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Abstract

Nowadays, human activities are taking advantage of the developments in Arti-

ficial Intelligence (AI) in its various fields. Typically, this is materialized by the

use of data-driven approaches, where model parameters are learned by training

with a dataset. However, this setup presents some issues, with the lack of gener-

alisation being one of the most severe. With the development of Large Language

Models (LLMs), trained on millions of texts across a variety of fields, real-world

knowledge can be extracted and used to attenuate this issue.

This work addresses the generalisation issue by extracting relevant information

from LLMs and incorporating it in the latent space of Machine Learning (ML)

models. To reach this goal, we retrieved formulas from LLMs and applied con-

trastive and multitask learning to make ML models sensitive to those formulas.

We conducted further experiments to evaluate the possibility of increasing the

quality of the formulas provided by LLMs both iteratively and by finetuning.

After applying these methods across 12 tabular classification datasets, we con-

cluded that the proposed approach increases generalisation in comparison to the

standard Multi-Layer Perceptron (MLP), with LLM knowledge producing an im-

pact, especially in cases where there is concept drift. Experiments with iteration

and fine-tuning processes revealed that iteration can produce improvements in

some cases and that a dedicated finetuning process increases the quality of the

retrieved formulas, showing gains in the proposed methods.

Keywords

Machine Learning, Large Language Models, Generalisation, Classifier Perfor-

mance
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Resumo

Hoje em dia, as atividades humanas tiram partido dos desenvolvimentos na área

da inteligência artificial nos seus vários ramos. Tipicamente, isto é feito com abor-

dagens baseadas em dados, em que os parâmetros associados a um modelo são

aprendidos pelo treino com um dataset. No entanto, este paradigma apresenta al-

guns reveses, sendo um dos mais severos a falta de generalização. Com o desen-

volvimento de LLMs (Grandes Modelos de Linguagem – Large Language Mod-

els), treinados com milhões de textos a cobrir várias áreas do saber, é possível

extrair conhecimento do mundo real para atenuar os efeitos deste problema.

O objetivo do presente trabalho é melhorar a generalização de modelos de Ma-

chine Learning (ML) extraindo informação relevante de LLMs e incorporando-a

no espaço latente destes. Para alcançar este objetivo, obtiveram-se fórmulas a par-

tir de LLMs e aplicaram-se técnicas de aprendizagem multi-tarefa e por contraste

para tornar os modelos de ML sensíveis a estas fórmulas. No mesmo sentido,

realizaram-se experiências para a avaliar a possibilidade de melhorar a qualidade

das fórmulas obtidas tanto através de iteração como de finetuning. Depois da apli-

cação destes métodos em 12 datasets tabulares de classificação, concluiu-se que a

abordagem proposta melhora a generalização em comparação com o MLP, com

o conhecimento obtido a partir das LLMs a produzir um impacto positivo espe-

cialmente em casos com concept drift. As experiências com processos de iteração

e de finetuning revelaram que a iteração produz melhorias em alguns casos, e que

um processo de finetuning dedicado melhora a qualidade das fórmulas extraídas,

demonstrando ganhos nos métodos propostos.

Palavras-Chave

Aprendizagem Computacional, Grandes Modelos de Linguagem (LLMs), Gener-

alização, Desempenho de Classificadores
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Chapter 1

Introduction

Since the Dartmouth workshop, which marked the official birth of the field of

Artificial Intelligence (AI) in 1956 [Russell et al., 2022], there have been several

efforts to aid human life with resort to it.

In fact, the applications of AI span across many human activities: identifying

and classifying objects in images, predicting the outcome of economic cycles and

pandemics, detecting anomalies in medical images, producing computer code,

summarising text, and even generating images from prompts [Becker et al., 2023;

Day and Chen, 2018; Peng et al., 2022; Ting et al., 2018].

An important subfield of AI that allows for this is Machine Learning (ML). Typi-

cally, in this context, two main tasks are addressed: supervised and unsupervised

learning. In the former, the data is labeled, while in the latter, the data is unla-

beled. In supervised learning, ML models learn from training data, which can

lead to several issues that hinder their performance in deployment. One impor-

tant issue to consider in this setting is generalisation: when a model goes from the

simulation phase, where it is trained and tested, to the production phase, where

it is applied in the real world, its accuracy can significantly decay.

As such, it becomes imperative to research alternative ways of improving the

generalisation of ML models.

1
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1.1 Motivation

Despite the development of AI to its current standards, generalisation is a con-

stant concern in the development of any data mining pipeline. Various factors

can lead to poor generalisation, which may be related to the training data or the

training setup:

• The dataset might not represent its underlying context correctly. In this

case, relevant features or feature values might be missing, which results in

an incomplete characterisation of the context. The same can happen if some

data groups are missing or underrepresented. With this missing informa-

tion, the ML model struggles to generalise to certain regions of the context

and performs poorly;

• Even though the dataset might accurately describe its context, the training

setup can be built with flaws, such as dataset shift or an incorrect model

complexity. In dataset shift, the train-test split can leave out relevant infor-

mation from the training set if strategies such as class stratification are not

applied. An incorrect complexity means that the model to train can be too

complex, fitting its parameters to noise and overfitting the training data; or

too simple, displaying poor performance as it cannot represent the context

with enough detail, underfitting the data. ML common practices, such as

cross-validation, stratification, hyperparameter tuning and regularisation

help to minimise these problems, by ensuring a correct train-test split and

fostering an adequate fitting of the data with a model of the right complex-

ity.

Some strategies can be adopted to attenuate these problems, but the ideal scenario

for the application of ML models would require an unlimited amount of data to

represent every detail within the context, which implies that generalisation is an

issue inherent to ML.

The field of Natural Language Processing (NLP), with its recent advancements,

provides an alternative way to incorporate knowledge into ML models: the Large

Language Model (LLM) – an ML model that is trained on massive amounts of

text of various sources, which makes it knowledgeable regarding a great variety

2
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of fields. With the correct prompt engineering techniques, it is possible to extract

its knowledge for use [Arora et al., 2023; Wei et al., 2022].

Considering the millions of texts these models were trained on, they can provide

relevant insights that could be incorporated into the smaller ML models in their

various domains. After feeding LLMs with a description of the training data,

they can be asked to generate relevant concepts for use in model training.

1.2 Main Goals

The present work aims to increase the generalisation capability of ML models

with a resort to the information present in LLMs. In order to achieve this, two

main research questions were posed, defining two different directions for explo-

ration:

1. Can we increase an ML model’s generalisation by embedding the informa-

tion extracted from LLMs into the model?

2. Can we improve the quality of the information provided by an LLM, train-

ing it for the information retrieval task that is taking place?

To answer Question 1, an experimental setup was created allowing for the extrac-

tion of information from LLMs and subsequent incorporation into the learning

process of Multi-Layer Perceptrons (MLPs). The extracted information took the

form of concepts, which are formulas derived from the features in a given dataset.

These concepts were then incorporated into the training process of MLPs using

various combinations of contrastive and multi-task learning techniques. Gener-

alisation was measured by determining model AUROC on the test set across 12

tabular classification datasets, using a stratified split, using a feature-based split

and using only a portion of the training set for training. More details on this

experimental setup are presented in Section 4.1.

The results, developed in Section 5.1, show a positive effect on classifier AUROC

in various settings where generalisation could be tested, and demonstrate the im-

portance of the knowledge embedded in LLMs, especially in cases where concept

drift is present.

3
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Question 2 was tackled by studying the impact of iteration and finetuning on the

quality of the retrieved concepts. For this, after determining the impact of each of

the concepts provided by an LLM on model performance, this information would

be provided to the LLM as feedback to obtain better concepts in a subsequent it-

eration, and the process was repeated 4 times across 8 of the initial datasets. To

understand the impact of finetuning, we determined the quality of some concepts

and used this data for the compilation of a preference dataset. Following this, we

finetuned LLaMa3-8B-Instruct on this dataset and extracted concepts from both

the pretrained and finetuned model. Finally, we assessed the impact on model

performance by comparing the test-time AUROC in the methods that used the

concepts provided by both models. This experiment is further detailed in Sec-

tion 4.2.

The outcomes of this experiment are discussed in Section 5.2. We conclude that

an iterative process can be beneficial in some cases, and that finetuning further

improves generalisation.

1.3 Document Structure

This document is structured as follows:

• Background knowledge will be presented in Chapter 2. Rudiments on tab-

ular classifiers, including ensemble learners and neural networks, will be

presented; and a discussion on LLMs will be conducted;

• A literature review will be provided in Chapter 3, encompassing the var-

ious works that aim to use LLMs as model teachers for various aims and

common benchmarks for these models. Relevant conclusions about prompt

engineering will also be mentioned, and a brief state of the art regarding

LLMs and their performances will be included;

• A description of the experimental setups involved in the exploration of the

research questions is provided in Chapter 4, including the used datasets

and LLMs, proposed methods and gathered performance metrics;

• Results are provided and discussed in Chapter 5, showcasing baselines,

graphs and tables that clarify the role of the various independent variables

in the performance of the analysed models;

4
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• The conclusions of the present work are provided in Chapter 6.
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Chapter 2

Background Knowledge

Background Knowledge

Large Language Models

Architecture

Taxonomy

Finetuning

Optimization

Ensemble Learners

Neural Networks

Tabular Classifiers

Classifier Improvement

Model Evaluation

For a good understanding of the present work, several important concepts shall

be illustrated in this chapter. Tabular classifiers will be handled in Section 2.1,

including ensemble learners, which will serve as baselines; and Artificial Neu-

ral Networks (ANNs), the main type of model in use. Other aspects such as

the improvement of these models and common evaluation metrics will also be

mentioned. Following this, in Section 2.2 we will discuss LLMs, presenting their

architecture and taxonomy along with some finetuning and optimisation tech-

niques applied to these models.

2.1 Tabular Classifiers

In the context of this work, tabular classifiers are ML models that handle tab-

ular data, conducting classification tasks from it. Within this scope, ensemble

6



Background Knowledge

classifiers will be used as baselines for comparison. They are described in Sub-

section 2.1.1. Neural networks can also work with tabular data, learning a suit-

able representation that captures the necessary details for the task at hand. These

models shall be discussed in Subsection 2.1.2. Then, the possibility of LLM knowl-

edge incorporation in these models shall be discussed in Subsection 2.1.3, moti-

vating the choice of neural networks as the main object of attention in the present

work. Finally, some evaluation metrics that allow to compare ML model perfor-

mance will be discussed in Subsection 2.1.4.

2.1.1 Ensemble Learners

Ensemble learners are tabular classifiers that aim to achieve superior performance

by combining the outputs of multiple smaller tabular classifiers.

The type of combination of outputs determines the category of ensemble learner [Géron,

2017]:

• Voting classifiers consist of voting systems where each different model casts

a vote on a given class, and the resulting output is the class with the most

votes. Their performance requires some level of statistical independence

between the models, which is achieved by using different algorithms for

predictions;

• Bagging models are also voting systems, but instead of applying various

algorithms, they use models that are all of the same type but are trained on

different subsets of the training data. Random forests are common examples

of these models, where the base models are decision trees;

• Boosting models combine the outputs by implementing a chain where each

model tries to correct the output issued by the previous one. This can be

done by assigning a greater weight to mispredicted instances in the subse-

quent models, as is done by AdaBoost, or by fitting the subsequent models

on the residual errors resulting from the previous models, which is what

happens in XGBoost [Chen and Guestrin, 2016] and LightGBM [Ke et al.,

2017].

These models are common choices for handling tabular data, so their perfor-

7
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x1

x2

h1

h2

h3

o1

o2

Input 1

Input 2
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Output 2

Figure 2.1: Neural Network Diagram

mance in the datasets considered in the experimental setup will serve as a base-

line.

2.1.2 Artificial Neural Networks

In this section, a broad explanation of the functioning of neural networks will be

provided, since they will be the main kind of tabular classifiers to work with

throughout the present project. As such, their functioning will be presented,

along with their training process and a summary of their applications.

Definition

ANNs are ML algorithms that aim to mimic the connections between neurons in

the human brain. Because of this, they can be inserted in the connectionist view

of AI – the mimicking of the human brain, as opposed to the symbolic view, based

on pure logic, and the bio-inspired view, based on biological processes [Russell

et al., 2022].

This human brain metaphor stems from the connections that exist among com-

puting units, called neurons: in the human brain, neurons are connected among

each other through synapses, where the axon terminals of a neuron connect to

the dendrites of another. These cells work with electrical current flowing through

them, and electrical stimulation of a neuron only occurs if the stimuli it gets in

the dendrites from its synapses surpasses a given threshold potential.

Likewise, an ANN can be thought of as a process with several layers of neurons,

where a neuron connects to neurons in the following layers; and computations

can be made in parallel, just like in the human brain.

The circles in Figure 2.1 represent numerical values; the arrows represent a multi-

plication operation involving the values in the left tip of the arrow and a trainable

8
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scalar parameter called weight. The values in the right tip of the arrows are the re-

sult of the application of an activation function to the weighted sum of the values

in the left tip of the arrow (in Figure 2.1, each arrow has a weight w associated

with it). The activation function is usually non-linear, allowing the network to

separate non-linearly separable data – for example, hyperbolic tangent, arc tan-

gent, or ReLU: ReLU(x) = max(0, x). In the case of classification problems, the

final activation function is commonly softmax, which turns a vector of real num-

bers into a vector of values in [0, 1] where each value can be seen as the probability

that an instance belongs to a given class:

σ(z)i =
ezi

∑n
i=1 ezi

(2.1)

where z is the n-element output vector representing a given instance before soft-

max activation.

The neural network structure presented can be replicated throughout several lay-

ers (instead of the three layers shown in the figure, it can have an arbitrary num-

ber of layers). There are also some specialized layers for image recognition (con-

volutional layers, which apply filters to the image, whose output is forwarded),

and time series (recurrent connections where the output in a given instant influ-

ences the computations in later instants).

Unlike other ML methods, where the learning process is based on the represen-

tation of raw data or with very little processing (such as feature normalization,

selection and reduction), in neural networks, the representation that leads to the

classification or regression is learned by the network itself – representation learn-

ing. This more complex representation corresponds to the output vector of the

second-to-last layer, as the linear layer that follows it learns the weight to assign

each of the values of the vector for determining each class. It is said that this is

the latent space of the neural network.

The training process for these models is data-driven. This means that we need

specific inputs and their respective expected outputs to be able to teach the net-

work to classify a given category or determine a given output value. The update

of the various parameters that constitute the network are updated according to an

elementary calculus concept: the minimisation of a loss function that represents

the error produced by the network.

9
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Loss functions Depending on the task to perform, certain loss functions are

more applicable. For example, for classification, it is common to use cross-entropy

– in this case, given n classes, the output is a vector of length n of values in the in-

terval [0, 1] that sum to one (class probabilities) where the determined class is the

one in the position of the maximum output value. The loss is given by -log ytarget,

so it measures the uncertainty associated with the target class (if this probability

is close to zero, the loss is very large; if it is close to 1, the loss is near 0).

Likewise, for reconstruction problems (such as compressing images in a compact

vector, so they can be adequately decompressed with little error), the loss to min-

imise is the sum of squared differences between the pixels in the input image and

the decompressed image. Regression problems can apply the same loss function.

Gradient Descent In order to train the network, the gradient descent algorithm

aims to minimise these losses for the training examples. For a given number of

epochs, the whole training dataset (Dtrain) passes by the network (net) in batches

and, for each batch, the weights are updated using the chain rule. A learning

rate ν governs the magnitude of the update and can be scheduled to gradually

decrease as training proceeds.

Algorithm 1 Stochastic Gradient Descent in Neural Networks

Input: ν, Dtrain, epochs, net, batch_size
Output: Trained network net

no_epochs← 0
while no_epochs < epochs do

for random batch (inputs, targets) of size batch_size in Dtrain do
outputs← net(inputs)
loss← loss f unc(targets, outputs)
for weight in net do

weight← weight− ν× ∂loss f unc(outputs)
∂weight

end for
end for
no_epochs← no_epochs + 1

end while

According to Algorithm 1, the update is governed by the partial derivative of the

loss function with respect to each weight; and the weight is updated in the oppo-

site direction, thus countering the growth of the loss function (gradient descent).

Using symbolic calculus for determining each partial derivative from scratch

would lead to an impractical time complexity; however, considering the chain
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rule, it is possible to divide a gradient calculation among multiple isolated terms;

and these terms repeat themselves – the derivative of the error with respect to

a given weight only depends on the derivative of terms in the following layer.

Because of this, the results of derivative calculations can be stored, speeding up

training in a process called backpropagation, where these partial derivatives are

calculated in a direction contrary to the inference process: starting in the output

layer and ending in the input layer, with the values calculated in the layers to the

front being used to aid derivative calculation in the layers to the back.

As well as this, the determination of the output of a given layer can be defined as

in Equation 2.2.

yi+1 = f (Wyi) (2.2)

The representation of the forward pass in this way makes it clear that matrix mul-

tiplications are present, and they can be parallelized using Graphical Processing

Units (GPUs) to speed up both the inference process and the update rule for back-

propagation.

Neural Network Applications

Throughout time, the development of neural networks has expanded their appli-

cability to various computational tasks. Novel architectures have been created,

allowing for the processing of tabular data, images, time series and text. The

text below aims to summarise some relevant ANN architectures and respective

applications.

Multi-Layer Perceptrons MLPs [Ivakhnenko and Lapa, 1967] are simple neu-

ral networks where every layer is fully-connected, i.e., every output element of

one layer is connected to every neuron of the folowing layer, as described in Fig-

ure 2.1. These networks are feed-forward, meaning that the output of a layer is

only fed to layers after it. Despite the simplicity of these networks, the Universal

Approximation Theorem applies to them: given a hidden layer with enough neu-

rons and nonlinear activation functions, an MLP can approximate any function

with any given precision [Hornik et al., 1989]. As such, these neural networks

can be used as classifiers of tabular data, since they can nonlinearly map an in-

put with f features to an output with o elements. Considering this, MLPs are the
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main focus of the present work.

Convolutional Neural Networks CNNs are specialized architectures that are

primarily used for image data. For this, they possess layers where the input is

convolved with various kernels. This allows for the extraction of patterns in a

shift-invariant fashion, which is useful for classification purposes. Usually, the ar-

chitecture of CNNs consists of several convolutional layers with downsampling,

allowing for the extraction of patterns in progressively larger scales; followed by

fully connected layers where feature vectors are extracted to handle the end task.

This architecture also allows for backpropagation and GPU optimization [Chel-

lapilla et al., 2006; Cireşan et al., 2010].

Recurrent Neural Networks and Long Short-Term Networks RNNs are neural

networks that handle time series [Elman, 1990]. For this, they display recurrent

connections, where the output of layers to the front is an input for layers to the

back. Because of this architecture, they model the relationship between inputs of

different moments in time. Still, this modelling is limited to the recurrence depth,

the maximum number of steps behind considered at a given time. To tackle this,

the LSTM [Hochreiter and Schmidhuber, 1997] was created: in this architecture,

in every step, there is a context vector retaining the relevant information from

past steps. Both of these architectures are trained by backpropagation through

time, where the output from more recent steps is also backpropagated to the lay-

ers in the calculation of the previous steps.

Neural Networks for Tabular Data Efforts have been made to improve the way

neural networks consider interactions among features in various abstraction lev-

els. This was achieved with the invention of new kinds of layers, or by taking

advantage of the attention mechanisms that had been developed [Vaswani et al.,

2017]. For instance, DeepFM [Guo et al., 2017] uses both Deep Learning (DL) and

factorisation machines to extract high- and low-level feature interactions from a

dataset. High-level interactions come from the DL process; whereas low-level in-

teractions are calculated in factorisation machines, using dot-products between

the representations of sparse features in the latent space of early layers of the

same neural network – a similar process occurs in the transformer architecture

behind LLMs. The resulting vectors from both components are then summed
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and passed by a sigmoid for binary classification purposes.

Figure 2.2: DANet architecture, proposed in [Chen et al., 2022]: On the left, the
architecture of an Abstract Layer; on the right, a DANet basic block

Another example is the abstract layer [Chen et al., 2022]: a layer that applies

attention-based feature selection aiming to group features into meaningful ab-

stract groups. These groups are then used for the calculation of higher-level fea-

tures, which are finally fused into the layer’s output. This block can be stacked,

with each layer always receiving the input features along with the outputs pro-

duced by the previous layer, forming a DANet architecture. With 20 stacked ab-

stract layers, the performance achieved by this ANN was similar to or better than

the baseline ensemble learners, across the various classification and regression

tasks used as benchmarks.

2.1.3 Tabular Classifier Improvement

Regarding tabular classifiers, several methods could be developed to incorporate

more relevant information into these models. Assuming the extra information to

include is numeric, the following strategies can be applied:

• The extra information could be included in the training phase as an extra

feature. This has the advantage of applying to all the tabular classifiers

discussed. However, in the deployment phase, this numeric information

would have to be calculated for all the instances being tested, which could

be too complex;
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• The classifier could be used to determine both the extra information and its

end task output, gaining sensitivity to this information – multitask learn-

ing. This would only be of use if the part of the model that determines the

output for the end task is influenced by the part that determines the ex-

tra information. Considering the functioning of ensemble learners, this is

not the case. It is only possible in neural networks, where all the outputs

influence the latent space, which in turn impacts the end task output;

• The classifier could be made sensitive to discretized information by the ap-

plication of contrastive learning: if the extra information could be divided

into classes, the model could distinguish instances corresponding to equal

and different classes by making its intermediate representations of instances

of the same class close to each other while pulling instances of different

classes apart. This method is also limited to neural networks since it de-

pends on the existence of a latent space.

Bearing in mind the various alternatives for classifier improvement, a brief intro-

duction on multitask and contrastive learning is provided below.

Multitask Learning

Multitask Learning is a mechanism where various tasks are learned in parallel

based on the same machine representation of data. For example, in the case of

neural networks, there are outputs associated with each task, and the network’s

latent space is used to determine all the outputs. This procedure has been ap-

plied to NLP [Liu et al., 2019], as well as reinforcement learning and in medical

diagnosis of pneumonia [Caruana, 1997].

This method is based on the assumption that an inductive bias produced by

training on a task can affect the performance on other correlated tasks, since the

trained representation is common. Several reasons can be responsible for this.

On one hand, as there can be unrelated tasks, simultaneous training adds noise

to both, which can be beneficial for the generalisation of the network. On the

other hand, the information in the extra tasks is also embedded in the learning

algorithm, leading to an inductive bias that it would otherwise not have and that

can positively impact performance.
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Contrastive Learning

Contrastive learning is another method affecting the latent space. It is a form

of self-supervised learning, in the sense that it does not explicitly require class

labels: the only goal is to bring instances of the same class closer to each other in

the latent space, while distancing instances of different classes from each other.

Because of this, knowing if two instances belong to the same class is enough for

the application of the algorithm.

Contrastive learning is achieved by the application of a loss function to the latent

representations of a given number of instances. If a contrastive loss is used, only

two instances xi, xj are considered at a time [Le-Khac et al., 2020], and the loss

aims to bring them closer if they are of the same class (yi = yj), and vice-versa

(Equation 2.3):

Lcontrastive(zi, zj) =

||zi − zj|| yi = yj

−||zi − zj|| otherwise
(2.3)

If a triplet loss is used, three instances are considered at a time: one anchor xa, one

positive x+ and one negative x−, such that ya = y+ and ya ̸= y−. In this case, the

loss function aims to simultaneously bring the latent representation of xa closer

to the one of x+ and further away from the one of x−, while accounting for a

margin m > 0, the minimum difference between the distances from the anchor to

the positive and the negative instances (Equation 2.4):

Ltriplet(za, z+, z−) = max(||za − z+|| − ||za − z−||+ m, 0) (2.4)

Contrastive learning has been applied to fields such as NLP, for sentiment anal-

ysis [Luo et al., 2022], computer vision tasks [Chen et al., 2020], and in few-shot

learning contexts [Gidaris et al., 2019].

2.1.4 Model Evaluation

Given that tabular classifier generalisation will be evaluated in the present work,

it is necessary to define the metrics by which this evaluation will be conducted.

To this aim, we will define the notation and provide some metrics that allow us
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to evaluate classification tasks.

Notation

The notation to be used throughout this section shall be the following: given a

dataset D = (X , y) with n instances, with feature matrix X and targets y, the

model will produce an output o = f (X ), one for each instance (oi = f (xi)). For

classification tasks, where there are C classes that the model will choose from,

counts such as false positives (FP), true positives (TP), false negatives (FN), and

true negatives (TN) are determined with respect to each class (in the case that

the problem is multiclass; otherwise these counts are determined regarding the

positive class). The overall number of correct predictions is defined as TC. Math-

ematically, these counts can be defined in the following way:

• FPc = #({xi ∈ X : yi ̸= c ∧ oi = c})

• TPc = #({xi ∈ X : yi = c ∧ oi = c})

• FNc = #({xi ∈ X : yi = c ∧ oi ̸= c})

• TNc = #({xi ∈ X : yi ̸= c ∧ oi ̸= c})

• TC = #({xi ∈ X : yi = oi})

Metrics for classification tasks

Common metrics that evaluate model performance in classification tasks are the

following:

• Accuracy, the ratio of correct predictions:

acc =
TC
n

(2.5)

• Recall, also named true positive rate (TPR), is the ratio between correct pos-

itive predictions and total positives, giving an estimate of the power of the

classifier with respect to a given class:

recallc =
TPc

TPc + FNc
(2.6)
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The counterpart of this metric is the false positive rate:

FPRc =
FPc

FPc + TNc
(2.7)

• Precision, also named positive predictive value (PPV), is the ratio between

correct positive predictions and total positive predictions, constituting an

estimate of how much a positive prediction should be trusted:

precisionc =
TPc

TPc + FPc
(2.8)

• F-β score, a combination of both precision and recall that aims to capture

the performance of the classifier with respect to a given class as a whole.

β can be adjusted to give more or less importance to recall over precision.

Commonly, equal importance is considered with β = 1, yielding a harmonic

mean between them:

Fβ,c = (1 + β2) · precisionc · recallc
β2 · precisionc + recallc

(2.9)

• AUROC (Area Under Receiving Operator Characteristic curve) score – in bi-

nary classification, the distinction between classes can be performed based

on an estimate between 0 (negative class) and 1 (positive class). As such,

the boundary between classes can be cut in any number between 0 and 1.

Depending on the boundary defined, the precision and recall are different.

The graph that results from the variation of the boundary, mapping the true

positive rate (recall) to the respective false positive rate in each boundary

value between 0 and 1, can be used to evaluate the quality of the classifier:

the close the area under this curve is to 1, the better. An AUC of 0.5 corre-

sponds to random chance; and an AUC under 0.5 reflects a classifier that is

worse than random (see Figure 2.3). For multiclass problems, this metric is

obtained with two different strategies: one-vs-one, where only the instances

of two classes are confronted; and then the average AUC over all pairs of

classes is determined; or one-vs-all, which considers a given class as pos-

itive and all the others as negative, with the average AUC over all classes

being determined.

For multiclass problems (C > 2), the class-related metrics are averaged for an
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Figure 2.3: AUC examples

overall evaluation of the classifier. This average is normally determined by mak-

ing each instance count equally (micro-average – takes into account class preva-

lence throughout the dataset) or making each class count equally (macro-average).

2.2 Large Language Models

Large Language Models are ANN models that deal with natural language. Their

architecture allows them to understand text and perform tasks of various natures

with it, for example text generation, sentiment classification and named entity

recognition [Wang et al., 2022]. The arrangement of their basic building blocks

is also adapted to their end task, and optimisation strategies can be applied to

enhance the quantity of text that they can process at a time. In this section, the

basic building blocks that constitute LLMs are described, as well as the categories

of LLMs that are most suitable for each task, finetuning processes to train them in

specific tasks and common strategies that give them faster inference and a more

economical finetuning process.
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2.2.1 Architecture

The architecture behind LLMs is comprised of several basic blocks. Some of them

aim to represent the information from the text in a way that a computer can un-

derstand it (tokenization, embedding layers), whereas others extract the semantic

connections among the various tokens present in the text (self-attention layers).

The basic blocks that make up an LLM are the following:

• Tokenisation – When a given input is given to an LLM, the text is divided

into tokens for processing. This means that the LLM sees the text as a se-

quence of tokens. The relationship among them will determine the meaning

perceived by the LLM. One possible way of determining the list of the to-

kens to include is using Byte-Pair Encoding (BPE): starting with the letters

of the alphabet and punctuation as tokens; and given a large corpus of text,

a count of the consecutive pairs of tokens in the text is made; and the most

frequent pair of tokens are concatenated and added to the list. This process

is repeated until the final number of tokens k is reached. This number k

determines the size of the vocabulary that the language model can handle;

and the input is fed to the language model as a series of one-hot encoded

vectors of size k, where the element set to 1 represents the token in each

position.

• Token Embedding Layer – Each token has its own embedding: a represen-

tation in a real-number vector of a given dimension d. One possible way of

determining word embeddings is by using a logistic regression algorithm

known as skip-gram [Mikolov et al., 2013]: given a large text, a specific to-

ken window is specified (e.g. 5 tokens). As that window slides through

the text, the embedding of the token in the center is trained: the neigh-

bour tokens in the window are positive examples, and then some randomly

selected tokens serve as negative examples. The training process of the em-

bedding will adjust the linear regression weights so that the embedding of

the token is close to the embeddings of its neighbors, and far from the em-

beddings of the randomly selected negative examples, according to a given

distance metric (for example, the dot product of two embeddings). The un-

derlying assumption of the algorithm is that words that are found in the

same neighborhood have similar meanings, and vice-versa.
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• Positional Embedding Layer – When considering a sentence/text as a whole,

each word/token can have different meanings depending on the position

where it appears. As such, it is necessary to embed the positional informa-

tion in the token as well. For this, a positional embedding vector is added

to the token embedding before it is fed to the rest of the network. The origi-

nal article where positional embedding was described proposed a weighted

sum of sines and cosines of different amplitudes and phases for each ele-

ment of the positional embedding vector [Vaswani et al., 2017]. However,

there are other possible positional embedding functions, including learn-

able ones.

• (Multi-Head) Attention Layer – This layer correlates the various tokens fed

to the model among themselves, so it could be considered a semantic anal-

yser. As the algorithm is only working with embeddings, the operations

to conduct have to be mathematical. Considering a one-directional layer

(where the tokens only depend on the ones before), for each token, this layer

will output a weighted sum of the inputs seen so far, where the weights rep-

resent the relevance of each input for that moment. In this case, the embed-

dings xi are used as inputs, but they undergo matrix multiplications that

allow different representations: one as the current focus of attention (query,

qi ); another as a preceding token (key, ki); and another one as a value in the

weighted sum (value, vi). For each of these representations, there is a train-

able matrix allowing for each representation: WQ, WK and WV : qi = WQxi,

ki = WKxi and vi = WV xi. The importance score given to a given preceding

input with the current token is given by score(xi, xj) = qi · k j, divided by

the squared root of the embedded dimension (
√

dk) for numerical stability.

These scores undergo a softmax transformation for the determination of the

output. All these operations can be modelled as matrix multiplications, and

can therefore be parallelized:

Sel f Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (2.10)

Q = XWQ, K = XWK, Q = XWK (2.11)

where X is the matrix with the input token embeddings. This process can be

applied to different sets of WQ,WK and WV , for different interpretations of
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Figure 2.4: Transformer Architecture Diagram, as presented in Vaswani et al.
[2017]

the relationships between inputs. A multi-head process where there are var-

ious attention heads, each with a different set of matrix parameters, allows

for just that. The respective outputs are then concatenated and projected to

the initial input dimension d with the learnable matrix WO.

• Transformer Blocks – A transformer block is comprised of a multi-head

attention layer, followed by a feedforward neural network. Both have nor-

malisation after the output, and residual connections are present for better

gradient propagation (see Figure 2.4). Multiple transformer blocks can be

stacked, to allow for progressively more abstract representations of the in-

put, leading to better language modelling. For example, one of the first

transformer-based models, BERT [Devlin et al., 2019], had 12 stacked trans-

former blocks for processing text.

• Softmax Layer – For language modelling, the output of the transformer

blocks is followed by a linear layer that projects it to the dimensionality of

the output vocabulary. A softmax layer is then applied, so the next word

predicted by the language model is determined.
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The performance of these models is heavily dependent on two metrics, which

dictate the amount of information considered in each inference, as well as the

training and inference time:

• Vocabulary size – the greater the number of tokens, the greater the granu-

larity of the semantic analysis. For example, it would be possible to have

only characters as tokens, in which case the size would be 256 using ASCII;

but this economy in the representation of the input and the output would

make it harder to model the relationships among words. On the other hand,

having an excessive amount of tokens could mean that some of them would

not appear often enough in the training corpus, rendering the LLM unable

to grasp their meaning.

• Context window size – the context window is the sequence of tokens that

are considered for the computation of an answer. For a chatbot such as

ChatGPT, where text is to be generated from an input, it tells how far behind

the provided text is considered for computing an answer. Given that there

are matrix multiplication operations in the determination of the outputs,

and that the matrices have the size of the context window, the computation

time of the outputs without optimizations could be quadratic with respect

to that size. This limits the few-shot learning capacity of the LLM, where

examples are provided for it to mimic them in a posterior answer – the only

information that is considered when determining the output of the LLM

apart from its general knowledge is this context window.

The arrangement of these blocks can vary depending on the nature of the task to

perform. The different types of LLMs that result from this variation are described

in the following subsection.

2.2.2 Taxonomy

Considering the possible tasks that can be performed with text, the information

that is encoded by the LLM can vary. There are three main types of LLM archi-

tectures that allow for two different approaches:

• Encoder-only architectures create embeddings that contain the relevant in-

formation to complete a given task. For this, there are several transformer
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blocks between the initial token embeddings and the final latent vectors.

The relevant information is, thereby, encoded in these latent vectors. Bidi-

rectional Encoded Representations from Transformer (BERT) [Devlin et al.,

2019] is an example of an encoder-only model. Its training involved mask-

ing part of the tokens in the text and making it predict them, considering

the tokens before and after each masked token – masked language model.

Thus, this model applied bidirectional attention, allowing it to have a thor-

ough understanding of the connection among words in a text. After this

pre-training stage, the model could be finetuned to other tasks, such as sen-

timent analysis, question answering, next-sentence prediction and named

entity recognition [Wang et al., 2022].

• Decoder-only architectures are more specialized in text generation consid-

ering the input sequence of tokens. For this, the context window of token

embeddings that precedes the current position is decoded throughout the

transformer blocks to yield a probability distribution of tokens in the final

softmax layer that estimates the next token in the sequence. Unlike encoder-

only models, decoder-only models such as Generative Pre-Trained Trans-

formers (GPTs) only apply unidirectional attention, as they do not consider

tokens ahead of the current inference position. To train them, a process

called teacher forcing is applied: input tokens are fed to the network, and

the expected output is the next token in the sequence. In the next training

step, it is the correct token (and not the one outputted by the LLM as being

the most likely in the softmax layer) that is fed to the model as input for

the determination of a subsequent output. After training, text production

can be performed through autoregressive generation: the tokens in the con-

text window are used to determine the next output token; and that token

is fed to the model, which determines the subsequent token, until a termi-

nation symbol stops the generation. Similarly to the encoder-only models,

these models can be further finetuned for a specific purpose. Obtaining a

chatbot from these models involves creating a dataset of input-output sen-

tence pairs that make the model go from completing text to executing an

instruction - instruction finetuning.

• Hybrid architectures are comprised of an encoder and a decoder stage, aim-

ing to capture complex relationships among tokens in both the input and

output sequences. Hybrid models such as BART [Lewis et al., 2020] are
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robust to input noising transformations including masking, sentence per-

mutation and token deletion, meaning that the input and output sequences

need not be perfectly aligned. This makes them suitable for tasks such as

text summarisation or translation.

In the context of the present work, only decoder-only architectures are consid-

ered, since a description of the features comprising a dataset is provided and a

resulting output with relevant information is to be retrieved.

2.2.3 Finetuning

Finetuning an LLM is an important stage that can allow it to become less harmful,

more truthful or more suitable to the needs of its end task. Because of this, after

being trained on text of various domains, domain-specific finetuning datasets are

used. Several algorithms have been developed for this stage and will be cov-

ered in this subsection, including Reinforcement Learning from Human Feed-

back (RLHF), Direct Preference Optimization (DPO) and Odds Ratio Preference

Optimization (ORPO).

Reinforcement Learning from Human Feedback

A usual method to finetune an AI model is by using direct human feedback of

some kind, as an iterative phase where this information is incorporated into the

model’s parameters. This was applied in models such as GPT-4 [OpenAI, 2023]:

the human feedback is incorporated into the model as a reward function that has

to be maximized. In the case of LLM finetuning, since the assignment of absolute

scores by humans can be noisy, this information takes the form of human-made

pairwise comparisons among responses, where a greater consensus is attained.

Then, a Bradley-Terry model [Bradley and Terry, 1952] applies this information

to estimate the ratio of the probability of generation between two different LLM

responses. The goal is then to maximise the LLM-generated preferred responses

over the rejected ones according to the human feedback modelled in the reward

model, while not deviating excessively from the original pretrained model (not

doing this could harm language modelling).

Considering decoder-only LLMs that are made to follow user instructions, after
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instruction-finetuning a model, where it is trained with instruction-output pairs

for tasks of various kinds, a sample of model outputs is drawn and human prefer-

ences are annotated from them. The Bradley-Terry model is then trained on those

samples and the pretrained model is trained to align to the preferences modelled

in it after repeated sampling.

Despite the good results produced by this method, which was used to finetune

the model behind ChatGPT, there are some downsides to it, including the cost

associated with human annotation and the overhead associated with having two

models to train: one language model that has to be optimized and another one

to reflect human preferences. Other methods have been developed to minimise

these issues, including DPO and ORPO, discussed below.

Direct Preference Optimization

DPO [Rafailov et al., 2023] is a possible alternative to RLHF to align LLMs to

user preferences. It has the advantage of dispensing a reward model for this pur-

pose. It is applied after an instruction-finetuning stage and requires a preference

dataset, with (instruction, chosen response, rejected response) tuples. There are

publicly available datasets that can be used for this purpose, but human annota-

tion of LLM-generated answers is also a possibility.

The need for training a new reward model from pairwise comparisons is avoided

by explicitly modelling the preference information in the finetuning loss function:

the ratio of generation probabilities between a chosen and a rejected response is

obtained based on the theory behind the Bradley-Terry models, and, similarly

to what happens in RLHF, a regularisation term is added to the loss function to

prevent the model from significantly drifting away from its initial state. When

there is no specific instruction finetuning method prior to DPO, an initial super-

vised finetuning with (instruction, chosen response) pairs is a suitable strategy to

obtain an initial state for the DPO stage.

The results obtained from this method showed its superiority in tasks such as text

summarization, sentiment generation and dialogue when compared to the exist-

ing finetuning methods. Still, a task-specific finetuning stage is required before

it can take place, which can be considered a downside. ORPO, described below,

combines these two stages into one.
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Figure 2.5: LLM Finetuning Methods: RLHF, DPO and ORPO

Odds Ratio Policy Optimization

ORPO [Hong et al., 2024] is yet another alternative for LLM finetuning that recon-

ciles supervised finetuning with preference alignment in the same training stage

through the loss function. The authors of this approach argued that applying a

supervised finetuning stage preceded by a preference alignment stage was inef-

fective, since the crossentropy loss does nothing to penalise tokens that do not

belong to a given answer, also favouring undesired styles or response formats.

To avoid this, to complement the standard finetuning loss based on the chosen re-

sponses, a new term to reward them while penalising the rejected ones is added

to the loss function. It is based on the odds ratio between the generation of a

chosen and a rejected response. To calculate the odds metric for a sequence, its

log-probability of generation is determined by averaging the log-probabilities of

each token in the sequence, considering the ones that occurred before. After this,

the probability metric is obtained and the odds metric is determined by calculat-

ing the ratio between the probability of the sequence and its complementary –

it tells how much more likely it is that the sequence is generated than that it is

not. Therefore, the odds ratio tells how much more likely it is for the model to

generate the chosen response over the rejected one. By taking the negative loga-

rithm of this in the loss function, this quantity will be maximized throughout the

finetuning process:

log Pθ(y|x) =
1
m

m

∑
t=1

Pθ(yt|x, y<t) (2.12)

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)
(2.13)
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LOR = − log σ(log
oddsθ(yw|x)
oddsθ(yl|x)

) (2.14)

LSFT = − 1
m

m

∑
k=1

log pyk (2.15)

LORPO = LSFT + αLOR (2.16)

2.2.4 Optimisation Strategies

Given the high computational requirements of LLMs, some optimisation strate-

gies have been implemented and applied to state-of-the-art LLMs. Some of them

were applied to model finetuning – Low-Rank Adaptation (LoRA) and Quantized

Low-Rank Adaptation (QLoRA) –, whereas others changed the models’ architec-

tures – Grouped Query Attention (GQA).

LoRA and QLoRA Finetuning

The finetuning process of an LLM can involve changing all its weights, meaning

that they have to be stored in their totality. This can make finetuning impeditive

in contexts with storage constraints. However, it was also found that the differ-

ence in the parameter matrices between the finetuned and pretrained model has

a low rank. Because of this, a training scheme where this difference is trained as a

product of two low-rank matrices, called LoRA [Hu et al., 2022], was developed.

The rank can be as little as 8, instead of 1000 to 10000. This makes the trainable

parameters fit in a small fraction of the original parameters – Parameter Efficient

Finetuning (PEFT) –, allowing to store significantly more finetuned models in the

same space, while avoiding overhead in inference time, since model parameters

can be precomputed and stored in before deployment. The application of this

process to the attention heads present in the transformer architectures of LLMs

such as RoBERTa, GPT-2 and GPT-3 yielded very similar results to the ones ob-

tained without this optimisation strategy at a fraction of the trainable parameters.

The process of storage economy can be further extended by quantising the train-

able parameters. The resulting algorithm, QLoRA [Dettmers et al., 2023], allowed
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for the finetuning of models with 16-bit float parameters using only 4 bits per pa-

rameter. To this end, the NormalFloat4 data type was used: it is an information-

theoretically optimal data type that encodes each float as a given quantile in the

N(0, 1) distribution – dequantisation involves determining the correct number in

the distribution and rescaling it by the correct standard deviation value. Param-

eters are quantized in a block-wise fashion and the block-specific quantization

constants are themselves quantized as well, minimizing the memory footprint.

Finally, QLoRA also applies a paging mechanism where the states of an opti-

mizer are transferred to the Central Processing Unit (CPU) if the GPU runs out of

memory (see Figure 2.6).

Figure 2.6: Parameter-Eficient Finetuning: LoRa and QLoRa

Grouped Query Attention

An issue with standard Multi-Head Attention (MHA) is the large number of pa-

rameters that have to be loaded into memory when performing both training and

inference: there are three matrices for each attention head, which can produce

significant overhead in memory access operations. In an attempt to minimise

this problem, a new attention mechanism was invented: Multi-Query Attention

(MQA). In this scheme, all attention heads shared the same value and key ma-

trices and only the query matrices varied across heads. As a consequence, the

number of parameters is reduced to just slightly more than one-third in the trans-

former blocks, and inference time is sped up.

The decrease in parameter count resulting from this led to performance degrada-

tion. An alternative to reconcile the performance of multi-head attention and the

economy of multi-query attention was then created: GQA [Ainslie et al., 2023]
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Figure 2.7: Attention Modes: Multi-Head, Grouped-Query and Multi-Query

creates groups among attention heads (where each group has 8 attention heads,

for example) where key and value matrices are shared (see Figure 2.7). Thus,

there is still a significant economy in parameter count. Adaptation from models

that implemented MHA involved obtaining the average key and value matrices

for each head group and performing an uptraining stage with the same dataset

and a small portion of the compute. Experiments with several datasets showed

that the resulting performance is very similar to the one obtained with MHA

while maintaining an inference time similar to the one found in MQA. These re-

sults led to the adoption of GQA as the attention scheme in popular LLMs such

as LLaMa3 [AI@Meta, 2024].

29



Chapter 3

Literature Review

Literature Review

Concept Extraction

Causal Graphs

Use in Tabular Data

LLM Landscape

LLM Examples

LLM Benchmarks

Prompt Engineering

Output Callibration

CoT

ToT
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A literature review is presented in this chapter, starting with Section 3.1, where

we will provide some information regarding popular LLMs and the respective

performance across standard benchmarks. Then, Section 3.2 will focus on the

approaches that are most similar to the present work by working with tabular

data and LLMs to improve the performance of ML models. Finally, in Section 3.3,

prompt engineering will be discussed, including some practices and search algo-

rithms for prompt optimization.

3.1 LLMs – current capabilities and features

Bearing in mind that the present work has LLMs as a central concept, the follow-

ing section aims to summarise the current LLM landscape.

30



Literature Review

With the release of ChatGPT in November 2022, and other LLMs after it, it became

clear that many repetitive text tasks could be performed by these models with an

accuracy that makes them useful. Given that there is great variety in features and

performance throughout various tasks, it is important to summarise the various

LLMs that can be used for the purpose of increasing generalisation in tabular

classifiers, including benchmarks, number of parameters, and context window

size.

3.1.1 Popular examples

The following list shows popular LLMs in use nowadays:

• ChatGPT by OpenAI – this LLM was introduced in November 2022 and

has been in continuous development. There are two main versions in use in

ChatGPT. The smaller one is ChatGPT-3.5, with public access in the browser

version. It was released in November 2022 and has incorporated updates

that make it faster and more performant. The larger one is GPT4 [OpenAI,

2023], a larger, improved version with integration with images and sound

and more limited access.

• Gemini by Google [Team et al., 2023], released in February 2024. This LLM

was an evolution of its predecessor, Bard, and the most advanced version

(Gemini 1.5 Pro) reports several benchmarks where it surpasses GPT-4;

• Claude 3.5 Sonnet by Anthropic1, released in June 2024. This LLM also

aims to set new performance boundaries on code generation, while inte-

grating image and video processing. Text generation occurs at twice the

speed of the predecessor, Claude 3.0 Sonnet;

• LLaMa 3 by Meta [AI@Meta, 2024] – this LLM was released in April 2024 in

different model sizes – 8B and 70B, with the larger version displaying per-

formance similar to Gemini in some benchmarks. Unlike the other LLMs

listed here, LLaMa3 is openly available, meaning it can be tested and fine-

tuned by the community.

Throughout time, these LLMs have undergone improvements in several direc-

tions, including generation speed, context window length, and quality of gener-
1https://www.anthropic.com/news/claude-3-5-sonnet
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ated content, including code, math questions, and general reasoning. The evalua-

tion of LLMs is based on benchmarks that evaluate the quality of translations and

reasoning in several fields of expertise. The following section presents commonly

used benchmarks, which were also applied to the LLMs in this list.

3.1.2 Common benchmarks

LLM Benchmarks

Common Sense

HellaSwag

Math Reasoning

GSM8K

Science

ARC

General Purpose

LMSys ELO

MMLUWinogrande

Figure 3.1: Common LLM benchmarks and respective scopes

There is a plethora of areas where LLMs can be of use; meaning that their utility

across all of them should be evaluated (see Figure 3.1). The following list makes

reference to some of them:

• HellaSwag (Harder Endings, Longer contexts, and Lowshot Activities for

Situations With Adversarial Generations) [Zellers et al., 2019] is made of 70

thousand multiple-choice questions based on WikiHow2 and ActivityNet [Caba Heil-

bron et al., 2015] that assess common sense reasoning: humans can achieve

very high scores on these questions (superior to 95%); whereas the LLMs

assessed upon the release of this benchmark had a performance inferior

to 50%. The questions were based on a previous dataset, SWAG, and the

choices were iteratively made harder using language model-based Adver-

sarial Filtering: the questions easily classified as wrong are replaced by

more adversarial endings, aiming to make the language model fail in them.

• Winogrande [Sakaguchi et al., 2021], a dataset of 44 thousand problems as-

sessing commonsense reasoning. These questions were based on the Wino-

grad Schema Challenge [Levesque et al., 2012] and their difficulty was made

harder by minimising the unintended word association biases present in

2https://www.wikihow.com/Main-Page
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that dataset using the AF-Lite algorithm, a lightweight version of Adver-

sarial Filtering [Bras et al., 2020]. Human performance is also very high in

this benchmark (approximately 94.9%), whereas the state-of-the-art models

at the time of release were 15% to 30% worse.

• GSM8K [Cobbe et al., 2021], a set of 8500 grade-school math word prob-

lems, which take two to eight steps to solve using the four basic mathemat-

ical operations of addition, subtraction, multiplication and division. These

problems were man-made in a strive for diversity and quality. Given the

simplicity of these tasks, human performance should be perfect. LLM per-

formance, on the other hand, required further improvement: ChatGPT-3

achieved about 55% at the time of release, based on a verification procedure

that used LLM-generated answers to improve LLM performance on the run.

• The ARC (AI2 Reasoning Challenge) [Clark et al., 2018] is comprised of

7787 multiple-choice scientific questions with levels of difficulty from the

3rd grade to the 9th grade, with questions that span from definitions and

basic facts to spacial awareness and algebra. This question dataset was par-

titioned into two subsets, Easy and Challenge (ARC-C), where the more

challenging questions were the ones that could not be solved using word

co-occurrence algorithms or information retrieval systems. A knowledge

base was also published, the ARC Corpus, containing information relevant

to 95% of the questions present in the dataset, to allow the community to

use the benchmark.

• MMLU (Massive Multitask Language Understanding) [Hendrycks et al.,

2021] consists of 15908 questions spanning various subject matters from so-

cial sciences to humanities and STEM in difficulty levels from Elementary

to Professional. Human performance spans from 34.5% in non-experts to

89.8% in experts. Therefore, this benchmark evaluates expert knowledge in

a variety of fields. Upon the release of this benchmark, GPT3, a precursor

to ChatGPT-3, had achieved an average performance of 43.9%.

• The LMSys Chatbot Arena ELO score [Chiang et al., 2024] is a benchmark

based on the pairwise comparison of LLMs performed by millions of users.

This comparison is blind and collaborative: based on the prompt that the

user provides and on the answers outputted by each of the LLMs, he can

say which answer is better. Millions of such comparisons allow for the cal-
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culation of an ELO score, analogous to the one used in chess ratings, where

the difference in scores between two LLMs maps to the proportion of times

one LLM was better than the other. A categorisation of the prompts then

allows for the calculation of a task-specific score.

The benchmarks mentioned in this list were applied to the analysed LLMs, and

the results are presented in the next subsection.

3.1.3 Benchmark Results

The various benchmarks presented in the last subsection were applied to the

LLMs for comparison. The results can be consulted in Table 3.1. The data have

been gathered from [OpenAI, 2023; Team et al., 2023; Touvron et al., 2023].

Table 3.1: LLM Performance Metrics: ARC tests abstraction and reasoning,
HellaSwag and Winogrande test commonsense reasoning, MMLU tests expert
knowledge and multitasking, GSM8K tests math reasoning, the LMSys ELO is an
overall performance score

Model ChatGPT3 GPT4 Gemini Claude 3.5 LLaMa3-8B

Release Date nov/22 mar/23 mar/23 jun/24 apr/24
Context Window 8192 128K - 200K 8K

ARC (%) 85.2 96.3 95.1 - 78.6
HellaSwag (%) 85.5 95.3 87.8 - -

MMLU (%) 70.0 86.4 83.7 88.7 68.4
Winogrande (%) 81.6 87.5 83.0 - 76.1

GSM8K (%) 57.1 92.0 94.4 96.4 79.6
LMSys ELO 1105 1257 - 1271 1152

As can be seen from the table, performant LLMs have diverse capabilities and

applications. For example, considering the relatively small size of LLaMa3 when

compared to the other models, even if it performs worse than the other models

in the various benchmarks, it could be a suitable choice for contexts where access

to memory is more constrained.

After the main LLM performance indicators have been presented, the field of

concept extraction, a task to be undertaken in the present work, will be discussed

in the next section.
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3.2 Concept Extraction

One possible way to improve the training of ML models is by trying to incorpo-

rate extra real-world information that is not directly present in the data fed to the

model, in the training process. In the past, this was achieved by learning causal

graphs and by prompting feature-level attributes from LLMs. This section aims

to document some advancements in this area and introduce the methods that led

to them.

3.2.1 Causal Graphs as source of knowledge

One of the advancements in this area is CASTLE [Kyono et al., 2020], a frame-

work where the causal structure among the features and target of a dataset is

discovered along with the training of a model. For this, the causal structure in

the data is represented as a directed acyclic graph where some features are deter-

mined by their parents in the graph. Here, the causal graph is represented as an

adjacency matrix and the loss for the model that learns its values aims to make it

acyclic. The closeness between this causality and the one verified in the model is

then also added as a term to the loss function to minimize.

This kind of training produced state-of-the-art AUROC when applied to several

datasets when compared to other popular regularisation techniques. This implies

that using relationships among features to improve model training is possible. In

the present work, relationships of a similar kind are to be extracted from the LLM.

3.2.2 LLM use in handling tabular data

In the past few years, works that aim to harness the concepts learned by LLMs

have been developed. Their findings and methodologies are detailed here.

LLM-based regularization

The use of LLMs to improve training with tabular data is not entirely new but

is still an area of active research. In [Zhu et al., 2023] a possible LLM-based

regularisation scheme is described: on one hand, for multivalue categories, the
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LLM can order them in terms of their importance in determining the output – this

produces an ordinal encoding that is then perfected when passed by a monoton-

ically increasing function with learnable parameters that better approximates the

importance of each category value. Likewise, the LLM can tell whether there is a

positive or negative correlation between a feature that is a continuous variable.

Considering a logistic regression task, where each feature value has a coefficient,

the distance between this coefficient and the prior provided by the LLM is present

in the loss as a regularisation term.

The results displayed by this methodology show interesting AUROC values, es-

pecially in few-shot situations (less than 32). This shows that with very little

training data and the knowledge of the world embedded in its parameters, an

LLM can help solve tasks effectively. The future work of this paper referred to

the possibility of further studying the inclusion of more complex priors. It can

be considered that the present work develops on this, given that it extracts more

complex formulas from LLMs.

LLM data generation

LLMs do not need to provide raw insights on data, as there are alternative ways of

achieving performance improvement on tabular classifiers. Curated LLM [Seedat

et al., 2024] is a framework that aims to tackle this problem by making LLMs

generate data for training. This is especially relevant in low-to-middle-income

contexts where data gathering is insufficient for robust models to be produced.

This work provides the LLM with a set of examples from the initial dataset and

then prompts it to generate more examples, intending to feed them to a tabu-

lar classifier. Given that not all examples have the same quality and utility, this

framework will periodically estimate the benefit of the inclusion of a feature in

the dataset, using the probabilistic outputs of the network being trained to deter-

mine the average confidence (the average output of the target class throughout

the checkpoints) and the respective aleatoric uncertainty (the observed variance

of those outputs) – a sample will be included if its predictions are above a given

threshold of confidence and a given threshold of uncertainty. The resulting se-

lected and discarded datasets are then used to train two different models, and a

held-out oracle dataset is used to evaluate their performance.
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From this work, it was concluded that the data partitioning strategy resulted in

a significantly better performance when training with the selected dataset when

compared to the training with the discarded dataset. After testing with several

medical datasets (including covid), it was also found that even in ultra-low data

regimes (n < 100) GPT-4 extrapolated well to the data manifold and benefit-

ted underrepresented demographic groups the most, showing that the context

embedded in its parameters allows it to have knowledge about the problems at

hand and to generate relevant examples for training.

Table learning with transformers

The use of the transformer architecture for interpreting tabular data did not start

with the larger LLMs such as ChatGPT, LLaMa and PaLM, as experiments were

already being conducted with the smaller BERT model. Table Understanding

through Representation Learning (TURL) [Deng et al., 2022] was developed in

2020 to adapt transformers to tables.

To this aim, the embedding associated with the words in the table metadata reg-

ister would include information about their location (caption or header), as well

as the usual word and position embeddings. The table content would also have

a specific embedding: each entity present there would have its own embedding,

including the attribute name, the attribute text and a type embedding to distin-

guish subjects, objects and topics.

After these transformations were applied to the various elements present in the

table, a sequence of embeddings would be produced and fed to a structure-aware

transformer encoder. The main difference between this architecture and that of

a standard transformer was the use of a visibility matrix that determines the re-

lationship among elements: the name of a column will only relate to the tokens

from that column, the table caption and topic entity are always visible; tokens in

cells of the same row or column are also visible among themselves.

The training process of this transformer involved applying the usual process in

the training of the BERT transformer: masking some tokens for prediction with

the context around them. By making this process look at the table metadata, the

variant of Masked Entity Recovery was created.

The various benchmarks in this architecture revealed advancements in the var-
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ious applications of entity linking, column type annotation, relation extraction,

row population, and cell filing.

This work is another example of the possibility of making transformers learn the

content in tables, even if this implies slightly changing their architecture.

3.3 Prompt Engineering

Prompt engineering is an area that rose with the popularisation of LLMs: after

these models had public access, it became essential to know how to extract rele-

vant and accurate information from these models. As such, this area was created;

along with the respective standard practices. This section aims to present some

findings in the area, as well as some prompt optimisation algorithms.

3.3.1 LLM Output Callibration

A work [Zhao et al., 2021] revealed several kinds of biases displayed by LLMs in

their answers to prompts. In the scope of few-shot learning, where a few exam-

ples and respective target outputs are fed to the LLM before a similar example

is given for classification/answering, it was understood that label distribution,

order and token choice greatly affect the performance displayed by the model.

This was achieved by prompting some training examples and respective outputs

and then retrieving the output from the LLM when the example was content-free

(e.g. N/A).

The following biases were detected in the work:

• Majority label bias: in prompts with an imbalanced distribution of exam-

ples, the LLM predicted the majority class in an excessive proportion when

compared to the reality;

• Recency bias: the LLM tended to predict similarly to the most recent exam-

ples, as opposed to the examples closer to the beginning. This showed the

importance of the permutation of the examples fed to the model;

• Common token bias: frequent tokens used for classification in the training

examples would appear more often than others.
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After returning the classification probabilities from the LLM, these authors ap-

plied an affine transformation to them (q = so f tmax(W p + b)), in an attempt to

make the LLM outputs as close to uniform as possible when dealing with content-

free prompts. This led to improvements in accuracy in various few-shot learning

situations, reducing variance across training sets, and making calibrated smaller

models outperform larger ones (GPT3-2.7B vs. GPT3-172B).

This work reveals the biases present in LLMs and proposes a way to handle them.

With this, it shows the importance of iteration in the prompting process, as a way

to make sure the biases are detected and that the information being extracted is

truly reliable.

3.3.2 Chain of Thoughts Prompting

Bearing in mind the training process and structure of LLMs (see Section 2.2),

which are trained with considerable amounts of text, they do not possess a spe-

cialized unit for mathematical operations that would be easily conducted by a

CPU, meaning that the results displayed by these models are only the outcome of

statistical patterns among digits and operators. As such, without optimization,

they perform relatively poorly in mathematical tasks, as the paper that presented

GSM8K [Cobbe et al., 2021] shows.

A strategy to improve their performance was found and documented in [Wei

et al., 2022]. The simple act of asking the LLM to print the intermediate steps that

lead to the answer is enough to achieve a significant improvement in its results.

This way, the relationship between numbers and words can be better understood

by the model. The precursor of Bard, PaLM, underwent a three-fold increase in

performance with the use of this tactic (from 18% to 57% accuracy) in the GSM8K

benchmark. After this technique was published, OpenAI used it for reporting its

results [OpenAI, 2023] on this benchmark.

3.3.3 Tree-of-Thoughts Framework

In [Yao et al., 2023], a new framework for prompt engineering was created. It

aimed to guide LLMs in the search for an answer to a question. Firstly, an ex-

ternal prompter inputs the statement of the problem. The intermediate steps
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towards achieving this are be produced by the LLM, one by one; and an exter-

nal checker validates them. If an intermediate step is wrong, the LLM would be

asked to return to the previous state, with an external memory module allow-

ing for retrieving the past chain. As new solution paths to a correct output are

searched, the shape of the graph where all the thoughts are connected is one of a

tree. The external checker and prompter are trained using reinforcement learning

that aims to make them learn which information to check and give the LLM to

make it solve the problem correctly.

This framework was tested in Sudoku games with sizes n ∗ n, n ∈ {3, 4, 5}; and

significant improvements were obtained in all of them with comparison with the

respective state of the art – all the 3-by-3 sudokus were solved, and the success

rate increased 80% in 4-by-4 puzzles and 60% in 5-by-5 puzzles.

3.3.4 LLM-aided paraphrasing

In 2021, Haviv et al. proposed BERTese [Haviv et al., 2021], a framework that

aimed to improve masked prompts (prompts with clozes for completions, sig-

naled by the token [MASK]) to improve the query accuracy when LLMs were

asked to fill in the gaps.

For this, an off-the-shelf BERT model was used as the estimator/source of knowl-

edge, and a BERT-based rewriter took the masked prompt and was meant to pro-

duce one with the same number of tokens, such that downstream accuracy was

improved. The rewriter initially had the non-pretrained BERT weights; then it

was trained to yield the same tokens as it was fed (in the same order). Finally,

queries to improve were fed to the rewriter and the respective result was then fed

to the BERT model. The result of this prompt would then be evaluated and the

resulting loss would be backpropagated to the rewriter.

The experiments performed with the rewriter revealed that it led to prompts that

were better at knowledge retrieval from the BERT model, even though they had

very similar meanings – the changes happened, for example, in verb tenses, or by

replacing uncommon words with more frequent ones. This work showed that it is

possible to improve prompt quality, given the variability of the LLM’s responses

to prompts of equivalent meaning but expressed in different wording.
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3.3.5 Ensemble prompting strategies

If the previous methods were based on solely one prompt that could be corrected

in a serialized way, the following ones aim to optimise prompts by producing

multiple alternatives and converging in more performant inputs.

Ask Me Anything

A work [Arora et al., 2023] describes an alternative way by which better qual-

ity prompts can be achieved. In this experiment, it was found that open-ended

questions tend to produce better results than yes/no questions or cloze questions

(questions where gaps in a text have to be filled in). This can be attributed to the

quantity of training data used to train the LLMs that matches the latter type – the

article states it is about 1000 times greater.

As well as this, a prompting strategy was documented: creating several different

prompts where a given text input is provided to the LLM for it to ask questions

based on it; so that it can answer those same questions. The resulting answers

are then aggregated into a single one, based on weak supervision, which aims to

identify the dependencies among prompts with the aim of reaching a reasonable

ensemble answer that takes prompt redundancies into account. This strategy

leads to expressive improvements in performance, potentially allowing smaller

models to outperform larger ones when using this kind of preprocessing.

Thereby, this work shows the importance of the format of prompts and of prompt

engineering as a whole, as having well-formatted questions can be of greater use

than spending computational resources training a larger model.

Boosted Prompt Ensembles

Traditional ensemble algorithms that are already widely used in other areas, such

as boosting, can also be applied to prompt optimization. Pitis et al. describe

an approach where that is achieved in Chain of Thought reasoning [Pitis et al.,

2023] – a method that makes LLMs output their reasoning in complex problems

(such as mathematical ones) in a step-by-step fashion what allows achieving more

accurate responses than if using shorter outputs.
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In the beginning, there is one initial example prompt and a set of questions and

respective answers. These questions are fed multiple times to the LLM along with

the existing example prompts so that the LLM’s performance on the questions

can be evaluated. For the questions that produce greater uncertainty (where the

model’s solutions disagree throughout the repetitions), one of the LLM’s Chain of

Thoughts (CoT) answers where the correct information was presented is included

as a prompt example to present in future training iterations.

The comparison of this method with the single-prompt and bagged ensembles

revealed a superiority of the resulting LLM performance. This method can be

seen as an iterative algorithm for covering the prompt space to maximise the

accuracy in few-shot learning.

3.3.6 Prompt Engineering with Evolutionary Computation

Population-based optimisation is also a possibility in prompt engineering. Vari-

ous works that use evolutionary computing for this purpose are proof of this.

EvoPrompt

Guo at al. proposed a framework, EvoPrompt [Guo et al., 2024], that proves this:

evolutionary computation is used for optimising the prompts fed to LLMs, and

these models are also themselves responsible for applying the operators associ-

ated with this process.

The algorithm starts with a population of manually designed and LLM-generated

prompts. Then, the process to follow is the same as the usual genetic algorithm:

the crossover operator is applied by asking the LLM to analyse two prompts and

to produce a mixture of the two, and the mutation operator is applied by asking

the LLM to make a slight change on a given prompt. The fitness of a prompt

was the performance it achieved in a given development set, and the selection

process was a roulette-based one (where the probability of selecting a prompt to

be used in the next generation was proportional to its fitness). The repetition of

this process (selection, variation operators, evaluation and population update)

throughout a given number of generations allowed for the generation of opti-

mized prompts. Differential evolution was also tried: in that case, the differences

between two prompts were analysed and inserted into a third prompt, all of this
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being controlled by an LLM as well.

The subsequent benchmarking revealed that the prompts produced had a su-

perior performance in tasks such as sentiment classification, topic classification,

subjectivity classification, and language generation. This work revealed one of

the possibilities of combining the knowledge of LLMs with conventional algo-

rithms, where the LLMs are part of the implementation as they perform the vari-

ational operators.

Metaprompter

Text generation is not the only scope of prompt engineering, given that genera-

tive models can also generate images, for example. As such, it is also possible

to find works that apply the same principles in this field. It is the case of the

MetaPrompter [Martins et al., 2023], in which a user inputs a meta prompt, with

several generic fields (e.g. animal, fruit, style of the image) whose concrete value

can be chosen across predefined lists. In this case, the fitness is user-determined,

in the way that it is the user that chooses the fittest prompts to produce the next

generation of images. These prompts then undergo mutation (which can change,

insert, or remove terms from the prompt) and crossover, where given parts of

a prompt are exchanged. The results showed that the images generated were

aesthetically pleasing, even though they did not necessarily represent what was

intended in the prompt. Even though this experiment was applied to images, it

could be possible to apply it to text generation as well, if a prompt skeleton was

given; and the evolutionary process could proceed automatically.
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Experimental Setup

Experimental Setup

Concept Suggestion
Improvement

Iteration

Finetuning

Concept Retrieval

Datasets and LLMs

Concept Extraction

Data Preprocessing

Proposed Methods

Model Training

To explore the research questions posed in the introduction, an experimental

setup was built. The aim of the present chapter is to describe it, contextualis-

ing the results that will be discussed in chapter 5. This chapter is divided into

two main sections, one for each research question.

4.1 Concept Retrieval

The first research question tackled in this work was: can we increase an ML

model’s generalisation by embedding the information extracted from LLMs into

the model?

More concretely, we focused on classification tasks in supervised learning set-
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PTC
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Ltot = L(t) + k L(C1,...,C4)

Figure 4.1: Scheme of the proposed experimental setup for the concept retrieval
phase

tings using tabular data. To answer the research question, concepts for various

datasets were retrieved from LLMs, and multiple directions for incorporating

them in tabular classifiers were explored. In this section, the experimental setup

that produced answers to the first research question (schematized in Figure 4.1),

including used datasets, LLMs, methods and performance metrics, shall be de-

scribed.

4.1.1 Datasets and LLMs

Several tabular classification datasets were used to validate the proposed meth-

ods. Their domain applications span from medicine to gastronomy, also includ-

ing chemistry and business. They were chosen based on the number of features,
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Table 4.1: Tabular Classification Benchmark Datasets. n is the number of in-
stances, c is the number of classes, f is the number of features, fc and fd are
the number of continuous and discrete features, respectively

Name n c f fc fd Domain

Apple Quality1 4000 2 7 7 0 Gastronomy
Breast2 286 2 9 4 5 Medicine
Breast Wisconsin3 569 2 30 30 0 Medicine
Cervical4 857 2 33 12 21 Medicine
Diabetes5 768 2 8 8 0 Medicine
Glass6 214 6 9 9 0 Engineering
HCV7 615 5 12 11 1 Medicine
Heart8 918 2 11 6 5 Medicine
Iranian Churn9 3150 2 13 10 3 Business
Thoracic10 470 2 16 3 13 Medicine
Urinalysis11 1436 2 14 5 9 Medicine
Wine Quality (red)12 1599 7 11 11 0 Gastronomy

which should not exceed 50 so that a relatively short descriptive prompt could

be made. Also, the datasets should contain enough data – at least a few hundred

instances – to represent the task at hand and solve it using MLPs. The list of used

datasets is provided in Table 4.1. The number and diversity of datasets are meant

to ensure the generalizability of the experiment’s results.

To evaluate concept extraction from LLMs, two LLMs were used in their web

browser version: ChatGPT versions 3.5 and 4. They were chosen due to their

popularity and high scores in the LMSys Chatbot Arena13. They were also a suit-

able way to compare the performance of the proposed methods between free and

paid LLM usage tiers since GPT-4 only supported paid access at the onset of the

work14.
1https://www.kaggle.com/datasets/nelgiriyewithana/apple-quality
2https://archive.ics.uci.edu/dataset/14/breast+cancer, from [Zwitter and Soklic, 1988]
3https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data
4https://archive.ics.uci.edu/dataset/383/cervical+cancer+risk+factors
5https://www.kaggle.com/datasets/akshaydattatraykhare/diabetes-dataset, from [Smith

et al., 1988]
6https://www.kaggle.com/datasets/uciml/glass
7https://archive.ics.uci.edu/dataset/571/hcv+data, from [Hoffmann et al., 2018]
8https://archive.ics.uci.edu/dataset/45/heart+disease, from [Detrano et al., 1989]
9https://archive.ics.uci.edu/dataset/563/iranian+churn+dataset

10https://archive.ics.uci.edu/dataset/277/thoracic+surgery+data
11https://www.kaggle.com/datasets/avarice02/urinalysis-test-results
12https://archive.ics.uci.edu/dataset/186/wine+quality, from [Cortez et al., 1998]
13https://chat.lmsys.org/
14https://openai.com/index/hello-gpt-4o/
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After the choice of datasets and LLMs, the prompts for concept extraction were

produced. Their structure is described in the following subsection.

4.1.2 Concept Extraction

The concepts to extract from LLMs were nonlinear combinations of features, whose

formulas were directly retrieved from LLM responses. A total of five concepts

were obtained for each dataset, a suitable number since it is not too large but

can impact performance, allowing us to test our methods. The prompt fed to the

LLM started by contextualising the task at hand. This was followed by a textual

description of each feature in the dataset. Finally, a request for useful high-level

concepts, describing them as nonlinear combinations of features and providing

examples, was included. The list of concepts would be comprised of the formula

describing each concept, as well as a brief explanation of its utility. For example,

for the Breast dataset, the prompt was the following:

I am building a diagnostic model that predicts whether a given set of circumstances led to

the reincidence of breast cancer in a woman.

Each woman is characterised by: age, menopause stage (less than 40, more than 40 or

pre-menopause), tumor size, number of inv-nodes, existence of node caps, degree of ma-

lignancy, breast side (right or left), breast quadrant and whether the zone suffered irradi-

ation.

What are helpful higher-level concepts to help with this prediction task? Concepts should

be engineered features derived from the features provided, and aim to capture a funda-

mental component necessary for the prediction task, based on your scientific and medical

understanding. Examples of concepts include stripes in images or Gleason score group-

ing in prostate cancer mortality prediction. These concepts must not be simple linear

combinations of features, but must be more complex and non-linear, including the pro-

duct/quotient between two or more features and/or the use of other nonlinear functions.

Please suggest 5 concepts and provide explicit formulas to calculate the concept from the

features specified above. You must provide explicit formulas, including all coefficients,

and must not use features other than those provided. Provide a brief justification for the

concepts you provided.

It can be seen that this prompt is comprised of four main parts that direct the
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LLM to concept suggestion: a contextualisation of the task, a characterisation of

the dataset, the question to answer with examples and the concrete instructions

to follow. It follows prompt engineering practice, since the examples and the

instructions provide the necessary context for an LLM to suggest concepts.

The formulas contained in the LLM’s response to this prompt are used in the

following stage of data preprocessing, which shall be discussed in the next sub-

section.

4.1.3 Data Preprocessing

After the concept retrieval phase, the data present in the datasets was prepro-

cessed. Categorical features were encoded with the appropriate algorithm (ordi-

nal or one-hot, depending on whether there was a logical ordering of the cate-

gories) so that all the features could have the numerical representation required

to serve as MLP inputs. Following this, train-test split (stratified for the classifica-

tion datasets) was conducted. Then, missing data was imputed using the median

of the training dataset. This concluded the data preprocessing stage before con-

cept formulas were applied.

After this, the five concepts retrieved for the dataset were calculated. In the case

that there were ratios with divisions by zero, a constant (1) would be added to

the denominator for stability. This step produced concept-labelled datasets for

the subsequent tasks in the experiment’s pipeline.

Some of the methods proposed in the experiments required the concepts to be

discretized to binary values. Because of this, a discrete version of the concept-

labelled datasets was also obtained. For this, a thresholding function was ap-

plied to each concept, such that each threshold was the one that maximized the

target task information gain (minimising the entropy in the separation between

the instances with a concept value of 0 and the instances with a concept value of

1):
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arg min
x

#{cij ∈ Ci : cij < x}
#Ci

× H(Y, Ci < x)+

#{cij ∈ Ci : cij ≥ x}
#Ci

× H(Y, Ci ≥ x), x ∈ R (4.1)

After obtaining the datasets with discretized concepts, it was possible to test the

experimental hypothesis. The underlying methods are described in the next sec-

tion.

4.1.4 Proposed Methods

Considering that the present work aims to produce improvements in tabular clas-

sifier generalizability through the concepts provided by an LLM, it is necessary to

develop methods that make use of those concepts and embed them in an MLP’s

latent space. Two possible ways of achieving this were explored: multi-task learn-

ing and contrastive learning. Different combinations using the continuous and

discretized concepts were tried, leading to the various proposed methods de-

scribed below:

• PTC (Pretraining with Triplet Contrastive learning) is a process where the

discretized concepts are learned by the neural network through contrastive

learning with triplet loss. This happens before the end task training stage

and allows the latent space to be structured around the concepts before the

supervised training process. The proposed implementation applies triplet

contrastive loss [Le-Khac et al., 2020] for this purpose;

• ATC (Alternation with Triplet Contrastive learning) consists of applying

the discretized concept contrastive learning in alternation with the end task

training epochs;

• EDisc (Discrete Regularization) extends the output layer with m boolean

outputs, one for each concept. The neural network then predicts these out-

puts and is trained on both the concepts and the end task. Concept training

is subject to a regularisation term that regulates concept importance;

• ECont (Continuous Regularization) follows the same process as EDisc, ex-

cept that the concepts are continuous rather than discrete;
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Table 4.2: Hyperparameter intervals and default values

Hyperparameter Interval/Set Default

Hidden Dimension {16, 32, 64, 128, 256, 512} 128
Learning Rate (1e-6, 5e-3), log uniform 1e-3

Batch Size {2, 4, 8, 16, 32} 32
Weight Decay (1e-5, 1e-3), log uniform 1e-4
Hidden Layers {2, 3, 4, 5, 6} 4

Concept Regularisation Term (1e-5, 10), log uniform 1
Concept Pretraining Epochs (PTC) (10, 300), log uniform 10
No. of Contrastive Examples (ATC) 2i, i ∈ {4, 5, . . . , 13} 1024

• ContMTL (Continuous concepts, Contrastive + Multitask Learning) merges

ATC with ECont: for each training epoch, there is a stage with triplet con-

trastive learning of discretized concepts and a stage with multitask learning

with the end task and the continuous concepts.

To evaluate the improvement associated with the application of a method, a con-

trol experiment where no concepts are used was also tested.

4.1.5 Model Training and Testing

After the data preprocessing stage, MLP models were trained according to the

various methods described in the previous section. Before the data was fed to

these models, the continuous features and concepts underwent a standard nor-

malisation according to the corresponding training set distribution. All models

were trained for 150 epochs with an early stopping after no validation loss im-

provement for 30 epochs. Bayesian optimisation of hyperparameters was applied

for each method. The hyperparameter ranges can be consulted in Table 4.2.

This experimental process was repeated for 30 times in every method and for ev-

ery dataset with different train-validation splits so that the average performance

end task metrics could be calculated. The main performance metric considered

in this experiment was the classification AUROC, calculated in the same test set

over all repetitions.

In this part of the experimental process, the sources of knowledge were the two

LLMs mentioned in subsection 4.1.1. For a better assessment of the importance

of the knowledge embedded in the LLMs, the methods were also tested with
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random concepts: in each repetition, 5 concepts would be randomly obtained –

for each concept, 2 randomly selected features would be multiplied or divided

and their discretized versions would be obtained using the methods described in

subsection 4.1.3. The results of these experiments can be consulted in Section 5.1.

4.2 Concept Suggestion Improvement

After the results of the first experiment, where it was concluded that LLMs could

be a suitable source of knowledge to improve the generalisation capability of

MLPs, the possibility of further improving concept suggestions was pondered.

This improvement could occur due to an iterative process, where an LLM re-

ceived feedback on the concepts it provided, or due to a finetuning process, where

concept quality is represented in a preference dataset. The experimental setup for

the iterative process is shown in Subsection 4.2.1 and the finetuning process is de-

scribed in Subsection 4.2.2.

4.2.1 Iteration

To further improve concept quality, we developed a setup that allowed to itera-

tively improve concept suggestions by providing feedback to the LLM. This in-

volved determining the individual quality of each of the concepts provided by

the LLM, as well as providing to obtain new concepts; and repeating this pro-

cess a number of times. The list of used datasets is smaller in this experimental

setup, since MLPs already had a high performance in some of the initial datasets

(Apples, Glass, BreastWisconsin, and TelephoneChurn).

Concept Quality Determination In order to determine the quality of a concept,

it was necessary to discern the contribution of each concept within the set of con-

cepts produced by an LLM. To achieve this, the ContMTL method was run on

each of the subsets of that set, and the average difference between the inclusion

and the exclusion of a concept was determined across all the subsets.

Iterative Process After determining individual concept impact, a prompt was

compiled to provide the LLM with feedback for further iteration. It started by
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providing the initial prompt and the LLM’s response. Then, it listed the used

concepts and the respective formula. Following this, there was a list of the impact

of each concept and set of concepts with maximum and minimum performance,

as well as the performance resulting from using no concepts (with the Control

experiment) and with all the concepts. The prompt ended with a request for

concept correction.

Following concept extraction, concept quality was determined for each new set

of concepts and another iteration with the LLM would take place. In these sub-

sequent iterations, the information in the prompt only included concepts from

the preceding step, i.e. the concepts from iterations before the previous one were

not mentioned. However, as the web interface for GPT-4 was being used, these

concepts were in the communication history and were also considered for LLM

inference. A prompt example and respective LLM answer is provided in Ap-

pendix A

To determine if this process increased concept quality, the performance of the

model trained with ContMTL using all concepts on a held-out test set was deter-

mined. The evolution of this performance throughout the iterations with GPT-4

was then plotted. Results are reported in Section 5.2.1.

4.2.2 Finetuning

Given the limited results of the previous experiment, where an iterative process

was meant to increase concept quality, LLM finetuning was considered as an al-

ternative path to explore. In order to conduct it, various aspects would have to

be decided:

1. What LLM should be chosen so that the computational resources and time

available were enough to produce results?

2. Given the virtually infinite space formed by nonlinear combinations of fea-

tures, what concepts should be considered for the finetuning process, al-

lowing for a suitable tradeoff between coverage and quantity?

3. How to determine concept quality individually for the large list of concepts

to consider, knowing that each method is run with 5 concepts at a time?
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4. How to produce a finetuning dataset that steers the LLM towards reason-

able concept suggestions?

Regarding the choice of LLMs, it was decided that LLaMa3-8B-Instruct from Meta

AI would be the most suitable one, due to its high score in the LmSysLLM arena

(Table 3.1). Furthermore, given that it only has 8 billion (8× 109) parameters, each

taking 2 bytes of storage, the finetuning process could occur in a GPU with 16GB

of memory, which was not impeditive. Finally, this LLM is already instruction-

finetuned, so the only aspect to improve is concept suggestion.

Concept Enumeration and Quality Determination

Concept inclusion and enumeration was another important issue to tackle. The

list of concepts to include in the finetuning process should be broad enough to

capture various nonlinear relationships among features. Because of this, it was

decided that the list of concepts would include all ratios among two different fea-

tures, all products between two different features and all combinations of ratios

and products between three different features:

Clist = {A op B, A, B ∈ F, A ̸= B, op ∈ {×, /}}∪

{A op1 B op2 C, A, B, C ∈ F,

A, B, C pairwise different, op1, op2 ∈ {×, /}} (4.2)

The sets produced in equation 4.2 had a large number of elements (hundreds

of concepts) and it was necessary to determine the ones that produced the most

significant improvements in MLP performance, as well as the ones that led to

performance degradation. As such, a search algorithm was implemented for this

purpose.

Concept Search Algorithm Given the hundreds of concepts whose impact on

MLP performance was to be determined (with a greater focus on the better con-

cepts), a concept search algorithm was implemented and is described here.

The algorithm starts by generating the various concept combinations. The set is
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Algorithm 2 Concept Search Algorithm

Input: r, Clist
Output: List of concepts and respective quality(Q)

no_run← 0
S← (si := 1 : i ∈ {1, ..., |Clist|}) ▷ Score initialisation phase
Q← ((qi,0 := 0, qi,1 = 0) : i ∈ {1, ..., |Clist|}) ▷ Initialise concept quality
while no_run < r do

Cs ← sample(Clist, 5, S) ▷ Sampling probabilities proportional to values in
S

R← [] ▷ Initialise an empty array to store results
for all A ⊆ P(S) do

aurocA ← auroc(ContMTL, A)
R← [...R, (rA,0 = A, rA,1 = aurocA)] ▷ Compute and save value

end for
for all c ∈ Cs do

Incc ← {r ∈ R : c ∈ r0} ▷ Get the sets that include c
Excc ← {r ∈ R : c /∈ r0} ▷ Get the sets that exclude c
qtemp ← 1

|Incc| ∑r∈Incc r1 − 1
|Excc| ∑r∈Excc r1 ▷ Compute the quality of c

qc ← (qc,0 + qtemp, qc,1 + 1) ▷ Store it in the total array
end for
Qtested ← {qi ∈ Q : qi,1 > 0}
avg_improvement← 1

|Qtested| ∑qi∈Qtested
qi,0

for all qi ∈ Qtested do
N ← {ni ∈ Clist : n is a neighbor of q}
if qi,0 > 0 and qi,0 > avg_improvement then

si ← si ∗ 1.1 ; sgn← 1
else

si ← si ∗ 0.9 ; sgn← −1
end if
for all ni ∈ N do

si ← si ∗ (1 + 0.05 ∗ sgn) ▷ Multiply score of neighbor by 1.05 or 0.95
end for

end for
no_run← no_run + 1

end while
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then pruned to ensure that every concept considered has two or more distinct

values. There is also a score initialisation phase: every concept starts with a score

of 1. The score of a concept si reflects the probability of choosing this concept in a

given run.

For r runs (r = 10000, for example), 3 concepts are drawn with probability pro-

portional to their scores. This represents the run’s set. For every subset of this set,

the ContMTL method is run using its concepts (except for the empty set, where

the control method is used). Then, the performance results are used to determine

the quality of each concept, given by the average difference between its inclusion

and exclusion throughout the subsets. If a given concept’s quality is greater than

0 and exceeds the average performance improvement, its score increases 10%;

otherwise, it decreases by this amount. Given the large number of concepts in the

list, a neighborhood structure was established for the algorithm, allowing for the

inference of a concept’s prospective quality from its neighbors.

The neighbor structure for this algorithm is the following: for concepts that were

calculated using 3 features, the neighborhood would consist of the remaining

combinations of operators (op1, op2); as well as the combinations of 2 features

that would result from excluding a feature and an operator from the initial for-

mula (Equation 4.3). For concepts calculated using only 2 features, the concept

resulting from an operator swap would be included, as well as all the 3-feature

concepts whose formula includes the operation in the concept (Equation 4.4).

N(A op1 B op2 C) = {A op1 B, A op2 C, B op2 C, A op1 B op2 C, A op1 B op2 C,

A op1 B op2 C} (4.3)

N(A op1 B) = {A op1 B} ∪ {A op1 B op F, op ∈ {×, /}, F ∈ F \ {A, B}}∪

{A op F op1 B, op ∈ {×, /}, F ∈ F \ {A, B}}∪

{F op A op1 B, op ∈ {×, /}, F ∈ F \ {A, B}} (4.4)

If a given concept’s score is increased in a run, then its neighbors have their score

increased by 5%; and if there is a reduction the neighbors also suffer a reduction
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of the same magnitude.

After all the runs, a list of concepts and associated quality is produced. There can

be concepts that were tested more than once, in which case the average improve-

ment is considered. Only the concepts that were explored in the algorithm are

included. Because of the algorithm’s design, and assuming that neighboring con-

cepts have similar quality, bad-quality concepts are not as thoroughly explored

as good-quality ones, and good-quality concepts have their quality better deter-

mined by multiple runs.

This list is then used as a reference to create the prompts and responses that shall

be fed to the LLM for finetuning. This stage shall be described in the next subsec-

tion.

Concept Suggestion Finetuning

After the obtention of a list with concept qualities, the finetuning dataset can be

prepared. As can be seen in subsection 2.2.3, this process involves a supervised

fine-tuning stage along with a preference optimisation stage, which can happen

serially or concurrently. Considering the various choices depicted in that subsec-

tion, it was decided that ORPO would be the method of choice, given its simplic-

ity and performance.

In order to apply ORPO, it is necessary to use a preference dataset with 3 entries

for each instance: a prompt, a chosen answer and a rejected answer. Following

the numbers of the finetuning datasets usually found in Huggingface15, it was

understood that the dataset should contain at least a few tens of thousands of

instances, where the preference between 2 suggested lists of concepts is made

clear.

This is feasible with the mapping between concepts and respective rise in perfor-

mance. Even though the concept list contains less than 1000 entries, the number

of possible pairwise comparisons of subsets of 5 elements is much larger than the

intended number of finetuning instances. With this in mind, only the prompt and

response formats have to be handled, as well as the comparison function used to

choose between two responses.

15https://huggingface.co/datasets
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Prompt Formatting

A prompt template was developed for use throughout the entire dataset. It can

be divided into four parts, including a contextualisation of the task, a description

of the features in a tabular dataset, and the instructions to follow, with respec-

tive examples and restrictions. The prompt shown in subsection 4.1.2 broadly

follows this template, but the feature description is more elaborate in this case:

each feature is accompanied by its type (continuous, binary or categorical), as

well as its physical meaning. Statistical metafeatures calculated from the training

set are also included in the prompt: for continuous features, the mean, standard

deviation, median, minimum and maximum values, kurtosis, skewness and cor-

relation with the target are specified. For binary and continuous features, the

quantities and proportions of the various categories. The information gain of

these features with respect to the target variable is also specified, as well as their

average correlation with the target.

Response Formatting

Given a prompt and a list of concepts, it is necessary to elaborate a response

to complete the creation of an instance. For this, it is necessary to name each

concept by its formula, and justify its relevance. Both the name of the concept

and the justification had to be drawn exclusively from the information present in

the prompt. Thus, a naming scheme was developed and a concept justification

algorithm was implemented. For three features A, B and C, the naming scheme

was the following, assuming that a product can be named as an interaction and

that a quotient is a ratio or a source of normalization:

• A× B : A-B Interaction

• A
B : A-B Ratio

• A× B× C : A-B-C Interaction

• A× B/C = A×B
C : C-Normalized A-B Interaction

• A/B/C = A
B×C : C-Normalized A-B Ratio

• A/B ∗ C = A×C
B : B-Normalized A-C Interaction
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The justification of the relevance of a concept was made with resort to an analysis

of the correlation signs: considering the concept formula as a fraction, the terms

in the numerator should all have the same sign and the terms in the denominator,

if present, should all have the opposite sign. In the case that the formula did not

meet these restrictions, a generic justification was provided (could be an important

concept).

Dataset Assembly and Response Comparison

The dataset was assembled by the following procedure:

• From the ordered list of concepts that had their quality determined by the

concept search algorithm, the upper third was chosen for the preferred re-

sponses and the bottom third was chosen for the rejected ones;

• Three-fourths of the dataset were obtained by sampling five concepts from

the upper third for the chosen response and five concepts from the bottom

third;

• One fourth of the dataset was obtained by obtaining two 5-concept samples

from the upper third. To determine which set was better, a comparison

function was implemented, magnifying concept quality by feature diversity,

according to Equation 4.5.

qlist = ( ∑
c∈list

qc)× (1 +
no_di f f erent_ f eatureslist

3
) (4.5)

The division in thirds aimed to ensure that preferred responses contain quali-

fied concepts, and the proportions for the generation of the dataset aim to pro-

mote a distinction between concepts that produce improvements and concepts

that do not; while also fostering feature diversity in the lists of concepts given as

response.

Given this procedure and a number of dataset instances, the finetuning dataset

considering the features of one tabular dataset was created. After the Diabetes

and Wine Quality datasets were processed in this way, yielding a 20000-instance

dataset with 10000 instances for each tabular dataset.
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Figure 4.2: Evolution of Rewards throughout Finetuning

Finetuning Process and Parameters

To obtain a finetuned model from the dataset created in the previous stage, the

LLama3-8B-Instruct model was obtained and quantized to 4 bits using the NF4

data type. A LoRA layer was added to it to allow for PEFT. Following this,

the prompts were formatted according to this LLM’s dialogue conventions. The

dataset was divided into training and validation segments in a 90/10 fashion.

Considering that the LLM was already instruction-finetuned and that a prelimi-

nary literature review showed that ORPO required few training epochs, the train-

ing process only consisted of one epoch with a learning rate of 8× 10−6 and a β

value (the coefficient of the Odds-Ratio loss) of 0.1. Graphs of the training process

were obtained, showing that the chosen responses became progressively more

likely generated than the rejected ones (Figure 4.2).
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Results
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Concept Suggestion Improvement

Iteration

Finetuning

Concept Retrieval
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Impact of Hyperparameter Tuning

Impact of Proposed Methods

Impact on Generalization

Impact of Concept Discretization

Ablation Study: Random Concepts

The experimental setups described in chapter 4 produced results that shall be

analysed in this chapter. Firstly, we will look at the performance improvements

produced by the methods described in section 5.1, assessing the respective gen-

eralisation capability. After this, in section 5.2 we will look at how an LLM can be

trained to suggest the right concepts that lead to an increase in performance.

5.1 Concept Retrieval Results

We conducted various experiments to understand the impact of the proposed

methods on the performance of ML models. Given the aim of the present work,
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Table 5.1: Baseline AUROC for all datasets. Each method is tested only on the
dataset’s features and also using the LLM-obtained concepts as extra features.

Method LGBM XGB MLP
LLM - GPT4 GPT3.5 L3 - GPT4 GPT3.5 L3 - GPT4 GPT3.5 L3

Appl .951 .951 .952 .947 .947 .948 .943 .947 .977 .966 .973 .964
Brst .641 .623 .617 .617 .558 .549 .595 .558 .712 .681 .696 .700
BrWsc .995 .991 .995 .994 .995 .994 .995 .995 .993 .998 .996 .997
Cerv .679 .673 .615 .584 .613 .578 .603 .613 .503 .487 .466 .588
Diab .849 .853 .844 .854 .836 .811 .797 .836 .851 .842 .851 .857
Glass 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .795 .787 .784 .928
Heart .928 .927 .928 .926 .905 .914 .898 .905 .918 .928 .917 .935
HCV .984 .982 .987 .980 .970 .982 .973 .970 .397 .333 .393 .938
TelCh .992 .992 .994 .994 .989 .988 .989 .989 .985 .987 .976 .990
Thor .579 .654 .645 .594 .608 .600 .582 .608 .396 .631 .496 .554
Urin .749 .744 .748 .783 .728 .759 .792 .728 .327 .769 .376 .638
WQred .906 .908 .900 .898 .832 .839 .846 .832 .864 .763 .596 .686
Average .854 .858 .852 .848 .832 .830 .834 .832 .727 .764 .710 .815

Table 5.2: Baseline AUROC for the datasets with age-based split

Method LGBM XGB MLP
LLM - GPT4 GPT3.5 L3 - GPT4 GPT3.5 L3 - GPT4 GPT3.5 L3

Brst .578 .676 .683 .609 .605 .593 .543 .605 .743 .623 .755 .674
Cerv .602 .503 .664 .603 .752 .622 .661 .752 .535 .315 .293 .321
Diab .682 .704 .687 .730 .722 .688 .704 .722 .761 .673 .758 .683
HCV .974 .970 .969 .976 .973 .976 .967 .973 .699 .935 .970 .975
Heart .886 .870 .878 .865 .858 .872 .852 .858 .898 .904 .905 .886
Urin .828 .808 .805 .806 .850 .824 .814 .850 .346 .743 .373 .304
Thor .589 .478 .530 .536 .640 .571 .466 .640 .339 .357 .340 .342
Average .734 .715 .745 .732 .772 .735 .715 .772 .617 .650 .628 .598

we tested generalisation by using various ratios of training data, and by per-

forming a feature-based split in some datasets. Also, we determined the impact

of hyperparameter optimisation and compared it to the effect produced by the

methods, having a set of default hyperparameters as control. To better contextu-

alise the results, we explored some performance baselines.

5.1.1 Baselines

We obtained some baselines for comparison with the methods proposed, by de-

termining the AUROC in the test set after training (Tables 5.1 and 5.2).

The performance metrics show that LightGBM and XGBoost are strong baselines

with a high average test AUROC (0.83 to 0.85) and that MLPs without concepts

perform significantly worse, with AUROC inferior to 0.73. Still, there are datasets

where it has a performance in line with these baselines, such as Apples, Breast

and Diabetes.

As far as extra features are concerned, providing the strong baselines with extra
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Table 5.3: Target AUROC for classification, GPT-3.5 concepts, optimized hyper-
parameters

Control EDisc ECont PTC ATC ContMTL

Apples 0.978 0.803 0.971 0.978 0.975 0.979
Breast 0.625 0.612 0.652 0.614 0.626 0.630
BreastWisconsin 0.992 0.996 0.996 0.997 0.993 0.992
Cervical 0.579 0.575 0.632 0.613 0.606 0.590
Diabetes 0.798 0.839 0.853 0.846 0.809 0.848
Glass 0.955 0.929 0.885 0.980 0.986 0.810
HCV 0.803 0.720 0.305 0.783 0.741 0.789
Heart 0.906 0.933 0.928 0.929 0.911 0.918
TelephoneChurn 0.986 0.987 0.987 0.987 0.988 0.987
Thoracic 0.642 0.665 0.662 0.669 0.619 0.597
Urinalysis 0.620 0.730 0.654 0.726 0.735 0.722
Winequality 0.527 0.513 0.545 0.562 0.636 0.539
Average 0.784 0.775 0.756 0.807 0.802 0.783

features does not affect performance significantly: XGBoost does not change at

all when equipped with GPT3.5 concepts, and its performance slightly degrades

with GPT-4 concepts; whereas LightGBM benefits very slightly from GPT4 con-

cepts. This can be explained by the fact that the provided concepts are nonlinear

combinations of dataset features: the nature of these baseline algorithms (ensem-

ble and tree-based) makes them consider relevant nonlinear combinations of fea-

tures for themselves.

MLPs, on the other hand, seem to benefit from the concepts provided by LLMs:

when using GPT-4 concepts as extra features, the MLP architecture has an AU-

ROC 0.04 higher than when using only the default features. The effect is further

noticeable when using LLaMa-3 concepts, which make the AUROC lie within

0.02 of the performance achieved by XGBoost.

As far as generalisation with age-based split is concerned, a drop in AUROC

is noticeable in all classifiers with respect to the stratified split. However, the

ensemble learning methods remain largely unaffected by LLM concepts, unlike

MLPs, whose performance rises upward of 0.03 with the use of GPT-4 concepts

but remains far from the ensemble baselines.

5.1.2 Impact of the proposed methods

Tables 5.3 and 5.4 show the performance that was obtained by the various pro-

posed methods, using tuned hyperparameters specific for each method and mod-
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Table 5.4: Target AUROC for classification, GPT-4 concepts, optimized hyperpa-
rameters

Control EDisc ECont PTC ATC ContMTL

Apples 0.975 0.969 0.965 0.981 0.979 0.977
Breast 0.620 0.663 0.687 0.660 0.603 0.670
BreastWisconsin 0.992 0.997 0.996 0.989 0.993 0.997
Cervical 0.605 0.520 0.604 0.610 0.580 0.558
Diabetes 0.814 0.808 0.843 0.848 0.844 0.852
Glass 0.875 0.903 0.976 0.973 0.885 0.734
HCV 0.807 0.918 0.705 0.800 0.843 0.265
Heart 0.908 0.911 0.933 0.929 0.931 0.926
TelephoneChurn 0.988 0.987 0.987 0.983 0.989 0.985
Thoracic 0.575 0.668 0.630 0.651 0.537 0.538
Urinalysis 0.624 0.721 0.725 0.665 0.694 0.772
Winequality 0.443 0.555 0.554 0.530 0.595 0.560
Average 0.769 0.802 0.800 0.802 0.789 0.736

ifying the latent space using GPT-4 and GPT-3.5 concepts.

These tables show that the proposed methods also aid performance in MLPs. This

is especially clear for the PTC method, where the average AUROC is superior to

0.80 using both LLMs as sources of concepts. When using GPT-4, this threshold

was also attained by ECont and EDisc, meaning that both contrastive learning

and multitask learning can produce increases in performance by adapting the

MLP’s latent space to the concepts suggested by the LLM. When applied together,

the result is reduced, as ContMTL showed little to no performance gains when

compared to the control experiment in both cases.

Overall, according to these tables, ATC and PTC are the most suitable methods

to improve performance with respect to the Control experiment, given that they

beat this baseline about 75% of times and display an average performance close to

0.80 using both LLMs as source of knowledge. In fact, these are the only methods

where the average performance is superior to Control using GPT-3.5 concepts,

which is evidence of their regularisation effect, regardless of which concepts are

used.

5.1.3 Impact of Hyperparameter Tuning

In order to assess the impact of hyperparameter tuning, the proposed methods

were also run with default hyperparameters, which provided further insight into

their behaviour. Tables 5.5 and 5.6 show the performance metrics gathered in this
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Table 5.5: Target AUROC for classification, GPT-3.5 concepts, default hyperpa-
rameters

Control EDisc ECont PTC ATC ContMTL

Apples 0.975 0.974 0.977 0.977 0.977 0.976
Breast 0.630 0.649 0.651 0.638 0.617 0.654
BreastWisconsin 0.994 0.993 0.994 0.994 0.995 0.994
Cervical 0.594 0.641 0.620 0.599 0.656 0.671
Diabetes 0.814 0.840 0.841 0.818 0.827 0.854
Glass 0.909 0.635 0.803 0.939 0.839 0.818
HCV 0.274 0.799 0.129 0.500 0.886 0.703
Heart 0.908 0.918 0.909 0.904 0.907 0.913
TelephoneChurn 0.986 0.988 0.987 0.986 0.986 0.989
Thoracic 0.547 0.582 0.572 0.558 0.550 0.565
Urinalysis 0.639 0.722 0.697 0.653 0.717 0.738
Winequality 0.515 0.468 0.518 0.533 0.595 0.575
Average 0.732 0.767 0.725 0.758 0.796 0.787

Table 5.6: Target AUROC for classification, GPT-4 concepts, default hyperparam-
eters

Control EDisc ECont PTC ATC ContMTL

Apples 0.977 0.976 0.975 0.977 0.975 0.975
Breast 0.623 0.644 0.644 0.639 0.663 0.669
BreastWisconsin 0.993 0.997 0.996 0.994 0.996 0.997
Cervical 0.597 0.635 0.617 0.594 0.617 0.618
Diabetes 0.815 0.838 0.845 0.815 0.827 0.843
Glass 0.903 0.668 0.795 0.961 0.825 0.820
HCV 0.187 0.681 0.157 0.484 0.805 0.667
Heart 0.908 0.914 0.911 0.909 0.909 0.917
TelephoneChurn 0.986 0.987 0.986 0.987 0.986 0.986
Thoracic 0.554 0.604 0.588 0.557 0.548 0.584
Urinalysis 0.633 0.708 0.702 0.631 0.689 0.716
Winequality 0.505 0.522 0.477 0.527 0.602 0.524
Average 0.723 0.764 0.724 0.756 0.787 0.776

experiment when using the concepts provided by GPT-3.5 and GPT-4, respec-

tively.

When comparing the average performance between the optimized and the de-

fault networks, we can conclude that there are methods more sensitive to hy-

perparameter tuning than others. Control, EDisc and PTC are quite sensitive,

since optimisation increases AUROC by about 0.05 in these cases. On the other

hand, EDisc, ATC and ContMTL are less affected by this process, so they could

be more suitable in cases where hyperparameter tuning is too expensive or time-

consuming.

Looking at the results attained by the optimized Control experiment, it also be-

comes clear that applying the proposed methods with default hyperparameters
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Table 5.7: Target classification AUROC, age split, GPT-3.5 concepts

Control EDisc ECont PTC ATC ContMTL

Breast 0.582 0.730 0.732 0.763 0.774 0.636
Cervical 0.479 0.600 0.523 0.465 0.612 0.688
Diabetes 0.668 0.674 0.723 0.688 0.679 0.682
HCV 0.666 0.880 0.160 0.732 0.492 0.526
Heart 0.824 0.869 0.887 0.905 0.790 0.777
Thoracic 0.453 0.609 0.615 0.516 0.434 0.569
Urinalysis 0.621 0.710 0.689 0.683 0.687 0.690
Average 0.613 0.725 0.618 0.679 0.638 0.653

Table 5.8: Target classification AUROC, age split, GPT-4 concepts

Control EDisc ECont PTC ATC ContMTL

Breast 0.575 0.782 0.823 0.524 0.677 0.747
Cervical 0.427 0.585 0.714 0.533 0.601 0.527
Diabetes 0.693 0.756 0.676 0.703 0.705 0.715
HCV 0.803 0.845 0.443 0.607 0.714 0.832
Heart 0.789 0.881 0.888 0.825 0.812 0.884
Thoracic 0.454 0.600 0.706 0.588 0.530 0.645
Urinalysis 0.639 0.682 0.683 0.633 0.661 0.685
Average 0.626 0.733 0.705 0.630 0.671 0.719

has a similar effect on performance while dispensing hyperparameter tuning: in

both cases, using ATC or ContMTL with default hyperparameters was better than

applying the Control experiment with optimized hyperparameters. This makes

these methods suitable for use in cases where hyperparameter optimisation can-

not be applied, as long as relevant concepts can be extracted.

Overall, we can say that hyperparameter tuning and the proposed methods have

effects of similar magnitude (about 0.05 in AUROC for these datasets) and that

they partially interact, leading to increases in performance that can surpass 0.07

(from 0.732 to 0.807 in the GPT-3.5 experiment, from 0.723 to 0.802 in the GPT-4

experiment) – hyperparameter optimisation changes the structure of the neural

network, whereas the proposed methods alter the structure of the latent space

within a network, by adding extra knowledge retrieved from LLMs.

5.1.4 Impact on Generalisation

In order to study the impact that the proposed methods have on generalisation,

two main experiments were conducted: firstly, results were obtained using a

feature-based train-test split approach: for datasets that included an age feature,

the training set comprised the younger 80%, while the test set consisted of the
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Figure 5.1: Average AUROC by method for various training ratios. GPT-4 results
are on top and GPT-3.5 results are on the bottom
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older 20%. Additionally, some of the proposed methods were evaluated using

only a fraction of the training set: performance was measured using 5%, 10%,

20%, and 50% of the training instances to determine the data efficiency of the

proposed methods. This fraction was obtained with stratification.

The results for various training set ratios across the various LLMs are shown in

Figure 5.1. This graph shows that the usage of methods such as EDisc or PTC can

be beneficial in cases where there is low data availability: applying these methods

using only half of the training data yielded a performance that was very similar to

the one verified in the control experiment using the whole training set, meaning

that the incorporation of these concepts fosters generalisation. This is especially

noticeable when using GPT-4 as a source of knowledge, since the hyperparameter

optimisation in this stage yielded a less performant MLP.

The results for age split are shown in Tables 5.7 and 5.8. In this case, the improve-

ments are also clear, especially in EDisc, where the AUROC score is within 0.01

of the performance achieved by LightGBM in this setting. In these tables, the su-

periority of the concepts provided by GPT-4 is also clear across most methods,

showing that the quality of an LLM produces an impact on the generalisation ca-

pability of the MLP, which can make methods such as EDisc a possible alternative

to the ensemble strategies in situations where concept drift is significant.

5.1.5 Ablation Study: Use of Random Concepts

In order to understand whether the knowledge retrieved from LLMs was respon-

sible for the increase in performance across the various methods, we applied ran-

dom concepts (obtained as ratios or products among two random features of a

dataset) to the proposed methods, using the optimized hyperparameters deter-

mined for GPT-4. Tables 5.9 and 5.10 show the results obtained in this experi-

ment.

The results show random concepts also seem to have a significant impact on

model performance, both when using contrastive learning (PTC and ATC) and

when using multitask learning (EDisc and ECont). This means that the proposed

methods have a strong regularisation effect by themselves. This effect is much

stronger than the one produced by LLM knowledge: on average, the best method

is PTC using GPT-3.5 concepts, and this average is only 0.004 higher than the
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Table 5.9: Target classification AUROC, random concepts

Control EDisc ECont PTC ATC ContMTL

Apples 0.977 0.969 0.968 0.981 0.979 0.976
Breast 0.617 0.666 0.656 0.644 0.570 0.621
BreastWisconsin 0.991 0.995 0.996 0.991 0.991 0.993
Cervical 0.611 0.586 0.581 0.608 0.621 0.572
Diabetes 0.809 0.788 0.838 0.841 0.849 0.856
Glass 0.867 0.907 0.977 0.968 0.900 0.787
HCV 0.834 0.886 0.529 0.821 0.827 0.172
Heart 0.912 0.913 0.928 0.925 0.925 0.923
TelephoneChurn 0.989 0.988 0.986 0.983 0.987 0.985
Thoracic 0.573 0.667 0.651 0.662 0.571 0.599
Urinalysis 0.624 0.719 0.726 0.694 0.695 0.729
Winequality 0.435 0.532 0.545 0.526 0.574 0.551
Average 0.770 0.801 0.782 0.803 0.791 0.730

Table 5.10: Target classification AUROC, age split, random concepts

Control EDisc ECont PTC ATC ContMTL

Breast 0.578 0.789 0.799 0.536 0.679 0.666
Cervical 0.428 0.539 0.579 0.500 0.525 0.528
Diabetes 0.687 0.680 0.706 0.698 0.707 0.688
HCV 0.820 0.849 0.354 0.557 0.600 0.703
Heart 0.796 0.878 0.889 0.804 0.801 0.885
Thoracic 0.445 0.573 0.624 0.571 0.566 0.550
Urinalysis 0.647 0.719 0.682 0.633 0.706 0.718
Average 0.629 0.718 0.662 0.614 0.655 0.677

method that uses random concepts.

However, LLM knowledge has an important role in generalisation in cases where

there is concept drift, as can be seen from the comparison between Tables 5.8

and 5.10: with age split, the AUROC achieved by GPT-4 concepts was higher by

about 0.015 when applying the same method.

5.1.6 Impact of Concept Discretization

Given the nature of some of the proposed methods, where the latent space is

structured around discretized concepts, it is important to understand if the pro-

cess of discretisation leads to the loss of relevant information or if it is beneficial.

Looking at Tables 5.3 and 5.4 and comparing ECont with EDisc directly, it can

be seen that they are in line with each other: across these two tables, EDisc is

superior in 10 of the cases; whereas ECont is better in 11 of the cases. How-

ever, discretisation possibilitates contrastive learning. A comparison with PTC
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and ATC against ECont with the same data shows that PTC is superior in 13 of

the cases and ATC is better in 10 of the cases. As such, discretisation appears to

increase performance in PTC. This could be due to the incorporation of training

data information in the process: the entropy-based split separates the instances

into positives and negatives according to a threshold determined in the training

dataset.

5.2 Concept Suggestion Improvement

The results shown in the previous section led to the conclusion that LLM knowl-

edge had little contribution to the increase in MLP performance, but we con-

ducted further experiments to improve the quality of the concepts retrieved from

LLMs. A first attempt consisted of an iterative process where after concept re-

trieval, we would evaluate the contribution of each concept to provide feedback

on the concepts to the LLM in a subsequent iteration. Another alternative was ex-

plored: LLaMa3-8B-Instruct was finetuned on a concept retrieval dataset and the

proposed methods were evaluated using the concepts suggested by this LLM.

The results from these experiments are described in the subsections below.

5.2.1 Iteration

To evaluate the impact of an iterative process in concept suggestion, some of

the datasets used in the previous steps were selected and the performance of

the ContMTL method was evaluated over 5 iterations. This method was chosen

since it uses both continuous and discretized concepts and has a good perfor-

mance without hyperparameter tuning, allowing for a holistic evaluation. The

selection process excluded some of the datasets where AUROC was too high for

any improvements to be noticed, including Apples, Glass, TelephoneChurn and

BreastWisconsin. The results can be consulted in Figure 5.2.

This graph shows that the impact of iteration is mixed. Even though there were

2 datasets where significant gains were attained (HCV and Urinalysis), signifi-

cant losses were also found in the Breast and Cervical datasets. Still, given the

improvements found in HCV and Urinalysis, performing an iterative process can

be advantageous.
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Figure 5.2: Average AUROC by method throughout GPT-4 iterations

Table 5.11: Dataset L2 complexity metrics

Brst Cerv Diab HCV Heart Thor Urin WQred

L2 0.276 0.060 0.236 0.019 0.147 0.146 0.057 0.076

In order to understand in which cases there is an improvement, several complex-

ity metrics were extracted with the pymfe library and an analysis was conducted.

The analysis of those metrics led to the conclusion that problems that are more lin-

early separable benefit more from this iterative process: the L2 metric calculated

by this library, which corresponds to the average error rate of the one-vs-one lin-

ear classifiers across all the classes, is lower in HCV and Urinalysis than in the

remaining datasets, as can be seen in Table 5.11. Thus, the feedback provided by

these concepts can more easily be incorporated to handle corner cases in these

datasets than in the remaining ones, where changes can lead to a greater error

rate.

5.2.2 Finetuning

Another possible path to improve the quality of concept suggestion is task-specific

LLM finetuning. We determined concept quality for the Winequality and Dia-
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Table 5.12: Target classification AUROC, default LLaMa3 concepts

Control EDisc ECont PTC ATC ContMTL

Apples 0.977 0.972 0.981 0.976 0.974 0.978
Breast 0.602 0.604 0.669 0.661 0.637 0.645
BreastWisconsin 0.989 0.997 0.993 0.991 0.989 0.994
Cervical 0.572 0.620 0.621 0.660 0.605 0.599
Diabetes 0.818 0.801 0.805 0.842 0.802 0.820
Glass 0.885 0.842 0.952 0.984 0.983 0.941
HCV 0.836 0.730 0.348 0.789 0.404 0.564
Heart 0.906 0.922 0.928 0.927 0.911 0.924
TelephoneChurn 0.987 0.988 0.987 0.988 0.988 0.985
Thoracic 0.630 0.625 0.560 0.586 0.598 0.569
Urinalysis 0.616 0.777 0.726 0.736 0.646 0.750
Winequality 0.513 0.483 0.557 0.559 0.552 0.604
Average 0.777 0.780 0.761 0.808 0.757 0.781

Table 5.13: Target classification AUROC, finetuned LLaMa3 concepts

Control EDisc ECont PTC ATC ContMTL

Apples 0.978 0.972 0.976 0.977 0.970 0.968
Breast 0.604 0.612 0.649 0.666 0.582 0.572
BreastWisconsin 0.994 0.993 0.996 0.988 0.989 0.992
Cervical 0.629 0.620 0.617 0.634 0.610 0.613
Diabetes 0.796 0.856 0.834 0.815 0.828 0.791
Glass 0.929 0.858 0.945 0.965 0.960 0.962
HCV 0.863 0.787 0.446 0.782 0.904 0.818
Heart 0.911 0.913 0.903 0.925 0.921 0.912
TelephoneChurn 0.988 0.988 0.985 0.986 0.987 0.988
Thoracic 0.605 0.668 0.562 0.582 0.659 0.572
Urinalysis 0.622 0.783 0.729 0.726 0.739 0.758
Winequality 0.537 0.599 0.534 0.508 0.535 0.499
Average 0.788 0.804 0.765 0.796 0.807 0.787

betes datasets and created a finetuning dataset based on this information, ap-

plying the procedure described in Subsection 4.2.2. After hyperparameter opti-

mization, Table 5.13 was obtained, displaying the performance of the proposed

methods across the various datasets.

Tables 5.12 and 5.13 show that a slight improvement in performance across some

methods is noticeable (EDisc and ATC), and an interesting result is obtained in the

Diabetes dataset: the maximum test performance goes from 0.842 with the PTC

method to 0.856 with the EDisc method, showing that the suggested concepts

improved in the dataset where the tuning took place. The same did not occur

with the Winequality dataset, where test-time performance did not change signif-

icantly. However, since the performance in Diabetes exceeds the strong baselines

shown in Table 5.1, there is the possibility of using this finetuning pipeline for a

given dataset in order to achieve greater performance. Testing this pipeline with
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Results

Table 5.14: Target classification AUROC, age split, default LLaMa3 concepts

Control EDisc ECont PTC ATC ContMTL

Breast 0.560 0.828 0.784 0.755 0.806 0.778
Cervical 0.467 0.491 0.432 0.500 0.507 0.577
Diabetes 0.697 0.776 0.751 0.732 0.669 0.753
HCV 0.806 0.801 0.250 0.344 0.799 0.734
Heart 0.786 0.779 0.800 0.896 0.781 0.785
Thoracic 0.460 0.621 0.617 0.644 0.576 0.548
Urinalysis 0.621 0.652 0.688 0.697 0.738 0.686
Average 0.628 0.707 0.617 0.653 0.697 0.695

Table 5.15: Target classification AUROC, age split, finetuned LLaMa3 concepts

Control EDisc ECont PTC ATC ContMTL

Breast 0.578 0.795 0.798 0.821 0.711 0.823
Cervical 0.466 0.553 0.449 0.519 0.453 0.496
Diabetes 0.677 0.685 0.716 0.687 0.668 0.760
HCV 0.848 0.795 0.719 0.825 0.887 0.875
Heart 0.802 0.885 0.798 0.797 0.800 0.872
Thoracic 0.474 0.649 0.437 0.607 0.567 0.602
Urinalysis 0.642 0.680 0.678 0.670 0.626 0.651
Average 0.641 0.720 0.656 0.704 0.673 0.726

other datasets will be left for future work.

When applying age split (Tables 5.14 and 5.15), the maximum average classi-

fication AUROC increases by about 0.019 after finetuning (from 0.707 to 0.726,

above the random baseline presented in Table 5.10), which is evidence of the pos-

itive benefit that this process has on generalisation. In the tests with the fine-

tuned LLM, the performance of the ContMTL model increased by 0.03, because

of datasets such as Breast, Diabetes, HCV and Heart, which could indicate that

the LLM gained general-purpose sensitivity to the formulas it has to retrieve, and

that the method used as a base for concept quality retrieval was benefitted.
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Chapter 6

Conclusion

Generalisation is an issue inherent to machine learning, given the inevitable lim-

its on model training data. The present work aimed to tackle it by embedding

LLM knowledge into tabular classifiers, using formulas derived from dataset fea-

tures and applying contrastive and multi-task learning techniques to MLPs. We

also evaluated the impact of task-specific LLM finetuning in the improvement of

model performance. Across 12 classification datasets, the evaluation of the pro-

posed methods against the control experiments and other baselines allows us to

conclude the following:

1. In some cases, MLPs can benefit from concepts as extra features to perform

in line with ensemble learners such as XGBoost;

2. The proposed methods show an important regularisation effect, by leading

to a noticeable increase in classifier AUROC in comparison to the control ex-

periment, regardless of hyperparameter optimisation or knowledge source

(be it LLMs or random concepts);

3. LLM knowledge does not appear to have a significant impact on model

performance in normal training conditions. However, there is an increase in

generalisation in cases where an artificial concept drift is present, as shown

by the age-based split;

4. The use of entropy-discretized concepts, by allowing contrastive learning,

joins the information gathered from LLMs with the one present in the train-

ing dataset and leads to a performance that is slightly superior to continu-

ous methods;
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Conclusion

5. Iteration has a mixed effect on model performance, as AUROC can increase

or decrease in some datasets but mostly remains the same;

6. Task-specific LLM finetuning positively affects the generalisation capability

of the models that apply the proposed methods.

6.1 Future Work

With the takeaways that have been produced by the work, further exploration

can take place in the following directions:

1. The conclusions can be made more robust by extracting concepts and ap-

plying the experimental setup to a greater variety of LLMs;

2. These takeaways can be thoroughly tested with regression datasets, as well

as other types of data, such as images;

3. The proposed methods can be tested in other ML model architectures, in-

cluding neural network ensembles.

Exploring these directions would be a step further in the applicability of LLMs

aiming to improve generalisation.
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Appendix A

Iterative Prompting

Below is an example of a prompt used in the iterative process subject to research

question 2. It refers to iteration number 4 for the Thoracic dataset and it was fed

to GPT-4.

I prompted:

‘‘‘

I am building a predictive model that estimates the post-operative life

expectancy in lung cancer patients.

Each patient is characterized by: diagnosis, forced vital capacity, volume

that has been exhaled at the end of the first second of forced

expiration, performance status, presence of pain before surgery,

presence of haemoptysis before surgery, presence of dyspnoea before

surgery, presence of cough before surgery, presence of weakness before

surgery, and T in clinical TNM.

What are helpful higher-level concepts to help with this prediction task?

Concepts should be engineered features derived from the features

provided, and aim to capture a fundamental component necessary for the

prediction task, based on your understanding of medicine. Examples of

concepts include stripes in images or Gleason score grouping in

prostate cancer mortality prediction. These concepts should not be

simple linear combinations of features, but should be more complex and

non-linear, including the product/quotient between two or more features

and/or the use of other nonlinear functions.

Please suggest 10 concepts and provide explicit formulae to calculate the

concept from the features specified above. You must provide explicit
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Iterative Prompting

formulae, including all coefficients, and must not use features other

than those provided. Provide a brief justification for the concepts you

provided.

‘‘‘

After an iterative improvement process, your answer was the following,

including a list of concepts, and respective importance explanation:

‘‘‘

Given the performance outcomes from the previously implemented concepts for

predicting post-operative life expectancy in lung cancer patients, it’

s clear that some concepts showed promising results, while others need

refining or replacement to optimize the model’s predictive accuracy.

Here, I propose an updated list of five engineered features, focusing

on those interactions that seemed most relevant and introducing new

modifications to enhance their effectiveness:

### 1. **Advanced TNM Respiratory Impact**

\[ \text{Advanced TNM Respiratory Impact} = \left(\text{T in clinical TNM

}^2 \times \text{Forced Vital Capacity}\right) \times \left(\text{

Volume exhaled at the end of the first second} + 1\right) \]

**Justification:** This version squares the T in clinical TNM to emphasize

the influence of tumor size and location on lung function,

incorporating both the Forced Vital Capacity and the first-second

exhalation volume to better capture the lung’s operational capacity

post-surgery.

### 2. **Comprehensive Performance Status Adjustment**

\[ \text{Comprehensive Performance Status Adjustment} = \left(\text{

Performance status} + \text{Presence of pain}\right) \times \left(\text

{Symptom Severity Score}^2\right) \]

**Justification:** Refining the interaction by adding the presence of pain

directly and squaring the Symptom Severity Score to more heavily weigh

the burden of multiple severe symptoms, this concept aims to offer a

more robust indicator of the patient’s overall health status affecting

recovery.

### 3. **Total Symptom Load Factor**
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\[ \text{Total Symptom Load Factor} = \left(\text{Presence of pain} + \text

{Presence of haemoptysis} + \text{Presence of dyspnoea} + \text{

Presence of cough} + \text{Presence of weakness}\right) \times \left(\

frac{\text{Performance status}}{\text{T in clinical TNM} + 1}\right) \]

**Justification:** A new concept that aggregates all pre-operative symptoms

and interacts them with the performance status adjusted by the tumor

stage. This factor aims to capture the cumulative effect of symptoms

and physical fitness on the patient’s recovery trajectory.

### 4. **Dynamic Respiratory Efficiency Measure**

\[ \text{Dynamic Respiratory Efficiency Measure} = \left(\text{Forced Vital

Capacity} \times \text{Volume exhaled at the end of the first second}\

right) / \left(\text{T in clinical TNM} + 1\right) \]

**Justification:** This measure multiplies the key respiratory function

tests to assess the dynamic lung capacity, divided by the tumor stage

to normalize for the impact of cancer severity, providing a direct

measure of respiratory health relative to tumor burden.

### 5. **Pain and Performance Interaction Index**

\[ \text{Pain and Performance Interaction Index} = \left(\text{Performance

status}^2 \times \left(\text{Presence of pain} + 1\right)\right) / \

left(\text{Age} + 1\right) \]

**Justification:** Introducing a new interaction between performance status

and the presence of pain, squared to emphasize their impact on

recovery prospects, adjusted for age to account for older patients’

typically slower recovery and resilience.

By refining these features and focusing on capturing more detailed

interactions and the compounded effects of symptoms, tumor staging, and

respiratory capacity, these engineered features aim to enhance the

predictive model’s accuracy. Integrating these into your multi-layer

perceptron should provide a better understanding of the factors that

influence life expectancy after lung cancer surgery, leading to more

effective predictions.

‘‘‘

The concepts were retrieved:
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\[ \text{Advanced TNM Respiratory Impact} = \left(\text{T in clinical TNM

}^2 \times \text{Forced Vital Capacity}\right) \times \left(\text{

Volume exhaled at the end of the first second} + 1\right) \]

\[ \text{Comprehensive Performance Status Adjustment} = \left(\text{

Performance status} + \text{Presence of pain}\right) \times \left(\text

{Symptom Severity Score}^2\right) \]

\[ \text{Total Symptom Load Factor} = \left(\text{Presence of pain} + \text

{Presence of haemoptysis} + \text{Presence of dyspnoea} + \text{

Presence of cough} + \text{Presence of weakness}\right) \times \left(\

frac{\text{Performance status}}{\text{T in clinical TNM} + 1}\right) \]

\[ \text{Dynamic Respiratory Efficiency Measure} = \left(\text{Forced Vital

Capacity} \times \text{Volume exhaled at the end of the first second}\

right) / \left(\text{T in clinical TNM} + 1\right) \]

\[ \text{Pain and Performance Interaction Index} = \left(\text{Performance

status}^2 \times \left(\text{Presence of pain} + 1\right)\right) / \

left(\text{Age} + 1\right) \]

An evaluation of the quality of these concepts was undertaken. After they

were used as extra outputs in a multi-layer perceptron, the respective

increase in performance was measured in a validation dataset. The

resulting AUROC increment was calculated for each concept, and the

results are presented below:

- Advanced TNM Respiratory Impact: 0.017

- Comprehensive Performance Status Adjustment: 0.029

- Total Symptom Load Factor: 0.019

- Dynamic Respiratory Efficiency Measure: -0.007

- Pain and Performance Interaction Index: 0.025

The MLP without concepts had an AUROC of 0.558. Among all the subsets of

this set of 5 concepts, the best-performing MLP had an AUROC of 0.629

and used the following concepts as outputs: Comprehensive Performance

Status Adjustment, Total Symptom Load Factor, and Pain and Performance
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Interaction Index. The worst performing MLP had an AUROC of 0.512 and

used the concept Dynamic Respiratory Efficiency Measure as an extra

output.

Considering these results, present a new list of 5 relevant concepts, as

defined in the initial prompt, to further improve the multi-layer

perceptron’s performance. You can repeat some concepts you already

defined if you find them relevant. The ultimate goal is to have a list

of 5 concepts that leads to the greatest increase in MLP performance.

The resulting answer from GPT-4 was the following:

Given the results from the previous evaluation and the identification of

the most impactful concepts, I will focus on refining and enhancing

these features to better address the predictive modeling of post-

operative life expectancy in lung cancer patients. This new set of

engineered features will delve deeper into the interaction among

clinical symptoms, respiratory function, and tumor characteristics to

maximize the prediction accuracy:

### 1. **Advanced TNM Respiratory Impact (Revised)**

\[ \text{Advanced TNM Respiratory Impact} = \left(\text{T in clinical TNM

}^3 \times \text{Forced Vital Capacity}\right) \times \log\left(\text{

Volume exhaled at the end of the first second} + 1\right) \]

**Justification:** Intensifying the impact of tumor stage by raising it to

the third power to highlight its importance, and changing to a

logarithmic scale for the volume exhaled to capture non-linearities in

lung function deterioration more accurately.

### 2. **Comprehensive Performance Status Adjustment (Enhanced)**

\[ \text{Comprehensive Performance Status Adjustment} = \left(\text{

Performance status} + \text{Presence of pain} \times 2\right) \times \

left(\text{Total Symptom Load Factor}\right) \]

**Justification:** Increasing the influence of pain in the interaction,

recognizing pain’s potential as a significant indicator of recovery

challenges, and multiplying by the Total Symptom Load Factor to

integrate a broader spectrum of symptoms into the patient’s overall

health assessment.
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### 3. **Total Symptom Load Factor (Refined)**

\[ \text{Total Symptom Load Factor} = \sum(\text{Presence of pain,

haemoptysis, dyspnoea, cough, weakness}) \times \sqrt{\frac{\text{

Performance status}}{\text{T in clinical TNM} + 1}} \]

**Justification:** Summing all symptoms and applying a square root to the

performance status and tumor stage ratio to mitigate extreme values and

better reflect the aggregate impact of symptoms and patient resilience

on recovery outcomes.

### 4. **Respiratory Function Composite Index**

\[ \text{Respiratory Function Composite Index} = \left(\text{Forced Vital

Capacity} + \text{Volume exhaled at the end of the first second}\right)

/ \left(\text{T in clinical TNM} + 1\right)^2 \]

**Justification:** Summing the main respiratory function metrics and

dividing by the squared T stage to assess the lung capacity relative to

tumor burden, providing a more nuanced understanding of the patient’s

physiological capacity to recover.

### 5. **Pain and Performance Interaction Index (Extended)**

\[ \text{Pain and Performance Interaction Index} = \left(\text{Performance

status}^2 \times \left(\text{Presence of pain} + 2\right)\right) / \log

\left(\text{Age} + 10\right) \]

**Justification:** Adjusting the influence of pain by adding a factor of 2

and dividing by the logarithm of age plus 10 to smooth the impact of

aging, focusing on how performance and pain together modulate recovery

trajectories in older versus younger patients.

These updated concepts aim to provide a more precise and effective

representation of the interactions between clinical symptoms,

respiratory function, and tumor characteristics in lung cancer patients

post-surgery. By integrating these refined features into your MLP, the

predictive accuracy regarding life expectancy should see significant

improvement, hopefully resulting in higher AUROC values.
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