different schemas, a
method was implemented to combine the schemas of the Partner Group and the
Partner, if any are associated, before either saving or creating the object. This
ensures that the schema is always up-to-date with the current associations of the
object. Figure 6.6 showcases this logic.

86

Development

Figure 6.6: Flow chart diagram representing logic that keeps User settings valid
with its Partner or Partner Group association.

87

Chapter 6

Furthermore, a crucial step involved establishing a one-to-many relationship between
Partner Group and App Instances, as well as between Partner Group and Partner
Service. However, these models could only have a relationship with either Partner
Group or Partner.

To achieve this relationship, I implemented polymorphism by introducing a new
Partnable class, thereby promoting code reusability and flexibility. With this ap-
proach, App Instance and Partner Service objects became Partnable, eliminating
the need to determine if the object belonged to a Partner or a Partner Group. Fig-
ures 6.7 depict two Entity-Relationship diagrams illustrating the difference between
using and not using polymorphism, respectively.

(a) Without Polymorphism. (b) With Polymorphism.

Figure 6.7: Relation between Partner Service and App Instance with Partner/Part-
ner Group with and without polymorphism.

To streamline code and facilitate the sharing of fields, methods, and relationships
between Partner and Partner Group, a Concern was introduced. A concern in this
context refers to a modular and reusable code component that encapsulates shared
functionality for these two entities.

To ensure data integrity and a smooth transition, a migration was created. This
migration transferred data from the existing AppInstance.partner and PartnerSer-
vice.partner columns to the new partnable column in each table. This was a crucial
step to maintain data continuity and consistency.

Listing 6.3 demonstrates the implementation of polymorphism and the Partnable
concern in Ruby on Rails to establish fully functional relationships between Partner,
Partner Group, App Instance, and Partner Service models.

class Partner < ApplicationRecord
#this is to include the methods in the Partnable

Concern
include Partnable

end

class PartnerGroup < ApplicationRecord
#this is to include the methods in the Partnable

Concern

88

Development

include Partnable
end

class AppInstance < ApplicationRecord
belongs_to :partnable , polymorphic: true

end

class PartnerService < ApplicationRecord
belongs_to :partnable , polymorphic: true

end

module Partnable
extend ActiveSupport::Concern
included do

has_many :partner_services , dependent: :destroy , as:
:partnable

has_many :app_management_app_instances , dependent: :
destroy , as: :partnable

#...
end

end

Listing 6.3: Ruby on Rails Polymorphic Associations and “Partnable” Concern
Implementation.

Finally, to reflect the changes, all calls to Partner Service and App Instance objects
and methods were updated to reference the new partnable column instead of the
old partner column. This required an in-depth analysis of the entire project code,
as all these models needed to access the new partnable column.

With the new Partner Group model, several significant modifications were imple-
mented to facilitate a more seamless user experience and correctly guide users
through the onboarding process.

First and foremost, a new “state” field was incorporated into the User model within
the Network Manager. This field is pivotal in tracking the progression of users
and ensuring they are directed through the appropriate stages of their onboarding
journey.

In addition to introducing the “state” field, the user flows have been restructured in
the Network Manager to align with four possible distinct states. These states are
as follows:

• Onboarding: Users entering this state are those who sign up via Single
Sign-On (SSO) and currently have no associations, such as partners or app
instances. This state signifies the initial phase of the onboarding process.

• Invited: Users categorized as “invited” fall into this state. They are indi-
viduals created within the system by a manager and subsequently received an

89

Chapter 6

invitation to join the platform.

• Active: The “active” state applies to users who have completed the onboard-
ing process. The Onboarding module will oversee this phase and encompasses
users who have finalized the invite flow.

• Inactive: While currently not in active use, the “inactive” state has been
reserved for future functionalities. This provides flexibility for anticipated
developments in the system.

Hence, when a user in LoopOS Onboarding clicks Login, they are redirected to
Network Manager. If the user chooses to use CTT SSO, they are redirected to CTT
and logged in. If the login is accepted, the user is redirected to Onboarding. If
the user creates an account with CTT, they are also created in Network Manager
with state onboarding. If the user uses the default login, they are logged in with
Network Manager and redirected to Onboarding. In Onboarding, if the user’s state
is onboarding or invited, they are redirected to the Onboarding Registration Page.
If the user’s state is active, they are redirected to Network Manager. Figure 6.8
illustrates this flow.

Figure 6.8: Diagram representing planned User authentication flow.

Then I started developing the LoopOS Onboarding application, creating a simple
Rails Application and a Landing Page. It should be clear that my objective here was
to develop the backend logic. In the case of this page, I would need to implement the
logic behind obtaining the App Instance settings from the Network Manager so later

90

Development

it would be possible to stylize the page, adding a “sign up” button that redirects to
the manager with a callback to come back to this app, and when the user came back
to check the user state, implementing the previously planned authentication flow.
However, implementing the SSO required collaboration with CTT, such as enabling
access to their SSO through our domain. However, due to delays on their side, the
integration of the CTT SSO was postponed. This ensured that the development of
the LoopOS Onboarding remained on track.

There were two key features implemented in this process. The first was to implement
the logic so that, from the LoopOS Onboarding, it would be possible to trigger an
endpoint in the Network Manager and, in turn, to send the needed App Instance
settings.

To achieve this, I first copied the security logic from other applications, as explained
in Chapter 2, in Sub-section 2.4.2. This meant, in order to make requests to the
Netowrk Manager, i would first have to authenticate the application. The ID and
Secret of each application is stored in two places: In the corresponding App Instance
object in the Network Manager and in the “.env” file that stays with the application.
Hence, in LoopOS Onboarding, i created the logic to send its ID and Secret to the
Network Manager, which in turn creates and sends an access_token so I can add it
to the Onboarding requests. Figure 6.9 illustrates this logic.

Figure 6.9: Authentication Flow in LoopOS App Authentication [16].

Creating endpoints in the Network Manager is straightforward since Ruby on Rails
eases the process. First, in the routes.rb config file, which is used to map URL
requests to application actions and requests, I declared a new endpoint, as seen in
the code snippet present in listing 6.4. The application ID is the same ID used in
the authentication.

namespace :api do
namespace :v1 do

get "applications/:application_id/settings", to: "
applications#settings"

Listing 6.4: Application settings endpoint.

Then I created the following logic in the controller handling the endpoint:

1. Doorkeeper authorization: Ensure that the user can access the application
settings. This is done by checking if the user has a valid access token for the

91

Chapter 6

application. This token is received in the request’s header, as was explained
before.

2. Setting retrieval: Retrieve the App Instance that corresponds to the pro-
vided application_id.

3. Application data gathering: Since I wanted this endpoint to be used by
other applications, I decided to send all relevant data connected to the re-
quested instance, sending a JSON object with:

• The instance id, private and public settings;
• The associated Partner or Partner Group id, slug, name, and logo;
• An hash with all URLs and logo of all App Instances connected to the

associated Partner or Partner Group.

In case the application instance was not found, a 404 - Not Found error is returned.
Then, in the LoopOS Onboarding, I sent a GET request to the corresponding URL
with the token in the header following these steps:

1. Check for cached settings: Check if the settings for the specified applica-
tion ID are already cached. If they are, it returns the cached settings.

2. Fetch OAuth token: If the settings are not cached, the class first sends a
request to the Network Manager to get an OAuth token from the Network
Manager API.

3. Make API request: Once the OAuth token is obtained, make an API request
to the Network Manager to get the settings for the specified application ID.

4. Cache settings: If the API request is successful, the class caches the retrieved
settings for the specified application ID. This ensures that the settings are not
fetched from the API whenever needed.

92

Development

Figure 6.10 illustrates this flow.

Figure 6.10: UML diagram: Fetch settings endpoint example where settings are not
yet cached so the full request must be executed.

The second key feature was the way to obtain the user state. Obtaining the user state
was a crucial aspect of the onboarding process. Initially, three potential solutions
were considered. The first option was establishing a dedicated endpoint solely for
retrieving user information. However, relying heavily on endpoints for data retrieval
can strain both applications, particularly the Network Manager, which operates as
a single instance.

The second approach would use the previously mentioned endpoint for fetching ap-
plication data. However, I created the aforementioned endpoint so it would be
usable by other Applications, hence an advantage to have in the Network Man-
ager. Re-purposing it exclusively for user state retrieval, primarily required only for
onboarding, would render its original purpose obsolete.

The final solution, which was ultimately adopted, involved modifying an existing
call that was already necessary. As mentioned, two types of authentication are
implemented in LoopOS: User and Application.

93

Chapter 6

Chapter 2, Sub-section 2.4.2 explains this process, however Figure 6.11 revisits it
with an example.

Figure 6.11: UML diagram: Example of a User login attempt to LoopOS Onboard-
ing.

Additionally, as explained in this subsection, this authentication is aided by the
use of Doorkeeper and Devise. In a simplified explanation, while Devise is a user
authentication framework that simplifies the process of user registration, login, and
password management, Doorkeeper is an OAuth 2.0 server that manages access
tokens, authorization grants, and scopes.

In this case, the Doorkeeper is the one aiding in creating the token, where the
Network Manager has applied a custom token response to also send the user App
Scopes. Devise handles the authentication, from checking if the password is correct
in the Network Manager to creating a new User with the Doorkeeper data on the
Onboarding app.

With this knowledge, the solution was straightforward. First, change the doorkeeper
custom token response in the Network Manager as can be seen in the code snippet
presented by listing 6.5.

module Overrides
module Doorkeeper

module CustomTokenResponse
def body

additional_data = {}
if @token.user?

94

Development

#...
additional_data[:app_scopes] = user_scopes.

pluck(:name).join(" ")

#new code that adds state to token
additional_data[:user] = { state: @token.user

.state , id: @token.user.id }
end

super.merge(additional_data)
end

end
end

end

Listing 6.5: Custom token response override in Network Manager.

Then, to ensure that the state attribute of the User model in the Onboarding appli-
cation is always set to the one from the Doorkeeper token, I added the attribute to
the model, created a migration to add the column to the database, and implemented
the logic to set the state attribute when the user is updated. This update will always
occur when the user logs in.

In summary, the solution to the problem of determining the user’s state for the
Onboarding application involved modifying the Doorkeeper token response and en-
suring the User model’s state attribute was properly synced. Hence, while the
implementation was straightforward, it required a thorough understanding of the
underlying components and their interaction. The same can be said for creating
the logic between the communication of the Network Manager and the LoopOS
Onboarding.

Now that the landing page had the necessary information, the design team could
begin implementing the front end. Figure 6.12 showcases the final look of the Partner
Landing Page in LoopOS Onboarding for CTT Returns.

95

Chapter 6

Figure 6.12: LoopOS Onboarding: Final look of the Partner Landing Page.

Moving on with the user flow, after a successful login, the user is then redirected to
the second page: Partner Registration page.

The Partner Registration Page should serve two primary functions: dynamically
populate the page with settings specific to the Partner Group, allowing potential
partners to provide the required information, and upon successful completion of
the registration process, seamlessly integrate the newly registered Partner into the
Network Manager’s system.

Starting the population of the page, I first created an endpoint in the Network
Manager to send the Partner Group data belonging to a specific ID. Then, I called
this endpoint using the Partner Group ID, fecthed from the previous endpoint, on
the Registration Page Controller. Using the same logic of the previous endpoint,
I requested an access token, sending the application ID and secret to the Network
Manager if the token was not saved or had expired. Afterwards, I performed a GET
request using the token in the header. Consequently, obtaining the partner_set-
tings_schema from the Partner Group.

With this data, I implemented a basic front-end. Firstly, there were some hardcoded
default fields in the beginning, such as the required name and logo, and the optional
icon. In the end of the page, added the mandatory terms and conditions that were
populated from the public_settings of the application settings endpoint.

In the middle, I generated the dynamic fields according to the schema. The following
JSON object present in listing 6.6 is an example schema to better visualize the rules
I applied to create this page.

{
"required": [

"address_city",
"address_street"

],

96

Development

"properties": {
"address_city": {

"type": "string"
"order": 2

},
"want_notifications": {

"type": "boolean"
"order": 5

},
"valid_day_return_days":{

"type": "integer"
"minimum": 1,
"maximum": 10

},
"address_street":{

"order": 3
}

}
}

Listing 6.6: Example Partner Setting Schema

The rules applied during the generation were as follows:

• All settings listed in the required section of the schema must be included.

• The input field type must match the corresponding type specified in the
schema. If the schema omits the type, the input becomes a string.

• If present, all values must adhere to the specified minimum and maximum
boundaries. This applies to both strings and integers.

• The order property acts as a weight, with lower numbers indicating higher
priority placement. Input fields with no order value are positioned at the
bottom. In the case of ties, the order is determined alphabetically by the key
name.

It was essential for the settings filled by the Partner to follow the schema. If in the
Network Manager a Partner was created disobeying the schema, for example, if the
schema mandated for a field to be of type integer and arrived as a string, it would
deny its creation. This was the logic I created when implementing the new settings
and schemas in the User/Partner/Partner Group. Hence the strict following of these
rules.

With the data filled in, I created a button on this page that called a POST endpoint
to the Network Manager. I created this endpoint with logic similar to the other
endpoints. In this case, the Onboarding would send the access token in the header
and the Partner data in its content. However, since the Doorkeeper token contains
which application performed the request, it would not be necessary to also send

97

Chapter 6

the Partner Group ID in the request since, knowing the application, The Network
Manager would know the Partner Group who owned it. Additionally, since Devise
saved the current user email on login, I would not need to send it in the body
of the request. The Network Manager would then create a new Partner with the
submitted data, while also ensuring that it belongs to the specified Partner Group
and is associated with the correct user.

However. during testing, the Partner Registration page, which adhered to the Part-
ner Group schema, failed to process the POST requests. This was due to the fact
that, even if the settings were of the appropriate type in the LoopOS Onboarding,
they would always arrive as strings in the Network Manager. To successfully create
a partner, I implemented logic to type-cast these settings to the proper format in
the endpoint.

After creating the Partner in the Network Manager, the endpoint then sends a
response with the status created, and thus, the User could be redirected to the Boil-
erplate Choice Page. Figure 6.13 showcases the final look of the Partner Registration
Page in LoopOS Onboarding for CTT Returns.

Figure 6.13: LoopOS Onboarding: Final look of the Partner Registration Page.

Having worked on a wide range of LoopOS applications and possessing a compre-
hensive understanding of the LoopOS technological ecosystem, I believe this page
to be the most impactful creation I have yet achieved. Partners can now generate a
fully functional LoopOS environment from scratch with a single button press.

Hence, to streamline the onboarding process for Partners, I would display a list of
boilerplate on this page, each accompanied by an icon and a description outlining
its deployment capabilities. When a partner selects a boilerplate, it would trigger
an endpoint that executes the chosen script.

First, I modified the existing LoopOS Script model in the Network Manager to
allow icons and descriptions for better presentation to partners. Anticipating a
growing number of boilerplate scripts for various business models in the future, I

98

Development

incorporated the boilerplate script IDs into the App Instance’s private settings so
as to only present a select number of boilerplates.

Then, I created a controller in the Network Manager to handle a new endpoint with
two distinct tasks. First, the GET “/boilerplate” that, when triggered, would check
which application made the request, check its private settings, get the boilerplate
IDs, and send back the details of these scripts so I could display them on the
Boilerplate Choice page. Figure 6.14 showcases the final look of the Boilerplate
Choice Page in LoopOS Onboarding for CTT Returns. Currently, with only one
boilerplate script available, Partners are limited to selecting one for their onboarding
needs. However, as the LoopOS expands to accommodate more Onboarding apps
for different Partner Groups with unique requirements, this page will evolve to
accommodate various business logics.

Figure 6.14: LoopOS Onboarding: Final look of the Boilerplate Choice Page.

99

Chapter 6

The second endpoint that I created in the Network Manager was the POST “/trig-
ger_boilerplate”, which would need to receive the chosen boilerplate ID. Due to the
Network Manager knowing the user that sent the request, it was able to obtain its
associated Partner and Partner Group, and thus not need to include them in the
body of the request. Figure 6.15 illustrates this flow.

Figure 6.15: UML diagram: Choose and trigger boilerplate.

As discussed in Chapter 2, Section 2.4, LoopOS scripts come in three forms: Scripts,
Boilerplates, and Validators. Each script type has a predefined skeleton that estab-
lishes its mandatory methods. This is crucial because the Network Manager, when
executing these scripts, must know the order to run these methods. Listing 6.7
demonstrates the boilerplate script skeleton.

def run_boilerplate(log , user , partner , partner_group ,
extra_info: {})

Write code here
end

Listing 6.7: Skeleton of boilerplate type script.

The main method, run_boilerplate, gets passed four parameters: the log to update
when running the boilerplate, the user requesting to run the boilerplate, the partner
(optional) associated with the boilerplate, the partner group (optional) associated
with the boilerplate, and the extra_info (optional) a hash that might be required
for the boilerplate.

It is important to understand here that CTT was the first client to use this product,
so I had restrictions in the creation of this script since I needed to create it to their
needs. LoopOS Returns, as the boilerplate script would be called, would need to
allow the corresponding flow:

1. Client submits and pays for item return.

100

Development

2. Client receives shipping guide by email.

3. Client adds shipping guide to package and sends it.

4. CTT delivers package to Partner

5. Partner receives Package

The minimum number of LoopOS applications to implement this flow is three. One
Submission for the clients to submit the product and for CTT to know which items
it needs to deliver, one Handling per partner to receive the product, and one Core
per Partner to manage these applications. Figure 6.16 showcases the connection
between these applications.

Figure 6.16: Connection between CTT applications and Partner applications.

Hence, the following was the agreed journey an item would take using the aforemen-
tioned applications. It will be split into three: Client submission, Client payment
and item delivery, and Partner item acceptance. This is to ease the explanation:

The client begins by submitting the product information and client details in the
CTT Submission. This action prompts the creation of an item object in the Partner
Core. The Partner Core then requests the Network Manager to send an email

101

Chapter 6

notification to the client upon completion of the submission and to generate an
Incoming Payment. Figure 6.17 outlines this process.

Figure 6.17: Client submits the item(s) it wants to return.

Once the client has paid for the return, the Payment API will communicate with
the Network Manager, updating the Incoming Payment’s status to complete. An
email notification will be sent to the client informing them of this change. The
Partner Core will then update the item’s status to reflect the payment completion.
Next, the Partner Core will request a shipping guide from the Network Manager.
The Network Manager will create the shipping guide and send it to the client via
email so it can add it to its package. The Partner Core will then mark the item as

102

Development

shipped. Figure 6.18 illustrates this process.

Figure 6.18: Client pays for item return.

Once the client has shipped the item, the CTT will handle the delivery. The Partner
will then receive confirmation of the item’s receipt in its Handling application, which
will promptly notify its Core and request the Network Manager to inform the client
of the item’s arrival. Figure 6.19 depicts this process.

Figure 6.19: Partner receives item.

Finally, there are only two more concepts I want to detail before outlining how the
script was developed.

103

Chapter 6

Most notably, LoopOS Flows. As stated, it is a no-code logistics solution designed
specifically for reverse logistics. Users can effortlessly create personalized flows by
dragging and dropping various blocks like apps and services. This is how the Core
knows the correct flow of the system.

To illustrate, Figure 6.20 depicts a segment of a LoopOS Flow comprising three
blocks. In this instance, upon insertion of an item through Submission, its sta-
tus transitions to “Submitted” which aligns with the exit condition of this block.
Consequently, it attempts to transition to the next block. It succeeds because the
entry condition for that block is the absence of email delivery. Thus, an email is
dispatched to the user notifying them that the item has been submitted. Subse-
quently, the email’s delivery triggers the block’s exit condition, prompting it to exit
and proceed to the subsequent block.

Figure 6.20: Partial LoopOS Flow example.

104

Development

In the same way a user can create a LoopOS Flow through UI, I can create it through
code according to my needs.

Finally, the last concept I wanted to detail is Catalogs, which reside in each Core
and help manage the items in their LoopOS applications. They can have Categories,
Brands, and Products. Figure 6.21 showcases the Core sidebar with these items.

Figure 6.21: LoopsOS Core sidebar.

FNAC, a multinational consumer electronics and entertainment retailer, uses LoopOS
to buy used iPhones. For instance, in their Core Application, they have the Cate-
gory “Smartphone” with the Brand ”Apple” and the Product “IPhone X” so their
Submission application recognizes which products they are searching for.

Additionally, each Category and Product may have numerous Protocols. These are
sets of questions created by the Partner, so the other linked LoopOS applications
(Submission, Validation, Handling, and Hubs) can present them to the user to be
filled out.

In the instance of Submission, since it is the customer submitting the item, the
protocol could have questions such as “Does the product function properly?” and in
the case of Validation, with a worker validating a product, it could have questions
such as “Does the item description correspond to the item sent?”. Finally, there
are also User Protocols, which also exist in LoopOS Core and are then presented in
Submission for the customer submitting the product to fill out, such as name, email,
address, and so on.

As we move forward, it is crucial to recognize that LoopOS is a team effort. While
I was the developer of the LoopOS Onboarding application, it wouldn’t have been
feasible without the extensive groundwork laid by others before. From establishing
methods within App Instances that paved the way for me to deploy the application
to the creation of LoopOS Flows to link them all.

Thus, with all this context, it is finally possible to understand how and why I created
the boilerplate script in the following way:

105

Chapter 6

The run_boilerplate method serves as the starting point for the script, it begins
by receiving various parameters including the log object, user information, partner
details, and partner group information. Then, retrieves the Submission App Instance
belonging to the CTT Partner Group.

Next, the script identifies the latest stable App Release associated with LoopOS Core
and uses it to create an App Instance linked to the Partner. The instance’s state is
set to “:to_create”, initiating the SyncInfrastructureJob workflow. As described in 2,
Sub-section 2.4.1, this job deploys the instance in a Kubernetes Pod and transitions
its state to “active”. This process is replicated for the creation of a LoopOS Handling
App Instance linked to the Partner.

The script then creates a User Group specifically for admin users. Any user asso-
ciated with this group gains admin privileges for the partner apps. This ensures
authorized individuals can manage and maintain the partner’s applications effec-
tively.

Once both applications are fully deployed, the script initiates the preparation of
the Core. This process involves remotely executing code, as outlined in 2, Sub-
section 2.4.1. Initially, all services associated with the Partner Group are retrieved,
encompassing email providers, email templates, and incoming payment providers.
This ensures that the necessary components are readily available for creating the
desired flow. The script then encapsulates each code intended for execution by the
Core into a string variable, running them one by one.

Firstly, the flow_code variable encapsulates the code that constructs the desired
LoopOS Flow. Starting with the block formation, the script devises, defines and
connects the following blocks in this order:

1. Submission: Handles the initial item submission by the client.

2. Submitted Email: Sends a confirmation email to the client acknowledging
their submission.

3. Incoming Payment: Waits for the return payment to be made.

4. Email Paid: Informs the client that their payment was received.

5. Transport: Handles the process from shipping instructions to updating the
item status for display on Handling.

6. Handling: Facilitates item acceptance by the Partner.

7. Email Handling: Informs the client that their item was returned and ac-
cepted.

Upon successful execution of the flow_code variable, the catalog_code variable is
created. This variable contains simple code that establishes a default category and
a default product. After this code’s successful execution, the protocol_code variable
is created, encompassing a questionnaire that the user will submit to provide details
about their return. These specific questions were agreed upon in a prior meeting
with CTT:

106

Development

1. What is the order number?

2. When was the order placed?

3. Upload a copy of the receipt.

4. Please describe the items being returned.

5. Select the reason for the return. The possible reasons are:

• Incorrect size

• Defective product

• Delayed delivery

• Product different from website image

• Incorrect product received

• Damaged product during delivery

• Purchase of the same item in different sizes

Afterward was the creation of user_protocol_code. Following a similar logic as
before, the agreed-upon details the user had to fill in were the full name, the email
address, the phone number, the email address, its Fiscal Identification Number
(NIF), and two fields for the user to agree to share their personal data with LoopOS
and CTT to return their item and to agree to the terms and conditions of the return
service.

Finally, after successfully remotely executing the user_protocol_code, the script
changed the user state to “active”, and so, the Partner has his environment setup
complete, from just choosing, at the beginning of the Boilerplate Choice Page, which
boilerplate he wanted to execute.

However, when the user chooses a boilerplate, he does not remain on the Boilerplate
Choice Page while he waits for the boilerplate completion. Instead, he is directed
to the Wait Page, upon executing the endpoint to trigger the boilerplate, a Log
object is created and sent along with the other attributes to the boilerplate and
kept updated throughout its execution. The log’s ID is also sent in the request to
trigger the endpoint in the response to LoopOS Onboarding.

To give the user a sense of the boilerplate’s progress, a job on LoopOS Onboard-
ing triggers an endpoint in the Network Manager every 5 seconds. This endpoint
requests the log’s information by sending the aforementioned ID and retrieving the
corresponding message, such as “Your applications are being deployed...” and the
percentage to completion. The Onboarding Application then dynamically updates a
progress bar on the Wait Page to reflect the script’s progress. Figure 6.22 illustrates
this behavior by showcasing the final look of the Wait Page in LoopOS Onboarding
for CTT Returns.

107

Chapter 6

Figure 6.22: LoopOS Onboarding: Final look of the Wait Page.

Once the boilerplate is complete and the Wait Page reaches 100% completion, a
button is displayed for the Partner. Upon clicking this button, the Partner is seam-
lessly guided to their User profile page within the Network Manager. From here,
they can easily access and navigate their newly created applications.

u Conclusion
In conclusion, the LoopOS Onboarding application, with a focus on the CTT client,
was developed with a meticulous and well-considered approach to ensure seamless
integration of various functionalities. From user authentication and application
deployment to the creation of dynamic pages and the creation and execution of a
boilerplate script, each step was carefully designed and implemented to streamline
the onboarding process for Partners.

This new application can generate a fully functional LoopOS environment with a
single button press. It stands as a significant milestone in aiding in solving the
problem of the manual onboarding of partners as well as the manual creation of
their environments.

The implementation of the boilerplate script, as described in the provided sections,
demonstrates a thoughtful understanding of the inner workings of the LoopOS frame-
work, the partner needs, and strategic execution to fulfill agreed-upon requirements.

For a comprehensive evaluation of the LoopOS Onboarding application’s perfor-
mance and functionality, including testing conducted and an analysis of requirement
completion, please refer to Chapter 7 - Testing.

The subsequent section will delve into the planning and development of the LoopOS
UI, providing insights into the new User Experience (UI) design and considerations
that contribute to an enhanced overall user experience.

108

Development

6.2 LoopOS UI

Upon successfully completing the onboarding process, the Partner is redirected to
the Network Manager, where they can access their applications. As depicted in
the screenshots in Chapter 2, the User Experience (UI) was developed entirely using
AVO [4], a powerful and flexible admin interface gem for Ruby on Rails applications.
AVO enables developers to focus on the project functionalities rather than spending
excessive time on front-end development. Given the project’s Agile methodology,
AVO’s ease of implementation proved instrumental in hastening the front-end de-
velopment for all LoopOS apps. However, AVO was always considered a temporary
solution, as The Loop Co. envisioned a unique visual identity and user experience
for the LoopOS ecosystem.

While working on the LoopOS Onboarding, efforts were directed toward creating
simple User and Partner pages to minimize the impact of AVO’s usability limita-
tions on the overall user experience. Thus ensuring that the Partners were not
overwhelmed by the Network Manager’s interface upon initial access. Figures 6.23
and 6.24 are screenshots of the Partner and User profile pages, respectively.

109

Chapter 6

Figure 6.23: Network Manager: Partner profile page.

Figure 6.24: Network Manager: User profile page.

However, since these pages were the only pages implemented and had only basic
features, the company decided the development of the new Network Manager UI
took priority. Hence, after the LoopOS Onboarding Application was concluded, the
planning and development of the new front-end for the Network Manager started.

110

Development

u Planning
The planning process started with thoroughly examining the current and future
designs of LoopOS applications by analyzing the mockups of each app. Upon rec-
ognizing that many applications shared common components or entire layouts, the
objective of this thesis was expanded beyond simply developing the new UI for the
Network Manager. For instance, Figures 6.25 and 6.26 illustrate the resemblances
between the mockups for the Network Manager Show user page and the Core show
item page, respectively.

Figure 6.25: Network Manager: Show User Page - Mockup.

Figure 6.26: LoopOS Core: Show Item Page - Mockup.

Thus, instead of just implementing the new UI for the Network Manager, I would

111

Chapter 6

create a Rails Engine (LoopOS UI) responsible for maintaining the layout and load-
ing the required assets implemented in all LoopOS applications starting with the
Network Manager.

Before outlining this engine’s planning, setup, and development, providing context
on Rails Engines and Rails Gems is essential.

• Rails Engines are modular and reusable components that encapsulate spe-
cific features or functionality within a Rails application. They are Rails ap-
plications that can be mounted within another Rails application. A way to
package and share functionality across different Rails projects. Like Rails ap-
plications, they share the same Model-View-Controller pattern. LoopOS UI
will, therefore, be able to be mounted inside all LoopOS applications, and by
following Continuous Integration/Continuous Delivery using tools such as Git-
Lab, when LoopOS UI is implemented in all apps, any change in the front-end
can be done in one place.

• Rails Gems encapsulates reusable code that provides additional functionality
or features to a Rails application. Gems can include various Ruby elements like
classes, modules, and libraries. They are commonly used to distribute reusable
code that doesn’t necessarily rely on the Rails framework itself. Compared to
Rails engines, Gems are generally lighter and more generic, not specifically
tailored for mounting within a Rails application.

An example of a Gem developed for and by LoopOS is LoopOS SDK. It is a valu-
able tool for maintaining consistent UI components across all LoopOS projects. It
leverages Storybook, an open-source tool for developing, inspecting, and testing UI
components in isolation. When a component is refined in Storybook, it is seamlessly
integrated into LoopOS SDK through GitLab CI/CD, ensuring that all applications
use the latest version of the gem. With the ongoing development of LoopOS UI, this
gem will reside exclusively within the new engine, which will dynamically generate
the front end for the app it is coupled with.

The development of the LoopOS UI was split into three crucial phases: Planning,
Setup, and Development.

I began by developing a high-level plan to comprehensively grasp what needed to be
implemented. One of the initial requirements identified was that this engine would
need to seamlessly integrate with other LoopOS applications. This prompted me to
meticulously analyze the LoopOS Onboarding, Submission, Handling, Validation,
Core, Hubs, and Network Manager mockups.

After a thorough examination, I concluded that the LoopOS Onboarding, Submis-
sion, Handling, and Validation mockups were either outdated or diverged in fun-
damental aspects. However, they did share certain components like buttons, tags,
and input elements, which were sourced from the LoopOS SDK. Hence, to alleviate
computational resources from each application, instead of these components being
managed by the SDK and the application, they could be exclusively handled by the
LoopOS UI.

112

Development

In contrast, the Network Manager, the Core, and the Hubs mockups exhibited
enough resemblance for me to create Macro and Micro layouts. Macro layouts
describe the larger, page-wide organization of the application. Micro layouts, how-
ever, deal with the specific placement and arrangement of individual elements within
these larger sections. It is possible to split the Network Manager, the Core, and the
Hubs into three Macro layouts: Topbar, Sidebar, and Panel. Figures 6.27, 6.28 and
6.29 illustrate the Macro layouts in each of these applications.

Figure 6.27: Network Manager: Show User Page - Macro Layouts.

Figure 6.28: LoopOS Core: Show Item Page - Macro Layouts.

113

Chapter 6

Figure 6.29: LoopOS Hubs: Show Shipping Page - Macro Layouts.

As for the Topbar Layout, since it is hosted by the Network Manager for other
applications, it should remain outside the new Engine and continue to be maintained
by the Network Manager. This is to ensure easier maintenance and enable quick
rectification of authentication-related issues. The Engine will, therefore, have a
Topbar section, but it will only render what the Network Manager sends.

The Sidebar Layout, the primary navigation component for all LoopOS applica-
tions, should be implemented using a builder method that takes a hash of items as
input. Each item in the hash represents a section in the sidebar, and each section
can encompass multiple menu items or sub-sections (dropdowns/drawers). The Core
and the Hubs each already have a different implementation of the sidebar layout, so
this needs to be considered when creating this builder.

In contrast to the other two layouts, the Panel Layout can be further divided, thus
giving rise to what I refer to as micro layouts (layouts within layouts): the Index
Layout, which displays all the items belonging to that page, and the Show Layout,
which showcases a specifically selected item. Figures 6.31 and 6.30 showcase the
mockups of the user show and index page of the Network Manager.

114

Development

Figure 6.30: Network Manager: User Index Page - Mockup.

Figure 6.31: Network Manager: User Show Page - Mockup.

These layouts must be crafted in the LoopOS UI first and implemented within the
Network Manager second, following a phased development analogous to the LoopOS
Onboarding process to align with the agile approach adopted for this project. How-
ever, instead of progressing page by page, this time, the focus will be on implement-
ing layout by layout, component by component. The development and implemen-
tation were then divided into five distinct phases. Each phase is connected with a
diagram illustrating the progress of the engine:

115

Chapter 6

y 1. Macro Layout implementation:

Create Macro Layouts with yields inside the LoopOS UI, have the Network Manager
call these layouts, and send the full content for each part - Figure 6.32.

Figure 6.32: LoopOS UI progressive development planning: Macro Layout imple-
mentation

y 2. Sidebar Layout Implementation & Refinement:

Improve Sidebar Layout inside LoopOS UI, so it generates the sidebar depending
on the attribute hash it is sent and have the Network Manager call this new builder
- Figure 6.33.

Figure 6.33: LoopOS UI progressive development planning: Sidebar Layout Imple-
mentation & Refinement.

116

Development

y 3. Show Layout - Micro Layout Implementation:

In this phase, I will split the Show Layout layout into two Header and Content
as illustrated by Figure 6.34, which is common in all Show Pages across the three
applications mentioned before.

Figure 6.34: Network Manager: Show User Page split into Content and Header.

However, I will further split the Header into four: Action Section Left, Action Sec-
tion Right, Info Section Left, and Info Section Right. Figure 6.35 visually represents
how the header is divided in the Show User Page. The Action Sections are designed
to accommodate actionable elements, while the Info Sections are intended for infor-
mational components. The “left” and “right” designations indicate their respective
positions within the header. It is worth mentioning that this division was carefully
considered in conjunction with the Show Pages of other applications, ensuring a con-
sistent header design across apps while allowing flexibility in the specific components
within each section.

117

Chapter 6

Figure 6.35: Network Manager: Show User Page Header split into Action Section
and Info Section.

Hence, this phase will entail the creation of these layouts in LoopOS UI with yields
and have the Network Manager send in the full content - Figure 6.36.

Figure 6.36: LoopOS UI progressive development planning: Micro layout implemen-
tation of Show Layout.

118

Development

4. Show Layout - Micro Layout Refinement:

This phase entails populating the Header and the Content with builders to generate
each section. This meant a study of the previously mentioned application common
elements within each of the previous sections. Figure 6.37 illustrates an example
of this analysis and the common components found on the different show pages of
Core, Hubs, and Network Manager mockups.

119

Chapter 6

Figure 6.37: Header components across applications.

120

Development

Consequently, these were the conclusions for the current mockups:

Actions Section Left: will only have breadcrumbs. Breadcrumbs are a naviga-
tional aid that helps users understand their location within a website or application.
These can be constructed with a builder taking in a hash variable, as seen in Listing
6.8.

It should be noted that this code snippet serves to make the reader accustomed to
the logic behind the LoopOS UI implementation. In this case, the Network Manager
sends an array with the breadcrumbs hash containing its item to the action_sec-
tion_left. This will create a View Component of ShowLayoutComponent type,
with a ActionSectionLeftComponent View Component inside.

In turn, Listing 6.9 showcases a code snippet, where it will receive the payload,
iterate it, check breadcrumbs inside the hash, and render it correspondingly. This
way, since each object has its corresponding View Component, each object will know
how it is rendered.

Although it may sound confusing now, later on, I will explain how View Components
work and how applying them properly allowed for smart and quick development of
the LoopOS UI.

action_section_left_payload = [
{

breadcrumbs: [
{ name: "Partners Management", path: "", },
{ name: "Partners", path: partner_index_path , },
{ name: "#{@partner.name}", path: partner_show_path

, },
],

},
]
<%= render LooposUi::ShowLayoutComponent.new do |

component| %>
<% component.header_action_section_left(payload:

action_section_left_payload)
...

<% end %>

Listing 6.8: Network Manager: Possible Breadcrumb Implementation.

module LooposUi
class ShowLayoutComponent < ViewComponent::Base

renders_one :action_section_left , "
HeaderActionSectionLeftComponent"

#rendering of other View Components

def initialize()
end

121

Chapter 6

class HeaderActionSectionLeftComponent <
ViewComponent::Base

#class public and private methods
end

#class declare of other View Components

end
end

Listing 6.9: LoopOS UI: Possible Breadcrumb Implementation.

Actions Section Right: will have actions such as buttons and toggles.

Info Section Right: will have simple text with the desired information. For now,
containing the information for when it was created and when it was updated.

Info Section Left: The most informative part of the header, typically containing
the following elements:

• Avatar: An image representing the entity, either in a circular or square for-
mat, allowing each application to customize its appearance.

• Top Tag: An optional tag that can be displayed above the title, specifically
supported by the Core application but not applicable to the Network Manager.

• Title: A descriptive title of the entity, with an optional editable property for
applications that require it.

• Additional Details: Supplementary text providing specific information rel-
evant to the entity, particularly useful for the Network Manager.

• Taglines: A group of taglines representing associations or relationships to
other entities. For instance, a User in the Network Manager could have taglines
indicating their associated User Groups, while a Product in the Core could
have taglines for Brands and Categories. While the Network Manager only
supports a single tagline, the Core allows for two, which should be considered
during implementation.

The Content section of the Show Page incorporates tabs to enhance the presentation
and organization of information. These tabs encapsulate specific details and actions
related to the corresponding model the page represents. Figure 6.38 showcases
the potential tabs that a User Show page mockup might feature, including the
“Info” tab for displaying user information that can be edited, along with connected
applications, and the “User Scopes” tab for displaying the user’s associated App
Scopes.

122

Development

Figure 6.38: Network Manager: User Show Page Tabs Mockups.

123

Chapter 6

Possible tabs differ greatly not only from Application to Application but also from
within. For example, Partner tabs and User tabs are not the same. Hence, the
LoopOS UI will take the content of each page and render it. This could be imple-
mented by the View Component responsible for the tabs, which receives an array of
hashes for each tab. An example of a possible implementation is in the code snippet
Listing 6.10, where each hash represents a tab and includes its name, icon, and code
content (partial).

tabs_payload: [
{name: "Info", icon: "fa-info", partial: user_info},
{name: "Configurations", icon: "fa-gears", partial:

user_configurations},
{name: "User Scope", icon: "fa-shield", partial:

user_scopes},
],

<%= render LooposUi::ShowLayoutComponent.new do |
component| %>

...
<% component.header_action_section_right
<% component.content_tabs(payload: tabs_payload)%>

<% end %>

Listing 6.10: Network Manager: Possible Tabs Implementation.

124

Development

To conclude the planning of the Show Layout, Figure 6.39 illustrates a diagram of
the progress at the end of this step.

Figure 6.39: LoopOS UI progressive development planning: Micro layout refinement
of Show Layout.

125

Chapter 6

5. Index Layout - Implementation & Refinement: Similar to Step 3 (Show
Layout - Micro Layout Implementation), the same process was put into practice by
first conducting a study on the Index page mockups for the three apps. I concluded
that similarly to the Show page, it could be split in two: Header and Content, as is
exemplified in Figure 6.40.

Figure 6.40: Network Manager: Index User Page split into Content and Header.

126

Development

Thus, the process would be the same. Furthermore, similarly to the Show Page, the
header could be split in the exact same way. Since I could use the same developed
components from before, i could immediately apply the header using LoopOS UI.
Figure 6.41 showcases the header split similar to the Show page.

Figure 6.41: Network Manager: Index User Page Header split into Action Section
and Info Section.

127

Chapter 6

The Content section varies on the Index Page. Not only does it contain a table with
all the data of that model, but it also contains a search input to filter the table.
Figure 6.42 illustrates a diagram of the progress at the end of this step, where
Index reuses Header components from the Show Page and creates a new Content
Component which will create a Table with its corresponding Search Bar.

Figure 6.42: LoopOS UI progressive development planning: Micro layout refinement
of Show Layout.

128

Development

Thus, while preserving the distinct Header and Content sections, the Show and
Index pages could be combined into a single Panel Component. Each page would
employ its specialized header and content components within the overarching Panel
structure.

This approach maintains code reusability and simplifies component management.
By employing a single Panel component, developers can effectively encapsulate var-
ious content types, enhancing code modularity and reducing redundancy. Simul-
taneously, this strategy eliminates the need for separate components for Show and
Index, streamlining the overall structure and promoting code clarity. Figure 6.43
illustrates a diagram of the progress at the end of this step, where Index and Show
are merged.

Figure 6.43: LoopOS UI progressive development planning - final architecture.

129

Chapter 6

To conclude this Planning phase, Figure 6.44 and 6.45 will exemplify, while using
the previous diagram, which components the User Show Page and User Index Page,
respectively, use.

Figure 6.44: Network Manager implementation of User Show Page using LoopOS
UI.

130

Development

Figure 6.45: Network Manager implementation of Index Show Page using LoopOS
UI.

With the overall planning concluded, moving on to sprint planning was possible.
Adhering to the development lifecycle outlined in Chapter 5, Section 5.2, I carefully
created a realistic roadmap for each sprint, outlining the features to be developed
and implemented in both the Network Manager and the LoopOS UI. Furthermore,
I conducted a detailed low-level planning exercise at the beginning of each sprint,
detailing the precise tasks to be addressed, their execution plan, and comprehensive
test plans. This meticulous approach ensured adherence to the company’s estab-
lished sprint lifecycle and facilitated efficient feature development.

131

Chapter 6

u Setup
As mentioned before, the planning and development of LoopOS UI was conducted
immediately after the development of LoopOS Onboarding. Consequently, with only
four weeks left, the proposed plan followed.

With no prior experience in creating and setting up Rails Engines and their necessary
dependencies, including configuring asset pipelines, two weeks were allocated solely
to this setup. Due to their complex nature, a detailed explanation of the purpose
and configuration of asset pipelines will be provided later. The subsequent sprints
were dedicated to developing and implementing the Sidebar in the third week, with
the progressive implementation of Partner and User Show pages planned for the
fourth week.

The setup started with creating a self-contained Rails Engine in a distinct Git repos-
itory, enabling applications to simply clone it upon instantiation, accompanied by
a dummy application for testing. This approach enabled the implementation of
essential dependencies and asset pipeline configuration in a separate environment,
without directly impacting the Network Manager. Given the existence of a single
Network Manager instance, directly modifying its code could have been problematic.

Hence, with the Rails Engine in place, I started by analyzing the necessary depen-
dencies in the Network Manager and other LoopOS applications that needed to exist
on the LoopOS UI side.

Starting with Turbo [68]. It enhances the user experience by enabling seamless, fast,
and efficient page updates without full page reloads. Turbo optimizes the front-end
interaction by updating only the necessary parts of a page, reducing the need for
full page reloads. This results in a smoother and more responsive user interface.

For example, a user has a list of tabs on a page similar to Figure 6.38, and they
want to be able to click on a tab to show the content for that tab without having to
reload the page. By using Turbo, when a user clicks on a tab, it is possible to replace
just the content of the corresponding view. This will happen without reloading the
page, improving the user experience.

Tailwind CSS [66], is a CSS framework that is also employed by LoopOS applica-
tions. It provides a set of pre-defined utility classes that can be used to style HTML
elements. Tailwind is used for styling and layout purposes in all LoopOS applica-
tions. Figure 6.46 presents an example from the Tailwind website highlighting its
ease of use and customization.

132

Development

Figure 6.46: Implementation example from Tailwind Website [66].

React [57] is a JavaScript library for building user interfaces that enables the cre-
ation of reusable UI components while efficiently managing the application’s state.
It is mostly employed in LoopOS due to the expertise in React from the front-end
team and being the core of LoopOS SDK, the reusable library components explained
before.

Figure 6.47 shows a React component called Video, which displays a video thumb-
nail, title, and description. The component also includes a LikeButton component,
which allows users to like the video. This is a simple example of how React compo-
nents can be used to create complex user interfaces.

Figure 6.47: Example from React Website[57].

133

Chapter 6

In addition, Stimulus[65] is built to work with Turbo and Tailwind CSS, providing
several features that make building interactive and responsive UIs easier. For exam-
ple, Stimulus allows to define custom events that elements in the UI can trigger, and
it provides a templating engine that makes it easy to create reusable components.
It is mostly used by the back-end team in LoopOS to provide actions to components
created by the front-end team. Figure 6.48 showcases an example where an HTML
document uses a Stimulus controller to dynamically change its content.

Figure 6.48: Example from Stimulus Website Stimulus.

To exemplify, imagine you want to create a button that changes its color when
clicked. With React, you can create a component for the button and import the
corresponding Tailwind CSS file to style it. Within the React component of the
button, it will call a Stimulus controller to handle its on-click event and manage the
color-changing process.

Hence, React will trigger its on-click event, triggering the Stimulus controller to
update the box’s color when the button is clicked. Since the button is within a
Turbo frame, this will happen without reloading the page.

However, to ensure consistent UI components across all LoopOS projects, most ap-
plications use the LoopOS SDK. The SDK acts as a centralized repository for UI
components, enabling developers to easily import and customize the desired ele-
ments. Instead of creating custom button components for each application, devel-
opers can simply import the pre-built button component from the SDK and specify
the necessary attributes, such as the desired icon, size, and Stimulus action.

This approach simplifies the development process and promotes consistency across
the platform. The CSS styles and parent React Components remain within the
LoopOS SDK, while the application-specific React Component that imports the
button component and the Stimulus controller resides in the Network Manager.

This allows the Network Manager to control the button’s behavior without concern-
ing itself with the underlying CSS or controller logic.

Thus, all these dependencies and LoopOS SDK must exist in LoopOS UI to aid in

134

Development

populating the aforementioned layouts with interactive components.

Moving on to the layouts themselves, these will be created using View Compo-
nents [69], a framework-agnostic library that promotes a modular and reusable
approach to building user interfaces. It provides a structured way to organize and
encapsulate front-end code, enabling the LoopOS UI to become the single source of
truth for page layout in LoopOS Applications.

While other dependencies may be essential, View Components form the foundation
of this new Engine. Therefore, it is crucial to grasp their core concepts. A View-
Component is essentially a Ruby object that renders using a template. Listings
6.11 and 6.12 showcase the creation of a ViewComponent that accepts a name and
renders it within the template.

class MessageComponent < ViewComponent::Base
def initialize(name:)

@name = name
end

end

Listing 6.11: View Component Class - Basic Example.

<h1>Hello , <%= @name %>!</h1>

Listing 6.12: View Component Template - Basic Example.

The View Component is then embedded in a View, as shown in Listing 6.13.
<%= render(MessageComponent.new(name: "World")) %>

Listing 6.13: View Component Render - Basic Example.

Depending on the request, the Network Manager can render the View Component
with either the respective user or the partner information. This allows for the
creation of both the User Show Page and the Partner Show Page using the same
View Component.

In addition, View Components can accept content through slots, making it possible
to render multiple blocks of content, including other components. Slots can be
defined with renders_one and renders_many, where renders_one specifies a slot
that will be rendered at most once per component and renders_many specifies a
slot that can be rendered multiple times per component. Listing 6.14 illustrates how
a Blog class can declare another View Component.

class BlogComponent < ViewComponent::Base
renders_one :header

class HeaderComponent < ViewComponent::Base

def initialize(name:)
@name = name

end
end

135

Chapter 6

end

Listing 6.14: View Component Class - Slots Example.

Then, Listing 6.15 presents the template of the Blog component, which renders its
header, while Listing 6.16 shows the template of the Header Component.

<%= header %>

Listing 6.15: View Component Blog Template - Slots Example.

<h1>Hello , <%= @name %>!</h1>

Listing 6.16: View Component Header Template - Slots Example.

Finally, the call to the Blog component with a Header component is realized in a
view, as can be seen in Listing 6.17.

<%= render BlogComponent.new do |component| %>
<% component.header(name: "World")%>

<% end %>

Listing 6.17: View Component Render - Basic Example.

In conclusion, LoopOS UI can use View Components to create complex and hierar-
chical UIs. These components can be nested within each other to build layouts, and
they can accept content through slots, making it possible to reuse and customize
components.

The core objective of implementing this new engine in LoopOS applications is to
centralize all front-end functionality within the Engine. To achieve this, I integrated
all the mentioned dependencies into the LoopOS UI and, in the dummy app, only the
ones that did not extend beyond front-end capabilities. Specifically, I implemented
React, Tailwind CSS, Stimulus, Turbo, View Components, and the LoopOS SDK
within the Engine. I only implemented Turbo and Stimulus in the dummy app to
simulate a LoopOS application.

After this, it was possible to move on to the configuration of the asset pipeline.

In the dynamic world of web development, asset pipelines play a crucial role in tack-
ling the intricate challenges that arise as websites evolve. While the basic HTML,
CSS, and JavaScript toolkit form a solid foundation, there is often the integration
or replacement of these core elements, as seen before with React and Tailwind.

Website development encompasses a wide range of challenges. From managing de-
pendencies, which becomes critical as third-party modules are incorporated, often
leading to compatibility issues, to optimizing resources by combining multiple files
into one, often mentioned as efficient bundling. Additionally, compatibility with
older browsers requires creating distinct JavaScript versions.

To solve these issues comes the creation of module bundlers, more specifically Web-
pack [71], the one I employed due to aleady being used in other LoopOS applications.
Its primary function involves resolving imports and effectively managing dependen-
cies to generate a unified, optimized bundle.

136

Development

Through code bundling, Webpack seamlessly combines multiple JavaScript files,
along with their dependencies, into a single file for efficient loading in the browser.
Loaders within webpack facilitate the processing of files beyond JavaScript, such as
stylesheets (CSS/Sass), allowing diverse file types to seamlessly integrate into the
application. Figure 6.49 illustrates the different files bundled into one.

Figure 6.49: Bundling diagram from Webpack website [71].

Webpack offers a suite of optimizations, including minification [42] (removing un-
necessary or redundant data: removing whitespace, shortening variables, etc), code
splitting [56] (creating multiple bundles that can be dynamically loaded at runtime,
so the server only load the assets it requires), and tree-shaking [72] (removing unused
code from bundles), to reduce file size and enhance performance.

Webpack is the JavaScript bundler used in all LoopOS applications. Within the
javascript folder, there is a packs directory that holds multiple entrypoint in the
form of JavaScript files. These files import all the code from the controllers to the
components required for their specific functionality.

137

Chapter 6

As shown in Figure 6.50, the Network Manager application has several packs, each
with its own entrypoint file.

Figure 6.50: Network Manager packs.

When Webpack initializes or detects changes in the JavaScript files, it bundles all
the code and creates a manifest.json file in the application’s public folder. This file
contains entrypoints to the bundled JavaScript code. Figure 6.51 depicts a portion
of the Network Manager manifest file, where the previously mentioned packs have
been split into separate bundles, ensuring code splitting. This allows for loading
specific bundles only when needed, as demonstrated in Listing 6.18.

Figure 6.51: Network Manager manifest file.

138

Development

<%= javascript_pack_tag "application" %>

Listing 6.18: Network Manager - Application pack tag.

This approach provides efficient code loading and improves the overall performance
of LoopOS applications.

One of the more challenging aspects of this setup was the need to manually install
and configure Webpack within the Rails Engine. Additionally, due to the presence
of Webpack in each LoopOS application, there was a need for multiple Webpack
instances, which Webpack is not prepared for, it introduced compatibility issues.
This required careful coordination and configuration to ensure that all Webpack
instances were operating correctly and that code could be shared seamlessly between
the Rails Engine and the applications.

To address this challenge, a two-stage setup was implemented. First, the dummy
app’s Webpack was run, generating the required files in the public folder and creating
a manifest file with those entrypoints. Then, the engine’s Webpack was executed,
and its files were outputted to the applications’ public folder as well, generating
another manifest file merging the entrypoints. This ensured that the dummy app
had access to its own Webpack content and the engine’s Webpack content. This
arrangement enabled the engine to bundle its React and Tailwind components, add
them to the dummy app, and allow the dummy app to use them as regular JavaScript
files without needing React or Tailwind installed. This approach effectively created a
shared asset pipeline between the engine and the dummy app. Listing 6.19 illustrates
the dummy app calling in its HTML file the application pack-tag which contains all
the controllers and components of the application and the loopos-ui pack-tag which
contains all the controllers and components of the Engine.

<%= javascript_pack_tag "application" %>
<%= javascript_pack_tag "loopos -ui" %>

Listing 6.19: Dummy App - Application pack tag.

Thus, after two weeks of setup and successfully testing the Engine in this isolated
environment, only two weeks were left to integrate the LoopOS UI in the Network
Manager and develop the layouts.

Despite the initial success of the two-stage setup, a critical issue emerged upon
implementing the LoopOS UI in the Network Manager. It became apparent that the
asset pipeline was not functioning as expected. This issue arose from a fundamental
flaw in the testing procedure. During the initial testing of the asset pipeline in
the dummy app, no JavaScript files were created within the dummy app itself.
As a result, the assumption that the asset pipeline had successfully merged both
manifest files was incorrect. The Engines manifest file inadvertently replaced the
dummy app’s manifest file, resulting in the dummy app’s JavaScript bundle being
overridden.

After a week of troubleshooting and exploring alternative solutions, I devised a
workaround. Instead of maintaining two separate Webpacks, a single Webpack in-
stance was employed for the entire application. Within the main application pack, a

139

Chapter 6

JavaScript file from the Engine was imported, loading the LoopOS UI components
and controllers. While this workaround provided a functional solution, it lacked the
efficiency of code splitting. To access the LoopOS UI’s controllers and components,
the application pack-tag (Listing 6.18) needed to be invoked, loading all the code
from both the application and the LoopOS UI, potentially affecting performance.

Whoever, this allowed, in the one week I had left, to proceed with the layout imple-
mentation in the Network Manager.

u Layout Implementation
The development process began with creating the main layout View Component.
This component, named LooposUi::LayoutComponent, serves as a reusable building
block for structuring web pages. It encapsulates the three key sections of a web
page: the topbar, the sidebar, and the app content region. Passing these sections
as arguments to the component seamlessly combines them into a cohesive layout
structure.

In the main layout of the Network Manager application, the LooposUi::LayoutCom-
ponent is rendered to generate the overall page structure. The component receives
the topbar and sidebar sections rendered using partials, which are reusable chunks of
Ruby code. It also receives the app content section which is dynamically generated
using the yield keyword, allowing any specific page content to be included. Finally,
it receives user_signed_in and current_user parameters provide information about
the current user’s authentication status and user information. Listings 6.20 and 6.21
showcase the code to implement the LooposUi::LayoutComponent component in the
Network Manager and its creation in the LoopOS UI Engine respectively. Should be
noted, the LooposUi::LayoutComponent has template file to handle this rendering

<%= render LooposUi::LayoutComponent.new(
topbar: render(partial: "admin/navigation/topbar"),
sidebar: render(partial: "admin/navigation/sidebar"),
app_content: yield ,
user_signed_in: user_signed_in?,
current_user: current_user ,
) %>

Listing 6.20: Network Manager - LooposUi::LayoutComponent is used to rendered
the layout structure.

module LooposUi
class LayoutComponent < ViewComponent::Base

include Turbo::StreamsHelper

def initialize(topbar:, sidebar:, app_content:,
user_signed_in:, current_user:)

@topbar = topbar
@sidebar = sidebar
@app_content = app_content

140

Development

@user_signed_in = user_signed_in
@current_user = current_user

end
end

end

Listing 6.21: LoopOS UI - LooposUi::LayoutComponent class.

u Show Layout Implementation
The development in this phase started with the creation of panel component to
render the header and the content. As explained in Setup phase, View Components
allows for slots making it possible to render multiple blocks of content, including
other components. Thus, the Panel Component also creates and renders the Header
and the Content. Listing 6.22 showcases the creation of this class.

module LooposUi
class PanelLayoutComponent < ViewComponent::Base

include Turbo::StreamsHelper

renders_one :header_layout , "HeaderLayoutComponent"
renders_one :content_layout , "ContentLayoutComponent"

def initialize()
end

class HeaderLayoutComponent < ViewComponent::Base
def initialize(layout:)

@layout = layout
end

end

class ContentLayoutComponent < ViewComponent::Base
def initialize(layout:)

@layout = layout
end

end
end

end

Listing 6.22: LoopOS UI - LooposUi::PanelLayoutComponent class.

Then, each of these classes has a template. While the Panel component template
renders the header and the content (as seen in Listing 6.23) the Header and the
Content components template render their layout (as seen in Listing 6.24).

<div id="app_layout_frame" class="form -layout">
<%= header_layout %>
<%= content_layout %>

141

Chapter 6

</div >

Listing 6.23: LoopOS UI - LooposUi::PanelLayoutComponent Template.

<%= @layout %>

Listing 6.24: LoopOS UI - Header and Content Template.

Following, the Network Manager uses this View Component in the User and Partner
Show page to render them. Listing 6.25 showcases this implementation in the User
Show Page.

<%= render LooposUi::PanelLayoutComponent.new do |
component| %>

<% component.header_layout(layout: render(
partial: "admin/users/

header",
locals: { user: @user},

)) %>
<% component.content_layout(layout: render(

partial: "admin/users/
content",

locals: { user: @user },
)) %>

<% end %>

Listing 6.25: LoopOS UI - Header and Content Template.

Although simple at first, this is the objective of employing a progressive implemen-
tation. In this first phase, the View Components will receive the entire content of
each partial and render it as seen before. However, when at the end of the devel-
opment the Network Manager will only call for what it desires and the LoopOS UI
will built it. Listing 6.26 illustrates a snippet on how the User Show Page in the
Network Manager might request LoopOS UI to built its page, where the left header
action section has breadcrumbs that show the current location in the application
hierarchy. The right header action section has two actions: Edit and Delete. The
left header info section displays the user’s name, email, partner, and user groups.
The right header info section displays the user’s invitation and updated timestamps.
The content section has three tabs: Info, Configurations, and User Scope.
<%= render LooposUi::PanelLayoutComponent.new do |component

| %>
<% component.left_header_action_section(

breadcrumbs: [
{ "User Management" => "" },
{ "Users" => "" },
{ "#{@user.full_name}" => admin_user_path },

]
)%>
<% component.right_header_action_section(

142

Development

actions: [
{ label: "Edit", url: edit_admin_user_path(

current_user) },
{ label: "Delete", url: admin_user_path(

current_user), method: :delete , data: { confirm:
"Are you sure?" } },

]
)%>
<% component.left_header_info_section(

title: {name: "User", is_editable: true},
email: current_user.email ,
partner: current_user.partner ,
tag_list: [

{ user_groups: current_user.user_groups },
]

)%>

<% component.right_header_info_section(
additional_info: [

{ label: "Invited At", value: current_user.
invited_at },

{ label: "Updated At", value: current_user.
updated_at },

]
)%>

<% component.content_section(
tabs: [

{name: "Info", icon: "fa-info", partial: user_info
},

{name: "Configurations", icon: "fa-gears", partial
: user_configurations},

{name: "User Scope", icon: "fa-shield", partial:
user_scopes},

]
)%>

<% end %>

Listing 6.26: LoopOS UI - User Show Page possible implementation.

143

Chapter 6

u Sidebar Layout Implementation & Refine
Due to the time constraint, the final component developed was the Sidebar. Al-
though appearing simple, it was a complex component since it was the first View
Component builder.

In the absence of final sidebar mockups from the Network Manager, I analyzed the
mockups from Core and Hubs to establish the sidebar’s structure. As depicted in
Figure 6.52, the sidebar can be divided into two sections: the Top Sidebar and
the Bottom Sidebar. The Top Sidebar houses all primary navigation elements,
while the Bottom Sidebar contains helper items and a home page icon. Despite
the incomplete development of the Bottom Sidebar elements due to the absence of
finalized mockups, their implementation will be straightforward in the future due
to the logical approach employed during the creation of the Sidebar Layout View
Component.

Figure 6.52: Sidebar Main Anatomy.

Secondly, the primary navigation items identified before can be categorized into two
groups: Drawer items and Single items.

144

Development

Drawer items, depicted in Figure 6.53, do not immediately navigate to a specific
page but expand to reveal multiple subitems upon hovering. These drawers consist
of an icon, a title, a subtitle, and corresponding subitems, each associated with a
distinct redirect.

Figure 6.53: Core: Sidebar Mockups - Item with drawer open.

Single items, illustrated in Figure 6.54, redirect to specific pages upon clicking
and display a tooltip when hovered. These items contain an icon, a name, and a
redirect.

Figure 6.54: Core: Sidebar Mockups - Item without drawer.

145

Chapter 6

Moreover, Drawer or Single items icons should be dynamically highlighted to indicate
the current page the user is on. As shown in Figure 6.55, the “Items” icon should
be highlighted since the user is currently viewing the “Items” page. Thus, when
building the items, they should receive that page’s controller (or controllers in the
case of Drawers).

Figure 6.55: Core: Sidebar Mockups - Item highlight.

To ensure compliance with the non-functional security requirement, each application
should implement a mechanism to control item visibility. This can be achieved by
incorporating a lambda function (an anonymous function that takes any number of
arguments but can only have one expression), can_view, within each item and sub-
items. Each application can then use this variable to determine whether a particular
item should be rendered based on user permissions. For instance, the Hubs employs
Pundit (a tool referenced in Section 4.4) for role-based access control, while Core
and Network Manager do not currently implement such mechanisms, thus granting
them the liberty to implement this requirement further on.

In addition, all item paths are provided to the corresponding View Component
through helper methods defined in the routes file. For instance, the User Show page
in the routes file is defined as admin_user_path. These helper methods are sent
to the View Component as lambda functions. These lambda functions, such as the
can_view function, must be triggered by a call method to be executed.

All LoopOS UI components also leverage the View Components framework to main-
tain modularity and self-sufficiency. This entails each component being separate and
capable of rendering itself, ensuring each component possesses its own rendering
method.

Furthermore, given the substantial overlap in components between Drawer and Sin-
gle items, creating a parent class establishes an aggregation relationship, promoting

146

Development

code reusability and maintainability. This parent class encapsulates common func-
tionalities, allowing Drawer, Single, and any future items (such as the helper item
for the Bottom Sidebar) to inherit and extend these features and rendering methods.
Figure 6.56 presents a Class Diagram with these items.

Figure 6.56: Sidebar Items Class Diagram.

The Drawer item and the Single item each have their distinct rendering mechanisms.
This is achieved by having separate files with the same name of the class file but
with an .html.erb extension.

Starting with the functionality of the Drawer Item, its template initially checks if
the current controller operating on the page is included in the target_controllers

147

Chapter 6

array. If it is, the button is highlighted.

Next, the template links the button’s ID to the corresponding modal element. It
also specifies that hovering over the button should trigger the opening of the drawer.
This is where the Stimulus JavaScript framework comes into play. The command
in Listing 6.27 activates the Engine Bar controller JavaScript file, which holds the
event handlers for displaying and hiding the drawer. In this case, the drawer with
the specified ID will be opened.

data -target -modal=" <%= @id %>"
data -action="click ->enginebar#show mouseover ->enginebar#

show">

Listing 6.27: LoopOS UI - Drawer item Template

The sidebar icon is then displayed even when the drawer is closed, ensuring its
presence. The icon, title, and subtitle are presented inside the drawer, which is
initially hidden. Next, the drawer checks if there are subitems. If so, it iterates
through the array of Subitems View Components and renders their title along with
a link to their respective path if the can_view property returns true.

Thus achieving the mechanics seen in Figure 6.53.

The Single item template employs an approach similar to its Drawer item coun-
terpart to identify the current active controller. It examines whether the current
controller operating on the page is included in the target_controllers array. If it is,
the button associated with that item is highlighted.

Next, the template implements a feature that hides any open drawer when hovering
over the button. This behavior is triggered by the code snippet in Listing 6.28,
which activates the hide method in the Engine Bar controller JavaScript file. Upon
hovering over the button, any drawer is hidden.

data -action="mouseover ->enginebar#hide">

Listing 6.28: LoopOS UI - Single item Template

In contrast to the Drawer item template, the Single item template directly links the
icon to the appropriate path and adds a tooltip with the title. Thus achieving the
mechanics seen in Figure 6.54.

Moving on to the SidebarLayoutComponent itelf, it has two View Component slots,
one for the Top Sidebar and another for the Bottom Sidebar, although this one was
not fully implemented due to the reasons described before.

The TopSidebarComponent receives an array of hashes, each representing a menu
item. If the array is not empty, it calls the map_menu_items method to iterate
through each item and create corresponding View Components based on the presence
of a :subitems key.

The map_menu_items method iterates through the array of hashes and calls the
create_menu_item method for each hash. The create_menu_item method checks
for the presence of the :subitems key in the hash. If the key is present, it creates a
Drawer item. Otherwise, it creates a Single item.

148

Development

This approach allows the TopSidebarComponent to create a menu variable populated
with the desired View Components based on the structure of the received data.
Listing 6.29 illustrates the implementation of these methods.

class TopSidebarComponent < ViewComponent::Base
def initialize(menu: [])

@menu = \textit{map_menu_items}(menu) unless menu.
empty?

end

private

def \textit{map_menu_items}(menu)
menu.map { |item_hash| \textit{create_menu_item}(

item_hash) }
end

def \textit{create_menu_item}(item_hash)
if item_hash[\textit{:subitems}].present?

LooposUi::MenuItemComponent::DrawerItem.new(
item_hash: item_hash)

else
LooposUi::MenuItemComponent::SingleItem.new(

item_hash: item_hash)
end

end
end

Listing 6.29: LoopOS UI - Top Sidebar Class.

Subsequently, the Topsidebar template iterates through its menu variable and ren-
ders each item only if its can_view function returns true. This approach not only
safeguards the possibility of role-based access within the sidebar but also enables
rendering each item according to its respective template, facilitating the seamless
addition of future items if needed. This practice should be consistently adhered to
throughout the development of the LoopOS UI. Listing 6.30 demonstrates the code
used to render the Topsidebar.

<% @menu.each do |item| %>
<%= render item if item.can_view? %>

<% end %>

Listing 6.30: LoopOS UI - Top Sidebar Template.

Finally, the Network Manager implements its Sidebar by calling the LooposUi::Side-
bar View Component as seen in Listing 6.31.

<%= render LooposUi::SidebarLayoutComponent.new do |
component| %>

<% component.top_sidebar(menu: LooposUi::Sidebar.
configuration.top_items) %>

149

Chapter 6

<% component.bottom_sidebar(menu: LooposUi::Sidebar.
configuration.bottom_items) %>

<% end %>

Listing 6.31: Network Manager - Sidebar.

The code provided in Listing 6.31 is the only code required in the sidebar’s view
file for its construction in the Network Manager. This approach ensures a clean and
organized development experience for LoopOS UI users. The content sent to the
top_sidebar and bottom_sidebar elements is neatly managed due to its origin in the
Sidebar configuration class within LoopOS UI, as seen in Listing 6.32. This class
holds the variables responsible for the sidebar content.

module LooposUi
module Sidebar

class Configuration
attr_accessor :top_items , :bottom_items

end

class << self
attr_writer :configuration

def configuration
@configuration ||= Configuration.new

end

def configure
yield configuration

end
end

end
end

Listing 6.32: LoopOS UI - Sidebar Configure.

The configuration class is populated in an initializer file that runs during the initial-
ization of the Network Manager. This ensures that the sidebar content is properly
defined and ready for use when the Network Manager starts while simplifying the
development process and enhancing the overall user experience for LoopOS UI de-
velopers.

With the completion of the Sidebar View Component, the development process
comes to an end. Figure 6.57 provides a Class Diagram illustrating the relationships
between all View Components within the Sidebar.

150

Development

Figure 6.57: LoopOS UI: Sidebar View Component Class Diagran.

151

Chapter 6

u Conclusion
In summary, Figure 6.58 provides a comprehensive Class Diagram depicting the
structure and relationships of all View Components developed for the LoopOS UI.
Additionally, Figure 6.59 illustrates the organization and hierarchy of the View
Components source files, revealing the underlying structure that enabled the creation
of the layouts and their components.

Figure 6.58: LoopOS UI: Class Diagram.

152

Development

Figure 6.59: Final View Components created.

In contrast with the LoopOS Onboarding, since this Engine was not fully developed,
it did not have a final phase for overall testing. However, as explained in Chapter
5, Section 5.2, all this development that came before was split into tasks with its
appropriate lifecycle, including multiple stages of testing by me and colleagues in
1QA and Team Review phase. Chapter 7 - Testing will overview the additional
testing conducted of this application.

While some functional requirements have been successfully met, others are in progress
or require additional attention. The groundwork laid in the current state of LoopOS
UI provides a solid foundation for future development and implementation of the
remaining features. Chapter 7 conducts the testing for LoopOS UI and analyzes the
completion of the requirements.

The subsequent section will delve into a risk analysis of the risks identified in Chapter
4, Section 6.3.

153

Chapter 6

6.3 Post-development Risks Analysis

This final section of the Development chapter aims to conduct a brief analysis of
the risks identified through the progress of this thesis to evaluate the occurrence of
the risks and the effectiveness of the mitigation plans.

[R-1] - Incomplete or unclear requirements leading to incorrect imple-
mentation or unsatisfied customer needs

Mitigation Strategy: Perform detailed requirements gathering and analysis, and en-
sure clear communication with stakeholders throughout the project.

This risk did not manifest itself during development. While it could have greatly
impacted the development, the mitigation plan to perform a detail requirement
gathering and to verify it with the company significantly minimized the probability
of it occurring.

[R-2] - Infeasible requirements that cannot be implemented within the
available resources or technology constraints

Mitigation Strategy: Communicate if a requirement seems unlikely to be completed
on time, to be reassigned or be given help.

Similar to the earlier risk, this issue did not surface during the development phase.
The successful execution of the mitigation plan involved effectively communicating
to the company the necessity for additional support or the potential reallocation of
assigned requirements (in cases where it would affect the successful development of
this thesis).

[R-3] - Poor coding practices that make the code difficult to maintain or
modify.

Mitigation Strategy: Adopt good coding practices and conduct thorough unit testing
to ensure code maintainability and ease of modification.

After undergoing coding reviews conducted by company colleagues and adhering to
coding practices, whether assessed manually or automatically (utilizing Rails gems
such as rubocop), the successful implementation of the mitigation plan ensured that
the risk was effectively avoided.

[R-4] - Insufficient product control leading to deviations from the original
project scope.

Mitigation Strategy: Establish a well-defined development process that includes robust

154

Development

project control measures.

Alongside coding reviews, the product underwent a comprehensive testing approach.
Initially, a colleague from the company conducted the first Quality Assurance (1QA)
test of any given task, followed by an internal team review meeting at the end
of the sprint. Finally, the Product Owner conducted a thorough review. This
development process effectively mitigated the risk of the product deviating from the
defined project scope.

[R-5] - Development System: Lack of experience

Mitigation Strategy: Training on required tools, and leverage experienced team mem-
bers to mentor.

Initially, the lack of experience with Ruby on Rails was mitigated with the tutorials
indicated by the company and additional material I found on my own. Additionally,
the development of minor feature enhancements, bug fixes, and testing across various
applications aided in a better understanding of the web app framework. This allowed
a swift development and testing of LoopOS Onboarding.

For LoopOS UI, the lack of expertise in asset pipelines and frontend development
hindered the development process due to causing delays. Furthermore, since the
creation of Rails Engines that handle frontend development was new to the company,
limited assistance was available, which also delayed the setup of this Engine.

However, having successfully employed the mitigation strategy to the best of my
abilities, the consequences of this risk manifesting itself were reduced.

[R-6] - Communication breakdowns leading to misunderstandings and
missed deadlines

Mitigation Strategy: Foster a culture of open and effective communication among
team members, establish clear expectations and timelines for deliverables and use
communication software or conduct in-person meetings.

Throughout the development process, this mitigation strategy was effectively im-
plemented. Daily meetings with the assigned team and weekly meetings with the
company maintained alignment and ensured everyone was on the same page. Com-
munication software such as Click Up, and Microsoft Teams kept all team members
informed and up-to-date on project progress, facilitating seamless collaboration.

By implementing these strategies, the risk was successfully mitigated.

[R-7] - Tight schedule leading to potential quality issues or delays due to
balancing the internship and university work

Mitigation Strategy: Prioritize tasks based on their level of importance and urgency

155

Chapter 6

and promptly communicate when these deadlines seem infeasible.

The first semester of the thesis allowed for a more flexible schedule due to the reduced
workload at the company. This provided an opportunity to focus more on univer-
sity work and ensure that courses were completed successfully. Additionally, early
collaboration with the company helped to align expectations and identify potential
scheduling conflicts.

During the second semester, the full-time internship at the company required a
dedicated focus on the thesis project. However, the absence of university courses
minimized the workload and allowed for a more concentrated effort on the project.
This allowed for efficient task prioritization and proactive communication with the
company to address potential delays.

Hence, this thesis maintained a balance between university requirements and project
deadlines, ensuring the successful completion of both.

[R-8] - Company’s need to allocate resources to other parts of LoopOS
may lead to delays

Mitigation Strategy: Aid in the development of other project areas so the development
may processed.

As outlined in the Work Plan, there were times when the focus shifted towards
enhancing and testing minor aspects of the Network Manager and other LoopOS
applications. This was driven by the dynamic nature of the company environment,
where adherence to the product lifecycle and the need to complete releases or test
tasks from team members took priority.

However, extending contributions beyond the thesis project’s immediate scope was
advantageous. It ensured the smooth progression of the overall LoopOS development
and yielded several benefits, including improved stability in the environment where
my applications resided. Furthermore, testing other tasks provided an opportunity
to evaluate my work. In return, my contributions were subjected to rigorous testing,
and I gained improvement suggestions from team members.

Therefore, the mitigation strategy helped minimize the risk of delays associated with
resource allocation shifts while also further reinforcing the project’s overall quality

[R-9] - Changes in the way of accomplishing objectives may lead to overall
changes in the thesis (Objectives, State of the Art, Requirements, etc.).

Mitigation Strategy: Maintain thorough documentation of the initial thesis focus
and any subsequent modifications. This documentation serves as a reference point,
ensuring clarity on its evolution and the reasons behind each adjustment.

To address this risk, thorough documentation of the initial thesis focus and any
subsequent modifications was maintained. This documentation served as a valuable
reference point, ensuring clarity on the evolution of the project and the rationale

156

Development

behind each adjustment.

During the first and second semesters of this thesis, there was a change in the ap-
proach to completing the proposed objectives. While all objectives were addressed,
some initial planned functional requirements to be implemented in the Network
Manager became a stand-alone application implementing a new User Experience
(UI) underwent a significant expansion with the creation of LoopOS UI, an Engine
to be employed in LoopOS applications to standardize and streamline the front-end
development.

Thus, comprehensive documentation was maintained to track the project’s progress,
including actors, user stories, and requirements in the Appendix, and the Work Plan
section depicts the change between the initial timeline and the actual implementa-
tion.

Despite needing an overall modification of the thesis, including a new background,
state-of-the-art, and functional and non-functional requirements, the thesis remains
compliant with the objectives. It effectively portrays the evolution of the project
planning and execution throughout the thesis.

157

Chapter 7

Testing

The testing pyramid, also known as the test automation pyramid, essentially de-
scribes the test types the development and Quality Assurance (QA) teams should
incorporate in an automated test suite. Moreover, it defines the order and frequency
of such assessments. The purpose is to provide rapid feedback to ensure that code
changes do not impact existing functionality. Figure 7.1 illustrates these layers.

Figure 7.1: Testing Pyramid [44].

The LoopOS Onboarding and LoopOS UI testing encompasses these layers: Accep-
tance Testing, Integration Testing, and Unit Testing.

Firstly, Acceptance Test [44][38] were the ones conducted at the end of each applica-
tion to test the overall functionality of the product, such as in LoopOS Onboarding,
which will be presented in Section 7.1, along with a final analysis of the functional
requirements identified. Although LoopOS UI did not conduct a full-on Accep-
tance Test, Section 7.4 will also present an analysis of the functional requirements

158

Testing

identified.

The product lifecycle involved multiple phases of testing per task: QA testing, Team
Review testing, and Project Owner (PO) testing. These types of testing fall into the
Integration Test [44][38] of the previously mentioned pyramid, where components are
integrated and tested into the production environment. This testing was conducted
along with the development of the LoopOS Onboarding and LoopOS UI.

Finally, Unit Tests [5][38][44] represent testing conducted on specific code units.
For LoopOS Onboarding, I employed the Rails Gem Rspec [59] and Postman [51] to
test the endpoints. For LoopOS UI, I leveraged the built-in testing methods within
the View Components framework. This specialized testing phase will be detailed in
Sections 7.2 and 7.5 for the LoopOS Onboarding and LoopOS UI, respectively.

Furthermore, I conducted an additional testing phase to test and analyze the Non-
Functional Requirements (NFR) identified, although with limited depth due to the
prioritization of the LoopOS UI development. This testing phase will be detailed in
Sections 7.3 and 7.6 for the LoopOS Onboarding and LoopOS UI, respectively.

This comprehensive testing strategy ensured the delivery of high-quality, reliable,
and functional LoopOS Onboarding and LoopOS UI applications.

7.1 LoopOS Onboarding: Acceptance Tests

As mentioned in Chapter 5, all application development was split into tasks following
the company’s product lifecycle, including multiple stages of testing. However, once
the application was completed, there was a final phase of testing and improvements.
Three main issues/missing features were encountered, which I fixed:

• Missing translations: Cross-language support was implemented by incor-
porating the Rails gem i18n [40], a library employed in other LoopOS appli-
cations. My prior experience with this gem, gained from previous tasks in the
first semester of this thesis, facilitated the development process. I created two
translation files, one for Portuguese and the other for English, containing the
text for buttons, titles, subheadings, and other elements. Invoking these text
elements in their respective locations automatically activated the appropriate
language based on the user’s preference.

• User notification: A functional requirement was added at this stage, where
the user should not need to stay on the Waiting Page to be notified of the
completion of the boilerplate script but instead be able to receive email no-
tifications. Similar to the previous task, I was familiar with this process as
I had previously been tasked with generating a closing shipment PDF and
sending it by email. So, to notify the user of the completed onboarding pro-
cess, I created an email template within the Network Manager. I added an
onboarding_email_template_id field in the Partner Group settings. I also de-
veloped an endpoint within the Network Manager that sends an email based
on the requesting application, fetching the associated Partner Group and its

159

Chapter 7

onboarding_email_template_id value. This approach allowed the Onboarding
to trigger the endpoint without sending any data except for its authentication
token.

• Correct User flow: This was my final fix to the Onboarding application.
At the start of this section, I outlined the development of user states in the
User model: “active”, “inactive”, “invited”, and “onboarding”. I also clarified
that only the “onboarding” state would grant users access to the Onboarding
application. However, this restriction only applies to entering the application,
and in turn, it doesn’t prevent users from navigating back and forth between
the Partner Registration Page and Boilerplate Choice Page. This could hap-
pen intentionally or unintentionally if a Partner, for instance, accidentally
closes their browser. To address this, I decided to use the extra_data, a JSON
parameter that belongs to both the user on the Network Manager and the
Onboarding Application and employed an existing endpoint in the Network
Manager to update the user to synchronize both models. Then, after the Part-
ner Registration Page, I modified the user extra_data to contain “onboarding:
created_partner” and triggered the endpoint to update the user. At the end
of the Boilerplate Choice Page, I changed it to “onboarding: triggered_boiler-
plate,” which overrode the previous state and triggered the endpoint to update
the user again. I then used this new feature to redirect the user to the appro-
priate page and ensure the application flow remained unidirectional.

160

Testing

Thus, I have successfully fulfilled all of the functional requirements I proposed for the
LoopOS Onboarding app, in addition to those later added to the requirements, such
as email notifications and translations. Tables 7.1 and 7.2 revisit these requirements.

Table 7.1: LoopOS Onboarding: Partner Group Functional Requirements.

ID (Priority) Requirement Completion
FR1 (Should) The Partner Group should be able to customize the Onboarding

landing page with their brand’s logo, colors, and styles.
3

FR2 (Must) The Partner Group should be able to define which settings they
want their Partners to fill in during the onboarding process.

3

FR3 (Must) The Partner Group should be able to provide their Partners with
their services created in LoopOS.

3

Table 7.2: LoopOS Onboarding: Partner Functional Requirements.

ID (Priority) Requirement Completion
FR4 (Could) The Onboarding app should be accessible in multiple languages,

including English and Portuguese.
3

FR5 (Must) Partners should be able to register on the Onboarding platform by
providing necessary information such as their brand’s name, logo,
and user-specific details.

3

FR6 (Must) Partners should be able to select from a list of tailored boilerplates
representing specific business logic, generating from App Instances
to LoopOS Flows.

3

FR7 (Should) Partners should be informed about the progress of app creation
through a dedicated wait page.

3

FR8 (Could) Partners should receive an email notification upon successfully com-
pleting the onboarding process.

3

FR9 (Should) Partners should be able to access a list of newly created apps after
completing the onboarding process.

3

161

Chapter 7

7.2 LoopOS Onboarding: Unit Tests

The LoopOS Onboarding endpoints were subjected to two testing phases through-
out their development process: initial security assessment and subsequent content
validation. Table 7.3 provides a comprehensive overview of these endpoints.

Table 7.3: LoopOS Onboarding: Endpoints.

Endpoint Method Description
users/:user_id GET Retrieve information about the user with the

specified user_id.
users/:user_id POST Update information for the user with the spec-

ified user_id.
applications/:application_id/settings GET Retrieve settings for the application with the

specified application_id.
partner_management/partner_groups/

:partner_group_id
GET Retrieve information about the partner group

with the specified partner_group_id.
partner_management/partners POST Create a new partner based on the submitted

data.
loop_os_scripts/boilerplates GET Retrieve a list of boilerplate scripts belonging

to the application that made the request.
loop_os_scripts/trigger_boilerplate/:id POST Trigger the execution of the boilerplate script

with the specified id.
loop_os_scripts/log/:id GET Retrieve log information for the boilerplate

script with the specified log id.
onboarding/email POST Send an email warning on environment setup

completion.

The first testing strategy was employed using Postman [51] to ensure the proper
authentication of the LoopOS Onboarding endpoints. Each endpoint was thoroughly
tested under three distinct scenarios:

• No Authorization: Requests were sent without authentication tokens in the
headers. These requests were expected to fail.

• Invalid Tokens: Requests were sent with invalid authentication tokens. These
requests were expected to result in unauthorized access errors.

• Valid Tokens: Requests were sent with valid authentication tokens obtained
from the LoopOS authorization server (the Network Manager). These requests
were expected to be successful.

The testing process yielded positive outcomes, with all endpoints passing all three
scenarios. Requests without authorization or with invalid authorization tokens trig-
gered appropriate authorization errors, and valid tokens granted access to protected
resources and enabled successful operations.

RSpec [59] was employed to further validate the endpoint’s functionality, a behavior-
driven development (BDD) testing framework specifically designed for Ruby appli-
cations. This approach emphasizes tests being written in a way that describes the
desired behavior of the code rather than the implementation details.

162

Testing

The following will use the Partner Creation endpoint to exemplify these tests, since
it was the most complex to test in this manner. Since authentication was already
tested, authentication-related aspects are excluded here. Instead, the test focuses
on two distinct scenarios:

• Valid Partner Creation: This scenario verifies that a successful Partner
creation results in a created response and the creation of a new Partner with
the provided parameters and the corresponding response.

• Invalid Partner Creation: This scenario ensures that attempting to create
a partner with invalid parameters generates an appropriate error response.

Listing 7.1 presents a portion of the RSpec code used to test the Partner creation
endpoint’s behavior.

RSpec.describe Api::V1::PartnerManagement::
PartnersController , type: :controller do

describe 'POST #create' do

context 'with valid params' do
let(:valid_params) do

{
name: 'Partner Name',
slug: 'partner -slug',
logo: 'path/to/logo.png',
icon: 'path/to/icon.png',
settings: { key: 'value' }

}
end

it 'creates a new partner and associates it with
the user' do

post :create , params: valid_params
expect(response).to have_http_status(:created)
partner = Partner.last
expect(partner).to eq('Partner Name')
expect(partner.slug).to eq('partner -slug')
#other expectations

end
end

context 'with invalid params' do
let(:invalid_params) { { name: 'Invalid Partner' }

}

it 'returns unprocessable entity status and error
messages' do

163

Chapter 7

post :create , params: invalid_params
expect(response).to have_http_status(:

unprocessable_entity)
expect(response.body).to include('errors')

end
end

end
end

Listing 7.1: LoopOS Onboarding - Create Partner Endpoint Testing.

The development of these tests involved incorporating the relevant endpoints into the
swagger file. This file adheres to a standardized format for describing RESTful APIs,
providing detailed information about endpoints, operations, parameters, responses,
and authentication mechanisms. Maintaining this comprehensive documentation
facilitates seamless utilization of the API in the future.

Table 7.4 summarizes the results of these two testing phases.

Table 7.4: LoopOS Onboarding: Endpoint Authentication Testing.

Endpoint Method Authentication Unit Test
users/:user_id GET 3 3

users/:user_id POST 3 3

applications/:application_id/settings GET 3 3

partner_management/partner_groups/
:partner_group_id

GET 3 3

partner_management/partners POST 3 3

loop_os_scripts/boilerplates GET 3 3

loop_os_scripts/trigger_boilerplate/:id POST 3 3

loop_os_scripts/log/:id GET 3 3

onboarding/email POST 3 3

In conclusion, the LoopOS Onboarding endpoints have undergone thorough testing
to ensure their security and functionality. The authentication of these endpoints
has been verified using Postman, while their behavior has been validated through
RSpec tests. Additionally, the endpoints have been documented using Swagger to
facilitate their use.

164

Testing

7.3 LoopOS Onboarding: Non-Functional Require-
ment Tests

y Availability

The availability of LoopOS Onboarding is a top priority, and the framework em-
ployed by deploying and managing the applications ensures this requirement. Firstly,
LoopOS Onboarding is deployed and managed using Kubernetes, which employs the
concept of replicas, which creates multiple instances of the application to handle traf-
fic and maintain service even if one instance fails. This redundancy ensures that
the application remains operational even if a pod or server experiences downtime,
minimizing downtime and user disruptions.

Furthermore, LoopOS Onboarding is hosted on DigitalOcean, a cloud computing
platform, that guarantees an uptime of 99.95% [26]. This uptime commitment,
coupled with Kubernetes’s replication capabilities, translates to a near-guaranteed
application availability, ensuring users can access LoopOS Onboarding without in-
terruptions.

y Performance

LoopOS Onboarding relies heavily on API endpoints to facilitate user interactions
and data retrieval. Optimizing these calls is crucial to enhance overall performance
and user experience. Here are some effective strategies to achieve this:

• Minimize API Requests: Concise and efficient API calls are essential for
responsive onboarding experiences. Combining multiple data requests into a
single API call whenever possible minimizes the overhead of establishing and
managing multiple connections. For instance, the login process was enhanced
by incorporating user state information directly into the initial authentication
response. This eliminates the need for separate requests to fetch user state.

• Pagination: When dealing with extensive datasets, pagination is a valuable
tool for efficient data retrieval. Instead of loading the entire dataset at once,
pagination allows for fetching data in manageable chunks, preventing unnec-
essary data transfer and improving page load times. For example, fetching
the available boilerplates for a specific application only retrieves the relevant
subset.

• Caching for Frequently Accessed Data: Server-side caching plays a piv-
otal role in enhancing performance by storing frequently requested data. Caching
is implemented across various endpoints, such as application settings, accessed
multiple times and therefore benefiting from this strategy.

By adopting these optimization strategies, LoopOS Onboarding can achieve faster

165

Chapter 7

response times, reduced data transfer, and a more streamlined user experience,
making it a more efficient and user-friendly onboarding tool.

I employed the Developer Tools integrated into the Google Chrome browser to mea-
sure the loading times for the different web pages. Between each test, the browser’s
cache was cleared to ensure consistency. Twenty measurements were taken for each
page. Figure 7.2 presents the recorded values in a Measure/Time (seconds) plot.
A Critical Area was added to this plot highlighting the region where values within
it signify a failure to meet the minimum load time of 2.5 seconds. This value was
determined in Chapter 4 - Requirements & Risk, based on the average page load
time in 2023 is 2.5 seconds on desktop [67] [49] [60].

0 2 4 6 8 10 12 14 16 18 20

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Critical Area

Measurement

T
im

e
(s

ec
on

ds
)

Landing
Registration

Boilerplate Choice
Waiting

Figure 7.2: LoopOS Onboarding: Performance Testing - Measurement/Time Plot.

166

Testing

Finally, the averages and standard deviations of the loading time of each page were
calculated. The results are presented in Table 7.5, where seconds are abbreviated
with “s”.

Table 7.5: LoopOS Onboarding: Performance Testing - Average and Standard De-
viation Metrics.

Page Avg Std Result
Landing Page 1.46 s 0.189 s 3

Partner Registration Page 2.03 s 0.323 s 3

Boilerplate Choice Page 1.51 s 0.287 s 3

Waiting Page 1.48 s 0.253 s 3

While all pages achieved an acceptable average loading time of less than 2.5 sec-
onds, the Partner Registration Page requires further optimization to ensure optimal
performance under real-world conditions.

The current testing methodology used a simplified Partner Group settings schema,
limiting the number and complexity of settings rendered for partner creation. How-
ever, in realistic scenarios, as discussed in Chapter 6, the Partner Registration Page
will encounter more extensive and diverse settings, potentially impacting loading
performance.

Furthermore, these tests were conducted in a controlled environment without con-
currency. While the Kubernetes architecture mitigates this issue to some extent
through its Load Balancer, with traffic redirection to available pods, a more thor-
ough evaluation requires testing under varying concurrency levels.

In conclusion, comprehensive testing should be implemented to assess the Partner
Registration Page’s performance under diverse concurrency scenarios and using dif-
ferent Partner Group settings schemas. This will provide a better understanding of
how this page handles real-world traffic patterns and ensures its loading performance
remains efficient while rendering various settings for partners to fill.

167

Chapter 7

7.4 LoopOS UI: Acceptance Tests

Moving on to the testing of LoopOS UI, it s important to mention that I have not
fulfilled all the functional requirements I proposed for the LoopOS UI Engine. Table
7.6 revisit these requirements.

Table 7.6: LoopOS UI: App Developer Functional Requirements.

ID (Priority) Requirement Completion
FR10 (Must) Enable App Developers to seamlessly integrate the LoopOS

UI Engine into their applications.
3

FR11 (Must) Support a progressive implementation approach for rendering
components.

3

FR12 (Must) Provide App Developers with the ability to dynamically im-
plement sidebars using LoopOS UI.

3

FR13 (Should) Provide App Developers with the ability to dynamically im-
plement the header of show pages using LoopOS UI.

7

FR14 (Could) Provide App Developers with the ability to dynamically im-
plement the content of show pages using LoopOS UI.

7

FR15 (Could) Provide App Developers with the ability to dynamically im-
plement the header of index pages using LoopOS UI.

7

FR16 (Could) Provide App Developers with the ability to dynamically im-
plement the content of index pages using LoopOS UI.

7

Analyzing the Functional Requirements that were completed:

• FR10: Integration with applications has been successfully addressed, enabling
app developers to seamlessly integrate the LoopOS UI Engine into their appli-
cations. Further integration testing in other LoopOS applications and adjust-
ments to the asset pipeline are still needed, but the foundation for integration
with LoopOS has been established.

• FR11: The current development method in LoopOS UI allows developers
in LoopOS Core and LoopOS Hubs to implement a dynamic Sidebar and
their Show and Index pages. Although implementing these pages currently
involves sending their full content, it provides a functional starting point, for
progressive development on these apps.

• FR12: Dynamic Sidebar Implementation has been completed as best as pos-
sible. The development of mockups for the bottom sidebar will continue to
drive advancements in this component.

However, unfortunately, due to time constraints, FR13 to FR16 could not be com-
pleted. Nevertheless, comprehensive planning and documentation, including possi-
ble implementations, have been undertaken. The Sidebar’s implementation is an
illustrative example for developers to follow, showcasing the path to developing and
implementing Show and Index pages through the Panel Layout View Component.

168

Testing

7.5 LoopOS UI: Unit Test

Unit testing for the LoopOS UI was conducted by focusing on the developed View
Components. View Components have a dedicated testing framework that simplifies
the testing process. Similar to RSpec, its a behavior-driven development (BDD)
testing framework, which emphasizes tests being written in a way that describes the
desired behavior of the code rather than the implementation details.

This framework also provides a comprehensive guide covering various aspects such as
unit testing components, testing slots, using previews as test cases, testing compo-
nents with behaviors, and offering examples and code snippets to illustrate different
testing scenarios and best practices for View Component testing in Rails applica-
tions.

Listing 7.2 demonstrates a code snippet that exemplifies testing the creation of
the SingleItem View Component and ensuring that the provided hash is correctly
incorporated into the template.

test "renders single item component" do
item_hash = {

id: 1,
title: "Example Item",
icon: "example -icon",
target_controllers: ["example_controller"],
can_view: -> { true },
path: -> { "/example_path" }

}

render_inline(LooposUi::MenuItemComponent::SingleItem.
new(item_hash: item_hash))

assert_selector(".tooltip.tooltip --right p", text: "
Example Item")

more asserts
end

Listing 7.2: LoopOS UI - SingleItem View Component Testing.

169

Chapter 7

The View Components that underwent the most extensive testing were the Item-
Component and the DrawerComponent. Table 7.7 provides a comprehensive overview
of the test cases for both components and their respective outcomes.

Table 7.7: LoopOS UI: View Components Test Cases.

Test Case Description Result
Rendering Basic

Structure
Verify that the component renders with the correct HTML
structure elements (title, subtitle, icon, tooltip, etc).

3

Link Generation Check that the link is generated with the correct href attribute
based on the provided path.

3

Active State Test whether the component applies the “active” class
(core-button-borderless–active) when the current controller
matches one of the target controllers.

3

Inactive State Verify that the “active” class is not applied when the current
controller does not match any of the target controllers.

3

Visibility Based on can_view, ensure that the component is visible only
when the can_view lambda returns true.

3

Mouseover
Action

Ensure the mouseover action triggers the specified JavaScript
method (enginebar#hide or engine#show depending if its
Drawer of Single).

3

It should be noted that in the MouseOver Action Test Case, it is not possible to
directly test it using View Components Testing. At most, it is possible to assert
that the HTML has the correct data controller linked, as shown with the code in
Listing 7.3.

However, with the use of RSpec, it is possible to test the controller itself. Thus,
combining the two tests ensures this Test Case is a success.

assert_selector(".sidebar__link[data -action='
mouseover ->enginebar#hide '][data -controller='
enginebar ']")

end

Listing 7.3: LoopOS UI - SingleItem and DrawerItem View Component Testing.

In conclusion, unit testing was conducted on the LoopOS UI, particularly on View
Components. These test cases examined essential aspects like rendering, link genera-
tion, active/inactive states, visibility based on conditions, and actionsthus validated
the functionality and behavior of the developed LoopOS UI components.

170

Testing

7.6 LoopOS UI: Non-Functional Requirement Tests

y Performance

I leveraged the Developer Tools integrated into the Google Chrome browser to eval-
uate the loading times for different web pages. To maintain consistency, I cleared
the browser’s cache between each test. I conducted these tests on two Network Man-
ager environments: one with LoopOS UI and another in an older version without
LoopOS UI.

Figure 7.2 presents the recorded values in a Measure/Time (seconds) plot. A Critical
Area was added to this plot highlighting the region where values within it signify a
failure to meet the minimum load time of 2.5 seconds. This value was determined
in Chapter 4 - Requirements & Risk, based on the average page load time in 2023 is
2.5 seconds on desktop [67] [49] [60]. Additionally, the legend uses the abbreviations
“w/” for with LoopOS UI and “w/o” for without LoopOS UI.

0 2 4 6 8 10 12 14 16 18 20

1.5

2

2.5

3

3.5

4

4.5
Critical Area

Measurement

T
im

e
(s

ec
on

ds
)

User Page w/
Partner Page w/
User Page w/o

Partner Page w/o

Figure 7.3: LoopOS UI: Performance Testing - Measurement/Time Plot.

171

Chapter 7

Finally, the averages and standard deviations of the loading time of each page were
calculated. The results are presented in Table 7.8, where seconds are abbreviated
with “s”.

Table 7.8: LoopOS UI: Performance Testing - Average and Standard Deviation
Metrics.

Page Avg Std Result
User Page with LoopOS UI 3.47 s 0.465 s 7

Partner Page with LoopOS UI 2.89 s 0.616 s 7

User Page without LoopOS UI 2.01 s 0.136 s 3

Partner Page without LoopOS UI 1.73 s 0.154 s 3

It should be noted that LoopOS UI is not yet fully complete, so this test aimed
to assess whether its use significantly delays the rendering of the Network Manager
pages.

While these test results were not promising, a more definitive assessment will require
subjecting LoopOS UI to scenarios involving the creation of increasingly complex
components. This is because, in theory, LoopOS UI will render components of higher
complexity faster due to its modular implementation.

Furthermore, despite its incomplete state, using LoopOS UI is expected to enhance
performance due to using Turbo [68] throughout LoopOS Applications. Turbo’s
primary function is to prevent page reloads when a user initiates an action, such as
navigating to a different page. Instead, Turbo dynamically updates the page content
without requiring a full refresh, significantly improving user experience.

LoopOS UI’s architecture is based on the modular reuse of components, which aligns
perfectly with Turbo’s capabilities. This standardization and reusability will allow
Turbo to be employed to its fullest potential, further streamlining the rendering of
front-end elements and enhancing overall performance across LoopOS Applications.

y Security

LoopOS UI employs Role-Based Access Control (RBAC) to safeguard user access to
different pages. When a user lacks the necessary permissions, the sidebar will not
display links/buttons corresponding to these pages. As LoopOS UI is developed, the
Show and Index pages will incorporate RBAC checks directly within their respective
builders. This means that even if a user cannot access a page through the sidebar,
they will be unable to navigate to it directly using the URL.

Any additional security measures fall within the applications where the LoopOS UI
is inserted.

The sidebar was thus tested to ensure that items and subitems were appropriately
hidden when they were not allowed to be viewed. Table 7.9 summarizes the tests
performed and their results.

172

Testing

Table 7.9: LoopOS UI: Security Testing.

Class Test Case Description Expected Outcome Result
SingleItem Create SingleItem with can_view set to

true
Appear in Sidebar 3

SingleItem Create SingleItem with can_view set to
false

Does not appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to true and subitems

Appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to false and subitems

Does not appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to true and without subitems

Appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to false and without subitems

Does not appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to true and all subitems set to true

All appear in Sidebar 3

DrawerItem Create DrawerItem with can_view set
to true and some subitems set to true

Only allowed appear in
Sidebar

3

DrawerItem Create DrawerItem with can_view set
to true and all subitems set to false

Only DrawerItem appears
in Sidebar

3

All test cases were executed successfully. However, the last test case, “Create
DrawerItem with can_view set to true and all subitems set to false” raised a ques-
tion: should a DrawerItem appear if all subitems are not allowed to be viewed?
Additionally, should a DrawerItem have no subitems, should it appear?

To address these concerns, I added logic to prevent the rendering of DrawerItems
that lack subitems or where all subitems are not visible to the user. This logic should
be clearly explained in future documentation for the Sidebar View Component to
ensure developers understand the behavior and do not mistakenly interpret a missing
DrawerItem as an error.

173

Chapter 8

Conclusion

This thesis has successfully developed and enhanced key components within the
LoopOS technological ecosystem, namely the LoopOS Onboarding and LoopOS UI.
The project involved a comprehensive examination of development processes, risk
mitigation strategies, and testing approaches.

Effective risk mitigation strategies were employed throughout the development phases,
including documentation of changes, open communication, and task prioritization.
These strategies ensured alignment with defined project objectives. A robust test-
ing approach, encompassing unit tests and non-functional requirement assessments,
validated the reliability and performance of the developed applications. The cul-
mination of these efforts resulted in the successful completion of the LoopOS On-
boarding and laid the groundwork for future LoopOS UI applications, significantly
contributing to LoopOS.

The LoopOS Onboarding application has reformed the onboarding process for Part-
ners and their environments, replacing the manual and time-consuming approach
previously handled through the Network Manager. This streamlined solution em-
powers Partners to effortlessly create an account and generate their entire LoopOS
environment with a single click, tailored to the specific needs of their associated Part-
ner Groups. This flexibility addresses Partners’ diverse needs and unique business
models, enabling seamless integration into LoopOS.

LoopOS UI has effectively established a framework for creating modular and main-
tainable user interfaces within the LoopOS ecosystem, ensuring a consistent and
cohesive user experience across all LoopOS applications. This is achieved by adopt-
ing a View Components architecture, which successfully encapsulates UI elements
into self-contained components and layouts that promote reusability and enhance
the codebase’s overall organization. Thus, establishing a single source of truth is
necessary throughout all LoopOS applications where LoopOS UI is and will be em-
ployed.

174

Conclusion

Furthermore, the planning and development of LoopOS UI lays a foundation for
future work:

• Extended LoopOS UI Functionality: Future endeavors should prioritize
fulfilling remaining functional requirements for LoopOS UI, particularly the
dynamic implementation of headers and content for Show and Index pages.
This would enhance the flexibility and customization capabilities of LoopOS
UI across various applications.

• Full Integration Testing: While LoopOS UI has undergone integration test-
ing involving the Network Manager, comprehensive testing with other LoopOS
Applications is essential to ensure seamless interoperability and integration.

• Security Refinement: While security measures have been implemented,
ongoing work on LoopOS UI must involve continuous security refinement.
This includes employing Pundit, as mentioned in Chapter 4 - Requirements
& Risks, to establish policies and standardize role-based access control across
all LoopOS applications.

• Automation Testing: The implementation of automated testing tools and
frameworks, such as Rspec [59] and View Component Testing [70], should
remain a core aspect of LoopOS UI development.

• User Feedback Integration: As proposed in Chapter 3 - State of the Art,
the Network Manager could incorporate user feedback mechanisms that would
provide valuable insights for iterative improvements, ensuring user satisfaction
and usability. Future development of LoopOS UI could aid in achieving this
objective by adding it to other LoopOS applications.

Building upon the existing capabilities of the Network Manager, I propose in Chapter
3 - State of the Art, the integration of comprehensive monitoring functionalities,
aligning with similar tools used for application deployment and management. In
the first semester of this thesis, I had defined the following functional requirements
for monitoring App Instances:

• Real-time monitoring of infrastructure metrics: Monitor CPU and
memory usage of all App Instances in real-time, providing a dynamic view
of resource utilization.
Historical monitoring of infrastructure metrics: View historical data

for CPU and memory usage of all App Instances, allowing for retrospective
analysis and trend identification.
Resource alarm notification: Configure and receive timely notifications

regarding resource-related issues, such as excessive CPU or memory consump-
tion, to proactively address performance bottlenecks.

Given the ability to interact with the Kubernetes pods hosting these App Instances
and the presence of passive monitoring tools like Prometheus [52] within the Kuber-
netes environment, it is feasible to retrieve relevant metrics and seamlessly integrate

175

Chapter 8

them into the Network Manager’s interface. This integration will enhance the over-
all observability and management capabilities of LoopOS, empowering users to gain
deeper insights into App Instance performance and resource consumption.

In collaboration with the Design Team, I aided in developing mockups showcasing
the envisioned App Instance monitoring interface. Figure 8.1 illustrates the pro-
posed App Instance dashboard, providing a clear and intuitive representation of
real-time and historical resource utilization metrics. Additionally, Figure 8.2 de-
picts the anticipated design for resource alarm notifications, ensuring prompt and
informative alerts regarding performance issues.

Figure 8.1: Network Manager Mockups - App Instance Dashboard.

176

Conclusion

Figure 8.2: Network Manager Mockups - App Instance Alerts.

However, thorough evaluation and implementation studies are necessary to confirm
its feasibility and suitability within the LoopOS ecosystem.

In conclusion, the thesis has successfully contributed to the LoopOS ecosystem’s
evolution into a more robust, feature-rich, and user-friendly platform. The develop-
ment of LoopOS Onboarding and LoopOS UI have addressed the identified problems,
including the impracticality of manual Partner onboarding, manual environment in-
stantiation, and the user-unfriendliness of the Network Manager. LoopOS Onboard-
ing has automated the environment creation process, while LoopOS UI has taken
the first steps to enhance the overall user experience across all LoopOS applications.

177

Chapter 8

On a final note, my internship journey has been an invaluable learning experience
that has provided me with a comprehensive understanding of the product devel-
opment lifecycle, from conceptualization and planning to hands-on implementation.
The opportunity to work on real-world projects with clients has sharpened my ability
to understand their unique needs and translate them into functional solutions.

I refined my proficiency in building robust and scalable web applications through my
work with technologies like Ruby on Rails. I was also exposed to DevOps practices
that have given me valuable insights into the strategies necessary to ensure these
applications’ efficient deployment and maintenance.

Working alongside skilled professionals has equipped me with practical insights into
effective communication, agile methodologies, and the importance of a cohesive team
in delivering successful projects.

This internship has not only deepened my technical knowledge but has also enriched
my understanding of the collaborative and dynamic nature of the software devel-
opment industry. It has also strengthened my soft skills, particularly my ability to
work effectively as part of a team, meet deadlines, and solve problems creatively.

This transformative chapter in my professional growth has prepared me to con-
fidently pursue a career in software development by actively contributing to the
creation of innovative and impactful solutions, exemplified by projects like LoopOS.

178

References

[1] 15Five (2023). Don’t just measure performance. manage it, with heart.
https://www.15five.com/why-15five/. Accessed: 2023-11-10.

[2] Arora, R., Mutz, D., and Mohanraj, P. (2023). Innovating for The Circular
Economy: Driving Sustainable Transformation. CRC Press. Accessed: 2023-20-
03.

[3] Authors, T. K. (2023). kubernets. https://kubernetes.io/. Accessed: 2023-
30-05.

[4] AvoHQ (2023). Build ruby on rails apps 10x faster. https://avohq.io/. Ac-
cessed: 2023-07-04.

[5] AWS (2022). What is unit testing? https://aws.amazon.com/what-is/unit-
testing/. Accessed: 2024-01-02.

[6] Azure, M. (2023). Azure app service. https://azure.microsoft.com/en-
us/services/app-service/. Accessed: 2023-11-10.

[7] BambooHR (2023). Hr, payroll, benefits. the complete hr software.
https://www.bamboohr.com/. Accessed: 2023-11-10.

[8] Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice.
SEI series in software engineering. Addison-Wesley. Accessed: 2023-17-05.

[9] Batsov, B. and contributors, R. (2023). Rubocop - the ruby linter/formatter
that serves and protects. https://rubocop.org/. Accessed: 2023-26-04.

[10] Beck, K. and et al. (2001). Manifesto for agile software development. https:
//agilemanifesto.org/principles.html. Accessed: 2023-12-04.

[11] Carr, M., Konda, S., Monarch, I., Ulrich, F., and Walker, C. (1993). Taxonomy-
based risk identification. Technical Report CMU/SEI-93-TR-6 ESC-TR-93-183.
Accessed: 2023-03-05.

[12] Clickup (2023). One app to replace them all. https://clickup.com/. Ac-
cessed: 2023-06-30.

[13] Cloud, G. (2023). Google app engine. https://cloud.google.com/appengine/.
Accessed: 2023-11-10.

[14] co., T. L. (2016). Book in Loop: loja em segunda mão de material escolar.
https://bookinloop.pt/. Accessed: 2023-06-03.

179

https://kubernetes.io/
https://avohq.io/
https://rubocop.org/
https://agilemanifesto.org/principles.html
https://agilemanifesto.org/principles.html
https://clickup.com/
https://bookinloop.pt/

Chapter 8

[15] co., T. L. (2019). The Loop Co.: b2b tech solutions. https://www.theloop.
pt/. Accessed: 2023-06-03.

[16] co., T. L. (2021). LoopOS. https://bookinloop.pt/. Accessed: 2023-06-03.

[17] Cohn, M. (2004). User Stories Applied: For Agile Software Development.
Addison-Wesley signature series. Addison-Wesley. Accessed: 2023-17-05.

[18] Commission, E. (2022a). A European Green Deal. https://commission.
europa.eu/strategy-and-policy/priorities-2019-2024/european-green-
deal_en. Accessed: 2023-20-03.

[19] Commission, E. (2022b). Circular Economy Action Plan. https://
environment.ec.europa.eu/strategy/circular-economy-action-plan_en.
Accessed: 2023-20-03.

[20] Commission, E. (2022c). Sustainable Product Initiative. https://ec.europa.
eu/info/law/better-regulation/have-your-say/initiatives/12567-
Sustainable-products-initiative_en. Accessed: 2023-20-03.

[21] Commission, E. (2023). Circular Economy. https://environment.ec.
europa.eu/topics/circular-economy_en. Accessed: 2023-20-03.

[22] CTT (2023). Ctt - correios de portugal. https://www.ctt.pt. Accessed: 2023-
12-20.

[23] datatracker (2012a). Rfc 6749 - the oauth 2.0 authorization framework: 1.3.3.
resource owner password credentials. https://datatracker.ietf.org/doc/
html/rfc6749#section-1.3.3. Accessed: 2023-26-04.

[24] datatracker (2012b). Rfc 6749 - the oauth 2.0 authorization framework:
1.3.4. client credentials. https://datatracker.ietf.org/doc/html/rfc6749#
section-1.3.4. Accessed: 2023-26-04.

[25] De Giovanni, P. and Folgiero, P. (2023). Strategies for the Circular Economy:
Circular Districts and Networks. Routledge-Giappichelli Studies in Business and
Management. Taylor & Francis. Accessed: 2023-23-03.

[26] DigitalOcean (2022). Digitalocean kubernetes service level agreement (sla).
https://docs.digitalocean.com/products/kubernetes/details/sla/. Ac-
cessed: 2023-12-17.

[27] DigitalOcean (2023). Dream it. build it. grow it. https://www.digitalocean.
com/. Accessed: 2023-12-17.

[28] Divante (2019). 10 companies that implemented the microservice architecture
and paved the way for others. https://www.divante.com/blog/10-companies-
that-implemented-the-microservice-architecture-and-paved-the-way-
for-others. Accessed: 2023-10-04.

[29] Docker (2023). Dcoker: Develop faster. run anywhere. https://www.docker.
com/. Accessed: 2023-10-06.

180

https://www.theloop.pt/
https://www.theloop.pt/
https://bookinloop.pt/
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12567-Sustainable-products-initiative_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12567-Sustainable-products-initiative_en
https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12567-Sustainable-products-initiative_en
https://environment.ec.europa.eu/topics/circular-economy_en
https://environment.ec.europa.eu/topics/circular-economy_en
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.3
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.3
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4
https://datatracker.ietf.org/doc/html/rfc6749#section-1.3.4
https://docs.digitalocean.com/products/kubernetes/details/sla/
https://www.digitalocean.com/
https://www.digitalocean.com/
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
https://www.divante.com/blog/10-companies-that-implemented-the-microservice-architecture-and-paved-the-way-for-others
 https://www.docker.com/
 https://www.docker.com/

References

[30] Erl, T. (2008). SOA Design Patterns. The Prentice Hall Service Technology
Series from Thomas Erl. Pearson Education. Accessed: 2023-10-06.

[31] Fernandez, T. (2022). 5 options for deploying microservices.
https://semaphoreci.com/blog/deploy-microservices#option-5-deploy-
microservices-as-serverless-functions. Accessed: 2023-19-04.

[32] Floren, S. (2021). Implementation and analysis of authentication and autho-
rization methods in a microservice architecture : A comparison between microser-
vice security design patterns for authentication and authorization flows. Master’s
thesis, KTH, School of Electrical Engineering and Computer Science (EECS).
Accessed: 2023-03-04.

[33] Foundation, E. M. (2014). Towards the Circular Economy: Accelerating the
Scale-up across Global Supply Chains. https://www3.weforum.org/docs/WEF_
ENV_TowardsCircularEconomy_Report_2014.pdf. Accessed: 2023-20-03.

[34] GrafanaLabs (2023). Operational dashboards for your data here, there, or
anywhere. https://grafana.com/. Accessed: 2023-22-06.

[35] Group, T. P. G. D. (2023). The world’s most advanced open source relational
database. https://www.postgresql.org/. Accessed: 2023-11-10.

[36] Gusto (2023a). App gusto demo. https://app.gusto-demo.com/. Accessed:
2023-11-10.

[37] Gusto (2023b). Hire, pay, and manage your team all in one place.
https://www.gusto.com/. Accessed: 2023-11-10.

[38] headspin (2022). The testing pyramid: Simplified for one and
all. https://www.headspin.io/blog/the-testing-pyramid-simplified-for-one-and-
all. Accessed: 2024-01-02.

[39] Heroku (2023). What is heroku? https://www.heroku.com/. Accessed: 2023-
11-10.

[40] i18n (2023). Internationalization (i18n) library for ruby.
https://github.com/ruby-i18n/i18n. Accessed: 2023-12-25.

[41] Impact (2023). Partnership management platform accelerates growth.
https://impact.com/partnership-management-platform/. Accessed: 2023-11-10.

[42] imperva (2023). What is minification. https://www.imperva.com/learn/per-
formance/minification/. Accessed: 2023-12-29.

[43] Islam, Z. and Ferworn, A. (2020). A comparison between agile and traditional
software development methodologies. Global Journal of Computer Science and
Technology, page 7–42.

[44] Katalon (2020). What is unit testing? https://katalon.com/resources-
center/blog/unit-testing. Accessed: 2024-01-02.

181

https://semaphoreci.com/blog/deploy-microservices#option-5-deploy-microservices-as-serverless-functions
https://semaphoreci.com/blog/deploy-microservices#option-5-deploy-microservices-as-serverless-functions
https://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf
https://www3.weforum.org/docs/WEF_ENV_TowardsCircularEconomy_Report_2014.pdf
https://grafana.com/

Chapter 8

[45] Kirchherr, J., Reike, D., and Hekkert, M. (2017). Conceptualizing the circular
economy: An analysis of 114 definitions. Resources, Conservation and Recycling,
127:221–232. Accessed: 2023-29-03.

[46] Labs, T. (2023). Automate infrastructure on any cloud with terraform.
https://www.terraform.io/. Accessed: 2023-11-10.

[47] Lavanya, N. and Malarvizhi, T. (2008). Risk analysis and management: a vital
key to effective project management. In PMI® Global Congress 2008–Asia Pacific,
Newtown Square, PA. Project Management Institute. Accessed: 2023-03-05.

[48] Leapsome (2023). Build a high-performing and resilient organization.
https://www.leapsome.com/. Accessed: 2023-11-10.

[49] mycodelesswebsite (2023). Website performance statistics. https://
mycodelesswebsite.com/website-load-time-statistics/. Accessed: 2023-
12-17.

[50] PartnerStack (2023). Connect. earn. grow. https://www.partnerstack.com/.
Accessed: 2023-11-10.

[51] Postman (2023). Postman api platform. https://www.postman.com/. Accessed:
2024-01-02.

[52] Prometheus (2023). From metrics to insight. https://prometheus.io/. Ac-
cessed: 2023-22-06.

[53] Pundit (2023). Minimal authorization through oo. https://github.com/
varvet/pundit#readme. Accessed: 2023-12-17.

[54] Rancher (2023a). Monitoring and alerting. https://ranchermanager.docs.
rancher.com/pages-for-subheaders/monitoring-and-alerting. Accessed:
2023-12-17.

[55] Rancher (2023b). Why rancher? https://www.rancher.com/why-rancher.
Accessed: 2023-19-04.

[56] React (2023a). Code splitting. https://legacy.reactjs.org/docs/code-
splitting.html. Accessed: 2023-12-29.

[57] React (2023b). The library for web and native user interfaces. https://re-
act.dev/. Accessed: 2023-12-29.

[58] Risener, K. (2022). A study of software development methodologies. Accessed:
2023-12-04.

[59] RSpec (2023). Behaviour driven development for ruby. https://rspec.info/.
Accessed: 2023-12-25.

[60] Ryan, E. (2023). Website load time statistics: Why speed mat-
ters in 2024. https://www.websitebuilderexpert.com/building-websites/
website-load-time-statistics/. Accessed: 2023-12-17.

182

https://mycodelesswebsite.com/website-load-time-statistics/
https://mycodelesswebsite.com/website-load-time-statistics/
https://prometheus.io/
https://github.com/varvet/pundit#readme
https://github.com/varvet/pundit#readme
https://ranchermanager.docs.rancher.com/pages-for-subheaders/monitoring-and-alerting
https://ranchermanager.docs.rancher.com/pages-for-subheaders/monitoring-and-alerting
https://www.rancher.com/why-rancher
https://www.websitebuilderexpert.com/building-websites/website-load-time-statistics/
https://www.websitebuilderexpert.com/building-websites/website-load-time-statistics/

References

[61] Salesforce (2023). Partner relationship management. https://www.sales-
force.com/products/partner-relationship-management/. Accessed: 2023-11-10.

[62] Services, A. W. (2023). Aws elastic beanstalk. https://aws.amazon.com/elas-
ticbeanstalk/. Accessed: 2023-11-10.

[63] Sommerville, I. (2015). Software engineering. Pearson Education Limited, 10th
edition. Accessed: 2023-08-05.

[64] Stapleton, J. (1997). DSDM, Dynamic Systems Development Method: The
Method in Practice. Addison-Wesley.

[65] Stimulus (2023). A modest javascript framework for the html you already have.
https://stimulus.hotwired.dev/. Accessed: 2023-12-29.

[66] Tailwind (2023). Rapidly build modern websites without ever leaving your
html. https://tailwindcss.com/. Accessed: 2023-12-29.

[67] tooltester (2023). Website loading time statistics (2023). https://www.
tooltester.com/en/blog/website-loading-time-statistics/. Accessed:
2023-12-17.

[68] Turbo (2023). The speed of a single-page web application without having to
write any javascript. https://turbo.hotwired.dev/. Accessed: 2023-12-29.

[69] ViewComponent (2023a). A framework for creating reusable, testable and en-
capsulated view components, built to integrate seamlessly with ruby on rails.
https://viewcomponent.org/. Accessed: 2023-12-25.

[70] ViewComponent (2023b). Testing. https://viewcomponent.org/guide/test-
ing.html. Accessed: 2024-01-02.

[71] Webpack (2023a). A modest javascript framework for the html you already
have. https://webpack.js.org/. Accessed: 2023-12-29.

[72] Webpack (2023b). Tree shaking. https://webpack.js.org/guides/tree-shaking/.
Accessed: 2023-12-29.

[73] Zaporozhets, D. and Sijbrandij, S. (2023). Open source software to collaborate
on code. https://gitlab.com/gitlab-org. Accessed: 2023-12-17.

[74] Zoho (2023). Zoho workplace partner program.
https://www.zoho.com/mail/help/partnerportal/partner-portal.html. Accessed:
2023-11-10.

183

https://www.tooltester.com/en/blog/website-loading-time-statistics/
https://www.tooltester.com/en/blog/website-loading-time-statistics/
https://gitlab.com/gitlab-org

Appendices

184

Appendix A

Actors: Intermediate Defense

• LoopOS Admin: The super user of LoopOS who is responsible for configur-
ing the Network Manager. Typically, this role is assigned to the engineering
team, who manages the infrastructure and available services.

• LoopOS Configurator: A user of the Network Manager who helps the part-
ners configure their platform. This role has access to lower-level functionalities
and focuses more on operational tasks.

• Partner Admin: User(s) with administrative privileges who manage the
partner account. All requirements for this role pertain only to the specific
partner they are associated with. For example, the partner admin can only
manage the UserGroups directly related to their partner account.

• Partner User: App workers and regular users (consumers) associated with
the partner account.

185

Appendix B

User Stories: Intermediate
Defense - v1

AppReleases

a) As a LoopOS Admin, I want to setup instructions for automatic release regis-
tration, so that I automate the release process.

AppInstances

a) As a LoopOS Admin, I want to view, associate, and dissociate a database
server to an app instance, so that I manage the infrastructure on which the
data is recorded.

DatabaseServer

a) As a LoopOS Admin, I want to create database servers, so that I define and
manage the database infrastructure.

b) As a LoopOS Admin, I want to choose the main database server, so that I
designate a primary server for the database infrastructure.

c) As a LoopOS Admin, I want to delete database servers without any associa-
tions, so that I can clean up unnecessary resources.

d) As a LoopOS Admin, I want to view the ID of a database server, so that I
can manage the databases used by those instances.

e) As a LoopOS Admin, I want to view, associate, and dissociate app instances
to a database server, so that I can manage their placement and distribution.

f) As a LoopOS Admin, I want to view, associate, and dissociate partners to a
database server, so that I can manage the ownership or association of the server.

186

User Stories: Intermediate Defense - v1

g) As a LoopOS Admin, I want to view and edit the configuration settings of a
database server, so that I can configure the database-specific settings.

h) As a LoopOS Admin, I want to view and edit the name of a database server,
so that I can easily identify it.

Partners

a) As a LoopOS Admin, I want to view, associate, and dissociate database servers
that are associated with a partner, so that I can manage the ownership or
association of the database server.

b) As a LoopOS Admin, I want to view, associate, and dissociate partner services
offered by a partner, so that I can manage partners services.

187

Appendix C

User Stories: Intermediate
Defense - v1

AppReleases

a) As a LoopOS Admin, I want to configure resource alerts, so that I can manage
alert settings such the minimum value threshold of a pod memory use before an
alert is sent.

AppInstances

a) As a LoopOS Admin, I want to be able to decommission app instances, so
that I can remove unused or obsolete instances from the system.

b) As a LoopOS Admin, I want to be able to monitor the CPU and memory usage
of all app instances in real-time, so that I can ensure optimal performance and
resource allocation.

c) As a LoopOS Admin, I want to be able to view the history of CPU and memory
usage for all app instances, so that I can track performance trends and identify
potential issues.

d) As a LoopOS Admin, I want to be able to view and receive resource alarms
for app instances, so that I can promptly address resource-related issues and
ensure the availability and stability of the platform.

Partners

a) As a LoopOS Admin, I want to view, associate, and dissociate partner con-
sumption that is relevant to a partner, so that I can log and track my consump-
tions of services and items.

b) As a LoopOS Admin, I want to view, associate, and dissociate partner docu-
ments that are relevant to a partner, so that I can manage partner’s documents.

188

User Stories: Intermediate Defense - v1

c) As a LoopOS Admin, I want to view, associate, and dissociate partner pay-
ments related to a partner, so that I can manage payments performed by part-
ners.

PartnerConsumption

a) As a LoopOS Admin, I want to view the partner consumption data in LoopOS,
so that I log and track the consumptions of services and items provided by a
partner or service provider, monitor the usage and calculate corresponding prices.

PartnerPayment

a) As a LoopOS Admin, I want to view partner payment data in LoopOS, so
that I can track financial transactions.

PartnerDocument

a) As a LoopOS Admin, I want to be able to view PartnerDocuments, so that I
can access and review important partner-related documents.

b) As a LoopOS Admin, I want to be able to change the invoice status, so that
I can update the status of invoices for proper tracking and management.

c) As a LoopOS Admin, I want to be able to upload invoices, so that I can add
new invoices to the system for record-keeping and processing.

Self-Onboarding:

a) As a LoopOS Admin, I want to be able to create, update and delete a web
page by using the self-onboarding service, so that I can provide a partner their
online own stores on the LoopOS platform.

Templates:

a) As a LoopOS Admin, I want to be able to create and delete templates, so
that I can automate the generation of various components for partners on the
LoopOS platform.

b) As a LoopOS Admin, I want to be able to automatically generate app in-
stances using templates, so that I can provide partners with pre-configured app
instances.

c) As a LoopOS Admin, I want to be able to automatically generate partner
services using templates, so that I can streamline the process of setting up
services for partners.

189

Appendix C

d) As a LoopOS Admin, I want to be able to automatically generate app scopes
using templates, so that I can quickly define the access permissions for partners.

e) As a LoopOS Admin, I want to be able to automatically generate self-onboarding
using templates, so that I can quickly define create a web-page for partners.

f) As a LoopOS Admin, I want to be able to automatically generate user groups
connected to app instances and app scopes using templates, so that I can effi-
ciently manage user access for partners.

g) As a LoopOS Admin, I want to be able to automatically generate flows with
their settings (categories, products, protocols, pricing rules, etc.) if a core exists
using templates, so that I can automate the creation of predefined workflows
for partners.

h) As a LoopOS Admin, I want to tag components created using templates to
indicate their origin, so that I can track and identify the source of these com-
ponents.

190

Appendix D

Functional Requirements:
Intermediate Defense - v1

Table D.1: AppReleases Functional Requirements - v1.

ID Requirement Priority
FR-v1-001 Setup instructions for automatic release registration Must

Table D.2: AppIntances Functional Requirements - v1.

ID Requirement Priority
FR-v1-002 View/Associate/Dissociate DatabaseServer (has one) Must

Table D.3: DatabaseServer Functional Requirements - v1.

ID Requirement Priority
FR-v1-003 Create DatabaseServer Must
FR-v1-004 Delete DatabaseServer without associations Must
FR-v1-005 Choose a main DatabaseServer Must
FR-v1-006 View id Must
FR-v1-007 View/Associate/Dissociate AppInstances (belongs to) Must
FR-v1-008 View/Associate/Dissociate Partners (belongs to) Must
FR-v1-009 View/Edit config_settings Must
FR-v1-010 View/Edit name Must

Table D.4: Partners Functional Requirements - v1.

ID Requirement Priority
FR-v1-011 View/Associate/Dissociate PartnerServices (has many) Must
FR-v1-012 View/Associate/Dissociate Databases (has many) Must

191

Appendix E

Functional Requirements:
Intermediate Defense - v2

Table E.1: AppReleases Functional Requirements - v2.

ID Requirement Priority
FR-v2-001 Configure resource alarms Must

Table E.2: AppIntances Functional Requirements - v2.

ID Requirement Priority
FR-v2-002 Decommission of App Instances Must
FR-v2-003 Monitor all app instances infrastructure metrics in real-time (CPU

and memory usage)
Must

FR-v2-004 View history of all app instances infrastructure metric (CPU and
memory usage)

Must

FR-v2-005 View/Receive resource alarms Must

Table E.3: Partners Functional Requirements - v2.

ID Requirement Priority
FR-v2-006 View/Associate/Dissociate PartnerDocuments (has many) Must
FR-v2-007 View/Associate/Dissociate PartnerConsumptions (has many) Must
FR-v2-008 View/Associate/Dissociate PartnerPayments (has many) Must

Table E.4: PartnerConsumptions Functional Requirements - v2.

ID Requirement Priority
FR-v2-009 View PartnerConsumption Must

Table E.5: PartnerPayments Functional Requirements - v2.

ID Requirement Priority
FR-v2-010 View PartnerPayment Must

192

Functional Requirements: Intermediate Defense - v2

Table E.6: PartnerDocuments Functional Requirements - v2.

ID Requirement Priority
FR-v2-011 View PartnerDocument Must
FR-v2-012 Change invoice status Must
FR-v2-013 Upload invoice Must

Table E.7: Self-Onboarding Functional Requirements - v2.

ID Requirement Priority
R-014 Create Partner Webpage Must

Table E.8: Templates Functional Requirements - v2.

ID Requirement Priority
FR-v2-015 Create/Delete template Must
FR-v2-016 Automatically generate app instances using templates Must
FR-v2-017 Automatically generate partner services using templates Must
FR-v2-018 Automatically generate app scopes using templates Must
FR-v2-019 Automatically generate user groups connected to app instances and

app scopes using templates
Must

FR-v2-020 Automatically generate flows with their settings (categories, prod-
ucts, protocols, pricing rules, etc.) if a core exists using templates

Must

FR-v2-021 Tag components created using templates to indicate their origin Must

193

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Structure

	Background
	Circular Economy
	Methodology
	LoopOS
	Network Manager
	Application Deployment & Management
	Security

	State of the Art
	User Management
	Partner Management
	App Management
	Conclusion

	Requirements & Risk Analysis
	Actors
	User Stories
	Functional Requirements
	Non-Functional Requirements
	Restrictions
	Risk Analysis
	Risk Identification
	Risk Analysis
	Risk Planning

	Framework
	Team Organization
	Delivery Lifecycle & Technologies
	Work Plan
	First Semester
	Second Semester

	Development
	LoopOS Onboarding
	LoopOS UI
	Post-development Risks Analysis

	Testing
	LoopOS Onboarding: Acceptance Tests
	LoopOS Onboarding: Unit Tests
	LoopOS Onboarding: Non-Functional Requirement Tests
	LoopOS UI: Acceptance Tests
	LoopOS UI: Unit Test
	LoopOS UI: Non-Functional Requirement Tests

	Conclusion
	References
	Appendix Actors: Intermediate Defense
	Appendix User Stories: Intermediate Defense - v1
	Appendix User Stories: Intermediate Defense - v1
	Appendix Functional Requirements: Intermediate Defense - v1
	Appendix Functional Requirements: Intermediate Defense - v2

