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Turbulence Infodynamics

Abstract

The complex, non-deterministic, and stochastic nature of turbulence is a puzzle
that has long intrigued researchers. Its paramount importance in engineering cannot
be overstated, as it holds significant implications for assessing performance in turbulent
flows, for example, eventual losses in vertical/short take-off and landing aircraft. This
research, which integrates principles of information theory, is a crucial step in our ongo-
ing efforts to understand and harness the power of turbulence in engineering. The main
goal of this dissertation is to test a novel lexicon in infodynamics, evaluating whether
it offers or not a fresh perspective in the analysis of physical phenomena. Each new
term introduced to the stochastic analysis of fluid flows offers a unique and innovative
addition. Informature: a variable that quantifies the amount of information needed to
learn about the inherent indeterminacy within a system’s state. It offers deep insights
into the system’s diversity. Infotropy: a contextualized informature that measures the
degree of transformation of a particular context associated with the physical system.
Infosensor: an instrument or measurement technique able to capture enough infor-
mation to measure informature through statistical analysis principles applied to the
acquired data. Among the findings in this dissertation emerged a new perspective on
turbulence intensity that overcomes its limitation at low-velocity values, transforming
it into a turbulence intensity relative infotropy. Despite the many useful phenomena of
turbulence in engineering that are yet to be thoroughly studied, one concludes that this
informational approach opens promising avenues for a comprehensive understanding
of their non-deterministic nature. More importantly, it unveils a myriad of potential
applications that could introduce the impact of indeterminacy in engineering design.

Keywords: Turbulence, Infodynamics, Informature, Infotropy, Infosensor, Turbu-
lence Intensity.
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Resumo

A complexa, não-determinística e estocástica natureza da turbulência é um enigma
que há muito intriga os investigadores. A sua importância capital na engenharia não
pode ser subestimada, pois tem implicações significativas na avaliação do desempenho
em escoamentos turbulentos, como, por exemplo, eventuais perdas em aeronaves de
descolagem e aterragem vertical/curta. Esta investigação, que integra princípios da
teoria da informação, é um passo crucial nos esforços contínuos para entender e apro-
veitar o valor da turbulência na engenharia. O principal objetivo desta dissertação
consiste em testar um léxico inovador na infodinâmica, avaliando se oferece ou não
uma perspetiva renovada na análise de fenómenos físicos. Cada novo termo introdu-
zido na análise estocástica de escoamentos proporciona uma adição única e inovadora.
Informatura: uma variável que quantifica a quantidade de informação necessária para
aprender sobre a indeterminação inerente ao estado de um sistema, oferecendo uma
compreensão profunda da diversidade do mesmo. Infotropia: uma informatura contex-
tualizada que mede o grau de transformação de um determinado contexto associado a
um sistema físico. Infosensor: um instrumento ou técnica de medida capaz de capturar
informações suficientes para medir a informatura através de princípios de análise esta-
tística aplicados aos dados adquiridos. Entre os resultados desta dissertação emergiu
uma nova perspetiva sobre a intensidade da turbulência que pretende ultrapassar a
sua limitação em valores de baixa velocidade, transformando-a numa infotropia rela-
tiva da intensidade de turbulência. Apesar dos muitos fenómenos úteis da turbulência
na engenharia que ainda precisam de ser estudados exaustivamente, conclui-se que esta
abordagem informacional abre vias promissoras para uma compreensão abrangente do
seu impacto. Mais importante ainda, revela uma miríade de potenciais aplicações que
podem introduzir o impacte da indeterminância no design em engenharia.

Palavras Chave: Turbulência, Infodinâmica, Informatura, Infotropia, Infosensor,
Intensidade de Turbulência.
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1. Introduction

After more than a century, it is safe to state that turbulence is a well-studied
phenomenon but not a well-defined one. Even two decades after Lumley and Yaglom
(2001) stated in their paper “A Century of Turbulence”, turbulence studies are still
in their infancy (the authors mean most experiments are still exploratory) and we
are still discovering how turbulence behaves in many aspects. Currently, there is an
understanding of many turbulence phenomena. However, the accuracy needed for
practical applications still eludes us, as nothing is approaching a comprehensive theory
to fully predict and understand its behavior because turbulence’s enigmatic nature
stems from its non-deterministic or stochastic characteristics.

In turbulent flows, inertial forces prevail over viscous forces, i.e., they have high
values of the Reynolds number, Re = (Vc × Lc)/ν, where Vc and Lc represent a char-
acteristic velocity and length, respectively, and ν represents the kinematic viscosity
of the fluid in question. In this type of flow, some instabilities cause the formation
of vortices (coherent structures in which the streamlines assume spiral-like shapes),
which follow the flow with random movements, making turbulence a stochastic, non-
deterministic physical phenomenon. Given the spatial location of a point in this type
of flow, its instantaneous velocity oscillates around a time-averaged value. In this way,
the Reynolds decomposition can be applied to the instantaneous velocity, resulting in:

ϕ = ϕ+ ϕ′ (1.1)

where ϕ represents the directional velocity component, such as u in the horizontal
direction, or v for the vertical direction. In Eq. (1.1), ϕ′ represents the instantaneous
fluctuation of the velocity around ϕ, which in its turn corresponds to the time-average
value given by,

ϕ =
1

∆t

∫ t+∆t

t

ϕ dt (1.2)

where ∆t is a time interval greater than the fluctuations characteristic time.

Building on the concept of Reynolds decomposition, where the instantaneous ve-
locity is separated into its mean and fluctuating components (Eq. (1.1)), a statistical
analysis is crucial to understand the behavior of turbulent flows. In a classic statistical
treatment of a turbulent signal, while the mean velocity (first moment), ϕ, provides
a basic understanding of the overall flow directional trend, turbulent velocity signals
often deviate from a simple Gaussian distribution due to the inherent randomness (non-
determinism) introduced by the intricate vortical dynamics and interactions within the
flow. The variance (second moment), denoted by σ2

ϕ, quantifies the intensity of these
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1. Introduction

fluctuations by representing the squared average of the velocity deviation from its
mean, known as the standard deviation root-mean-square (RMS), providing a measure
of the typical magnitude of these fluctuations.

While the first and second moments are valuable tools, a broader statistical de-
scription that incorporates higher-order moments, such as skewness and kurtosis, may
be necessary to fully capture the complex dynamics of turbulent flows. Skewness, the
third moment, can reveal the asymmetry in the distribution of velocity fluctuations,
indicating a tendency for larger fluctuations in one direction compared to the other.
Kurtosis, the fourth moment, describes the distribution flatness compared to a nor-
mal distribution. A higher kurtosis indicates a distribution with heavier tails trending
toward a flat line, suggesting more frequent and extreme fluctuations compared to a
normal distribution.

Despite the valuable insights provided by classical statistical moments, if the lo-
cal turbulent velocity denotes a cluster of characteristic values leading to multimodal
distributions, any analysis based on the moments is limited. For example, Silva et al.
(2017) showed a renewed interpretation of oscillations of a vortex when applying finite
mixtures of Gaussian distributions to capture the multimodal nature of velocity distri-
butions. Building on our current knowledge of turbulence based on mass, momentum,
and energy conservation analysis, this dissertation explores a fourth perspective rooted
in information theory. However, it implies presenting a new lexicon associated with an
Infodynamic Analysis aimed at providing new insights into the stochastic nature of a
turbulent flowfield and assess its usefulness in an engineering context. By incorporat-
ing this new explanatory language and analytical framework, one expects to overcome
the limitations of classical statistical analysis and potentially reveal deeper connections
between information theoretic concepts and the complex behaviour of turbulent flows.

1.1. Objectives
Determinism and non-determinism are inherent in all physical systems. Therefore,

the main objective of this dissertation is the application of an infodynamic analysis
to study the informational content of physical phenomena in turbulent flows. The
case study subjected to the infodynamic analysis is the flowfield beneath a V/STOL
aircraft while lifting off or landing with zero or small forward momentum. The flow
formed by the impact of the lift jets hitting the ground results in a wall jet that
flows outward from the impingement point along the ground surface, colliding with a
boundary layer flow, which generates a ground wall vortex. This phenomenon causes
lift losses in the aircraft, increases the amount of air drawn in close to the ground
(known as “suckdown”), in engine thrust losses following re-ingestion of the exhaust
gases, and may cause aerodynamic instabilities.

With the measured data from Barata et al. (2008), this dissertation attempts to
answer two questions emerging from the application of the novel lexicon of infodynamics
introduced in Panão et al. (2024): How does an infodynamic perspective perform in
the context of turbulence studies? What new insights can an infodynamic analysis
using the new lexicon reveal about a turbulent flowfield?

The final section of this introductory chapter synthesizes how information theory
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has been applied to study the amount of information in turbulent flows.

1.2. Literature Review
The literature available on turbulence is vast, but studies from the perspective of

information are scarce. This forces the shortness of any literature review on turbulence
infodynamics, evidencing the novelty of the informational approach explored in this
dissertation. Nonetheless, this section highlights how researchers applied information
theory to study turbulent flows and how far they have gone.

Turbulence is a complex phenomenon characterized by a cascade of eddies with
varying length scales and corresponding oscillation frequencies, where a power spectral
density (PSD) analysis offers an insightful approach to understanding the correspond-
ing energy distribution. By decomposing the turbulent velocity fluctuations into their
constituent frequencies, a PSD analysis reveals how the energy of the flow is distributed
across these different frequency bands, evaluating the contribution of each one of them
to the overall turbulent kinetic energy. The resulting PSD spectrum unveils a fasci-
nating behaviour within the flow, i.e., a turbulent flow begins transferring energy from
the mean flow to large-scale (anisotropic) vortices. This energy then cascades down to
smaller and smaller scales within the inertial subrange, eventually dissipating as heat
at the Kolmogorov microscales through the process of vortex stretching. Overall, PSD
analysis sheds light on the energy transfer mechanisms within turbulent flows. This in-
formation is essential for researchers studying the fundamental dynamics of turbulence,
as it holds significant practical benefits in engineering applications, allowing engineers
to assess turbulence intensity and design structures and systems that can withstand
turbulent forces.

Previous works were conducted by Cerbus (2014) in his Ph.D. thesis, whose inten-
tion, in the spirit of pure mathematics, was to use information theory (prior to the
new lexicon) and its close relative computational mechanics in the study of turbulence.
He devoted his attention primarily to the examination of two-dimensional turbulence,
specifically delving into (what he has called) an information-theoretic treatment of gen-
eral eddy energy cascade ideas and the deviations from their simple predictions, known
as the study of intermittency. At that time, applying information theory to a physi-
cal system was like navigating without a compass, and thus by directly incorporating
its concepts, Cerbus (2014) organized velocity measurements into partitions and used
them to produce the relative frequencies used to determine informational quantities
and identify problems regarding it. This process is on par with the infosensors concept
brought by the new lexicon, and despite not using the same “calibration” explored
in Chapter 2, his findings point in a similar direction. Moreover, it emphasizes an
important aspect of this field: guiding the engineer in asking the right questions.

Cerbus (2014) concluded that when the Reynolds number is sufficiently large for
the flow to develop a cascade, the flow behaviour becomes dependent on Reynolds (Re)
in the sense that spatial features of turbulence behave in a manner not previously con-
sidered. Namely, he found that the flow unpredictability decreases with increasing Re.
Furthermore, his information-theoretic treatment of turbulence revealed the existence
of a second transition in turbulence, where “structureless” fluctuations become cascade
turbulence.
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Building upon Cerbus (2014)’s work, Abbaszadeh et al. (2021) explored waterborne
chemical plumes as a model for molecular communication in a macroscopic system.
They applied and interpreted concepts from fluid turbulence theory within the con-
text of molecular communication to characterize an information cascade. This work
exemplified the application of information-theoretic principles to real physical systems,
moving beyond the purely mathematical perspective of Cerbus (2014). Their findings
corroborated those of Cerbus (2014), demonstrating that the information dissipation
rate decreases with increased turbulence levels (higher Reynolds numbers) due to more
efficient mixing, weakening the remaining power of the molecular signal.

Lozano-Durán and Arranz (2022) goal was to further advance the field of turbulence
research by assessing the problems of causality, modelling, and control for chaotic, high-
dimensional dynamical systems, formulated in the language of information theory. One
intriguing conclusion between their conclusions regards the reduced-order modelling of
chaotic systems, which has been posed as a problem of conservation of information:
modelled systems contain a smaller number of degrees of freedom than the original
system, which in turn entails a loss of information. Thus, the primary goal of modelling
is to preserve the maximum amount of useful information from the original system.
They have derived the conditions for maximum information-preserving models and
shown that accurate models must maximize the mutual information between the model
state and the true state, and minimize the Kullback-Leibler divergence between their
probabilities, i.e.,, the difference between the system’s maximum amount of information
for the number of possible categories and the actual amount of information. The mutual
information assists the model in reproducing the dynamics of the original system,
while the Kullback-Leibler divergence enables the accurate prediction of the statistical
quantities of interest.

Despite reaching notable conclusions, Abbaszadeh et al. (2021) and Lozano-Durán
and Arranz (2022) directly used the system’s probability density function to determine
its informational content. In contrast to them, Granero-Belinchón et al. (2018) uses a
nearest neighbour estimator described by Leonenko et al. (2008) to determine the prob-
abilities and accurately compute the informational contents from an experimental time
series. Their paper analyzed multifractality and intermittency related to the deforma-
tion of a probability density function from Gaussian at large scales to non-Gaussian
at smaller scales of turbulence. None of these works expresses their application of
information theory as an infodynamic analysis, and only Cerbus (2014) touches on
the topic of determining the probabilities that characterize the physical system under
study. Therefore, the next chapter aims to introduce this new perspective based on
quantifying the amount of information in a stochastic physical system.
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2. Infodynamic Analysis Fundamentals

Following Panão et al. (2024), infodynamics is a perspective on how information
behaves and changes within a system while developing. An infodynamic analysis ex-
amines the behavior and evolution of informational content within a physical system
over time. It uses a novel lexicon introduced in Panão et al. (2024) with new terms
such as informature, infotropy, and infosensor, which quantify and encapsulate the
non-deterministic or/and stochastic nature on any physical system. Even though these
concepts are rooted in statistics, both fields are not competitive. Thus, an infodynamic
analysis applied to turbulence aims to offer a different perspective in an attempt to
unravel its longstanding conundrum: randomness.

2.1. New Lexicon of Infodynamics
The concept of information as a quantifiable variable was introduced by Claude

Shannon (1948) in his 1948 seminal work on “A Mathematical Theory of Commu-
nication” through the formulation of H (see Eq. (2.1)), a measure of the amount of
information in a message based on its statistical analysis. Shannon described it as
“measure of information, choice, and uncertainty”.

H = −K
m∑
i=1

fi log2(fi) (2.1)

Shannon understood a message s as a sequence of n symbols described by a random
variable X, which consists of a set of m different possible outcomes and their frequency
probabilities fi forming the probability distribution f(X), with

∑
i fi = 1. Eq. (2.1)

represents the most elementary form of H, to which K is more than an arbitrary
constant, as argued in Tribus and McIrvine (1971), but a contextual scale.

At the outset, the probability distribution describing a physical system is not
known, justifying the reason for using a frequency probabilistic approach to statis-
tically describe the system. In this scenario, each symbol in a message, si, corresponds
to a physically measured value (see Fig. 2.1). Its frequency probability or relative fre-
quency is determined by counting the number of occurrences of each symbol in s and
dividing it by the total number of symbols in the message.

In his work, Shannon assigned the symbol H to represent entropy, which, according
to Tribus and McIrvine (1971), was influenced by a comment from John Von Neumann
because of its resemblance to the formulation already established for thermodynamic
entropy. However, Denbigh (1981) argued that this was a disservice to Shannon’s work
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Figure 2.1: Schematics of the message s and the random variable X that defines it.

because functions with the same formal structure do not necessarily represent the same
concept. Despite the latest argumentation coming from Ben-Naim (2017), suggesting
the correct term would be Shannon Measure of Information (SMI), this dissertation
follows the different lexicon presented in Panão et al. (2024), which is simpler and useful
to engineering practice. This lexicon implies the identification of distinct elements
in Shannon’s formulation through a detailed analysis of the contextual scale K and
the units of information, resulting in three neologisms: informature, infotropy, and
infosensor.

2.1.1. Informature
Informature is the block in Shannon’s formulation that quantifies the information

content from the knowledge of the frequency probability distribution characterizing a
physical system regardless of its context:

HI,b = −Kb

m∑
i=1

fi log2(fi) (2.2)

where Kb is the second part of K = Kc · Kb in Eq. (2.1) and is responsible for the
units of information by establishing the logarithm base. Turbulence’s non-deterministic
nature has its informational content maximized by a Gaussian distribution, where its
statistical perspective is given by a mean velocity and by its variance. Thus, its units
should be in ”natural units” abbreviated as nats, accounted by the logarithm base
changing to the natural logarithm when Kb = ln (2), with b = e. If the message
were to be binarized, then the logarithm should be in the original base-2 of Shannon’s
formulation, Kb = log2(2) = 1, and informature would be in “binary units” or bits,
with b = 2.

Contrasting deterministic systems, where initial conditions determine future states
and make them predictable, turbulence displays stochasticity and complex dynamics.
Informature offers valuable insights into its non-deterministic nature by capturing its
variability and diversity, and thus, by quantifying its informational content, bringing
new insights regarding the behavior governing underlying dynamic mechanisms struc-
turing the flow, helping to detect emergent patterns, and identifying subtle variations
that may denote significant changes.

2.1.2. Infotropy
As mentioned in Section 2.1, John Von Neumann suggested the name entropy

because of Eq. (2.1) resemblance to the thermodynamic entropy. However, do thermo-
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dynamic entropy and Shannon entropy truly represent the same concept, or are they
at least related? In the field of the theory of gases, when considering the presence of W
molecules, the system would present W possible microstates with the same probability
of existing, thus being represented by a uniform probability distribution, fi = 1/W .
Applying this to Eq. (2.2), this system’s informature in natural units results in

HW
I,e = −

W∑
i=1

1

W
ln
(

1

W

)
= ln (W )

W∑
i=1

1

W
= ln (W ) (2.3)

This result by itself merely expresses that the average degree of surprisal in the
outcome is directly related to the number of microstates. However, when using the
Boltzmann’s constant, kB, as the contextualized part (Kc) of the contextual scale K
in Eq. (2.1), given by the ratio between the gas constant, R0, and Avogadro’s number,
NA, the classical thermodynamic entropy, S, emerges as a contextualized informature:

HW
e = kB ·HW

I,e = kB · ln (W ) = S (2.4)

The solution for the classical debate on the physical meaning behind thermody-
namic entropy is to understand that it is a measure of possibility among the several W
microstates rather than a measure of disorder. This can now be linked with Clausius’s
macrostate invention of the word entropy to Boltzmann’s microstate interpretation:
δQ = T · S, where δQ is the energetic “price” paid for the existence of W possible
configurations of the gas molecules at a certain reference temperature. Therefore, a
contextualized informature allows measuring the degree of transformation of a physical
system due to its non-deterministic nature through the quantification of the amount
of information one needs to learn anything about it. This measurement is referred to
as infotropy, and it is generally given by:

Hb = Kc ·HI,b (2.5)

with Kc as the first part of the K contextual scale parameter in the original Shannon’s
formula Eq. (2.1). However, special attention should be given to the infodynamic
simultaneous measure of two (or more) distinct characteristics of a system.

2.1.3. Mutual Informature
Given two messages, one described by the random variable X and the other by the

random variable Y , the mutual informature, mHI,b(X,Y ), is the measure of information
shared between these variables as illustrated in Fig. 2.2.

It is often interpreted as the average reduction in uncertainty in one message when
the other message is known, or how the variability and diversity of one variable affects
the other and vice versa:

mHI,b(X,Y ) = HI,b(X) +HI,b(Y )−HI,b(X,Y ) (2.6)

Vasco Pedro Neto de Vasconcelos 7
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Figure 2.2: Venn diagram of mutual informature between two messages, one described by the random
variable X and the other by the random variable Y , interpreted from Stone (2015).

In Eq. (2.6), HI,b(X,Y ) is the joint informature given by the random variables’ joint
probability distribution, f(X,Y ), representing the total informational content between
both messages:

HI,b(X,Y ) = Kb ·
mx∑
i=1

my∑
j=1

[
f(xi, yj) · log2

(
1

f(xi, yj)

)]
(2.7)

In the case of independence between both messages, probability laws express f(X,Y ) =
f(X) · f(Y ), which in turn makes HI,b(X,Y ) = HI,b(X) + HI,b(Y ), implying that
mHI,b(X,Y ) = 0. When the mutual informature is zero, it indicates independence
between the relevant random variables. In simpler terms, this suggests that there is no
relationship between the two messages. When X and Y coincide, the mutual informa-
ture is maximum resulting in HI,b(X,Y ) = 0 and mHmax,b = Hmax,b(X) +Hmax,b(Y ).
Implementing Eq. (2.7) and Eq. (2.2) in Eq. (2.6), the mutual informature can be
directly obtained by:

mHI,b(X,Y ) = Kb ·
mx∑
i=1

my∑
j=1

[
f(xi, yj) · log2

(
f(xi, yj)

f(xi) · f(yj)

)]
(2.8)

2.2. Calibrating Infosensors
In the field of infodynamic measurement science, as explained in Panão et al.

(2024), an infosensor is an instrument or measurement technique that captures the
non-deterministic nature inherent in a physical system. It measures the different possi-
bilities for a certain characteristic, and through statistics obtains the relative frequency
distribution of values that measure informature or the amount of information one needs
to learn something about the physical system.

Putting into perspective, when using a ruler to measure length or a scale to measure
mass, the equipment involved in these processes needs to be calibrated. For example,
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the pre-established SI reference distance is used for calibration in the case of rulers,
while piezoelectric sensors are used to convert the electrical charge generated by certain
materials when subjected to mechanical stress into a calibrated mass value. Similarly,
in the field of infodynamics, an infosensor also requires calibration in order to measure
informature.

The formulation in Eq. (2.2) implies its applicability in the discrete domain. How-
ever, a turbulence velocity is a random variable existing in the continuous domain. As
expressed by Stone (2015), unlike other cases where the results obtained by discrete
variables can be extended to continuous variables, since informature is an extensive
property depending on the system’s size, the change from the discrete to the continu-
ous domain requires a careful analysis.

Continuous random variables are described by a probability density function (pdf)
instead of a frequency probability distribution, which implies that a histogram for
the random variable X in the discrete domain containing classes with a finite width,
∆x, approaches the continuous domain if ∆x → 0. This change eventually leads to an
infinite number of classes or bins, nk. This is quite problematic, given that informature
is an extensive property and depends on the number of classes defined for the available
data, a priori one does not know how much data one needs to stabilize the distribution
of values. Consequently, with an increasingly larger data sample, and enough data
resolution to allow decreasing the size of histogram classes approaching the continuum,
the informature tends to infinity. This can be proved by considering the probability
density, pi,

pi =
fi
∆x

⇔ fi = pi ·∆x (2.9)

and replacing Eq. (2.9) in Eq. (2.2):

HI,b =−
nk∑
i=1

pi∆xi logb(pi ·∆xi)

=−
nk∑
i=1

pi∆xi logb(pi) +

nk∑
i=1

pi∆xi logb

(
1

∆xi

)

=−
nk∑
i=1

pi∆xi logb(pi) + logb

(
1

∆xi

)
=︸︷︷︸

∆xi→0

−
∫ ∞

−∞
pi logb(pi) dx +∞ (2.10)

Eq. (2.10) reveals an intriguing observation: all continuous variables exhibit infinite
informature. This suggests that drastically different distributions can possess the same
(infinite) informature, as expected from extensive properties when their size domain
approaches infinite. However, the first term in Eq. (2.10) corresponding to a differential
informature, H∆,b, is always finite and reveals an interpretation of informature as an
intensive informational property of the system that no longer depends on the number
of classes/bins, nk.
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H∆,b = kb ·
nk∑
i=1

f∆,i log2(p∆,i) (2.11)

Moreover, it is possible to obtain analytical solutions of H∆,b for several mathematical
probability density functions, offering a direct comparison between these functions and
the histograms produced from data to assess whether or not the function describes
data. It is not a goodness-to-fit test, but an informational fitting test.

To better illustrate these concepts, for the velocity measured from the LDV signal
in one point (later explained in Section 3.1), one applies the rule defined by Bendat
and Piersol (1966) for determining the number of classes based on the sample size,

nk = 1.87 · (N − 1)2/5 (2.12)

Fig. 2.3 illustrates the informature’s growth with the number of classes, while the
differential informature stabilizes after, approximately, Nc = 1000 data samples, to
which according to the time vector provided by the LDV, corresponds to a system’s
response time of 22 seconds.

Figure 2.3: Evolution of informature, HI,e, differential informature, H∆,e, and the number of classes
with the growth of the data sample size, N , by Panão (2024).

If the number of classes is fixed by a sample size greater than the differential
informature’s convergence sample size, Nc, then the value of informature eventually
stabilizes, indicating that informature’s calibration has been performed. Additionally,
by dividing the calibrated informature by its maximum value, Hmax,b = logb(nk), where
all the classes nk have the same number of samples inside, another way of converting
informature from an extensive to an intensive property is obtained: the relative infor-
mature, Hn.

Hn =
HI,b

Hmax,b

(2.13)
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Relative informature’s value ranges from 0 to 1, indicating the level of indeterminacy
in the system. A value of 0 represents a fully regular system with no indeterminacy
and a single value repeated N times. In contrast, a value of 1 represents a fully
indeterminate system with the same sample size for each unique measured value.

The next chapter applies these infodynamic concepts to the turbulent flow generated
by a ground vortex using data from Barata et al. (2008).
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3. Infodynamic Analysis of Turbulence in Ground
Vortex

The wall jet interaction with the boundary layer free stream results in the formation
of a highly curved flow (ground vortex) far upstream of the impinging jet, which has
profound influences on flow development. To further investigate this phenomenon,
Barata et al. (2008) designed an experimental method in which a wall jet interacts
with a wind tunnel’s produced boundary layer, creating a highly curved region. Their
goal was to identify the parameters, relevant regimes, and structures associated with
instabilities, and other secondary effects of a ground vortex flow.

LDV measurements of a two-component velocity field were the input values used
in this dissertation to apply the novel infodynamics lexicon and take a step forward
in the continuous attempt to understand the non-deterministic nature and impact of
turbulence in engineering.

Figure 3.1: Diagram of the ground vortex facility by Barata et al. (2008).

3.1. Ground Vortex Velocity Characterization
The collision between the wall jet and the boundary layer results in an upwards-

curved flow. The measured and observed data by Barata et al. (2008) has shown
that this flow field contains the presence of three distinct main turbulent structures: a
ground vortex, a small vortex, and a secondary vortex. These structures are depicted
in Fig. 3.2.
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Figure 3.2: Illustration of the three vortical rotation directions (ground vortex, secondary and small
vortices). Detail of the intersection region where different tonalities in grey allow distinguishing the
three vortices by Silva et al. (2017).

As Barata et al. (2008) explains, in addition to the upwards-curved flow resulting
from the collision between the wall jet and the boundary layer upstream of the sepa-
ration point and before the maximum penetration point, the flow inside the boundary
layer has a downward movement toward the ground, forming the anticlockwise vortex
associated to the secondary vortex. This anticlockwise vortex then merges with a small
one that is growing between the main ground vortex and the secondary vortex. As the
resulting vortex continues to grow, it exceeds the boundary layer’s height and suddenly
breaks, being carried upwards in the direction of the curved flow.

In order to gain a better understanding of these phenomena, Barata et al. (2008)
performed an experimental visualization study and Fig. 3.3 depicts the behavior of the
secondary vortex. It is noteworthy that Fig. 3.3 corresponds to a wall jet-to-crossflow
velocity ratio of UR = 1.74, which demonstrates similar characteristics to the evaluated
data in this thesis for UR = 2.

Figure 3.3: Small vortex burst and new vortex growth for UR = 1.74. Frames instants: t=0s; 1/25s;
2/25s; 3/25s. Figure taken from Barata et al. (2008).

The mapping of the turbulent flow velocity field made at the vertical plane of sym-
metry for a wall jet mean velocity of 13.7 m/s and mean boundary layer velocity of 6.9
m/s corresponded to a wall jet-to-crossflow velocity ratio of UR = Uj/U0 = 2 (Barata
et al., 2008). Considering the height of the tunnel as the characteristic dimension, the
Reynolds numbers for the boundary layer and wall jet are 1.4 × 106 and 1.4 × 104,
respectively. A brief overview of the experimental setup is provided in Chapter A.
However, for data processing orientation purposes, the origin of the horizontal, X, and
vertical, Y , is taken near the maximum penetration point. The X coordinate is positive
in the wall jet flow direction, and Y is positive upwards.
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Evaluating the calculated mean velocities portrayed in Fig. 3.4, and superimposing
the streamlines reported in Barata et al. (2008), the mean velocity maps confirm the
conditions for the emergence of an unstable secondary vortex considering the negative
value of vertical velocity component near the ground in the region delimited by 0 <
y [mm] ≤ 30 and x < 0 mm, and its positive value elsewhere, confirming that its
center is located downstream (X > 0) of the separation point (see Fig. 3.1), but
probably somewhere before the maximum penetration point. Also, the mean velocity
maps appear unable to provide a location for the ground vortex center (illustrated in
Fig. 3.1) from the zero values of the horizontal velocity component or the maximum
values of the vertical velocity component because these do not coincide: the maximum
vertical velocity component occurs at x = −40 mm and y = 120 mm, only slightly
displaced in the crossflow direction, and the minimum horizontal velocity component
occurs also at y = 120 mm, but x = −120 mm. However, the RMS velocity contains
some insights regarding the location of the vortex center.

Fig. 3.5 depicts the map of the fluctuation mean velocity integrated over time.
Both the horizontal and vertical velocity component maps reveal a high fluctuation
associated with the epicenter of the ground vortex (bright yellow zone) at the same
location. However, since this parameter is a time-integrated measure, there are no
signs of the presence of any secondary vortex. This indicates that its detachment and
subsequent convection by the upward-curved flow occurs in a small fraction of time
(relative to the total measurement time) that is not enough to capture its occurrence
in these average maps.

Additionally, regarding the mean velocities, Silva et al. (2017) approached the char-
acterization of the velocity in terms of characteristic velocity values capturing multiple
clusters of velocity distribution with similar features through finite mixtures. Therefore,
in the case of the measured bimodal distributions, Silva et al. (2017) retrieved positive
characteristic velocities in the horizontal direction in the region −120 < x [mm] < 20,
while negative characteristic values in −40 < x [mm] < 120. This mixture of Gaussian
distributions indicates the effects of the wall jet could extend to x = 20 mm down-
stream of the separation point, while the influence of the boundary layer still persists
until x = −40 mm upstream of the separation point. This implies that the interaction
between the wall jet and the boundary layer occurs within the region between x = −40
mm and x = 20 mm.

Figure 3.4: Map of mean velocity regarding the vertical component, v (left) and horizontal component,
u (right) superimposed with the corresponding streamlines from Barata et al. (2008).

The parameters analyzed in Figures 3.4 and 3.5, while commonly used in statistical
studies of turbulence, offer a limited view of the flow field. These maps only capture
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basic turbulent characteristics of the flow field under analysis, such as the presence of
the ground vortex, the possibility of the secondary vortex, and the streamlines conflu-
ence boundary associated with the upward-curved flow resulting from the interfacial
converging lines depicting the collision between the wall jet and the boundary layer.
However, these parameters are not sensitive enough to the full spectrum of turbulent
phenomena within the system.

Figure 3.5: Map of the average velocity fluctuations regarding the vertical component, vrms (left) and
horizontal component, urms (right) superimposed with the corresponding streamlines from Barata
et al. (2008).

3.2. Informature Maps of Velocity fields
The data provided by the LDV velocity signals consider 25 locations in the flow

field at Y [mm] = [12; 30; 60; 90; 120] and X ranging from -120 mm to 120 mm with
increments of 10 mm. Each measurement point contained a sample of 10000 measure-
ments of both the horizontal, u, and vertical, v, velocity components. For an adequate
calibration of the LDV system as an infosensor, the data sample size implies defining
74 velocity classes (nk) for the infodynamic treatment of each signal based on Bendat
and Piersol (1966) rule in Eq. (2.12). All velocity component signals were calibrated
to the same size class, and edge values of all classes were enclosed between the lowest
and highest measured values for each velocity component. According to Fig. 3.6, the
infosensor calibration was a success, as the informature values converged.

Figure 3.6: Eample of the evolution of the informature, HI,e, and differential informature, H∆,e,
relative to the velocity component u, v, as the data sample size (N) grows. This case corresponded
to the LDV signal point for Y = 60 mm and X = 0 mm.
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The Informature maps for both velocity components shown in Fig. 3.7 distinguish
the informational value obtained from each component. Namely, while the vertical
velocity component captures the ground vortex epicenter (similar bright yellow), also
identified in the v and u RMS maps, in the horizontal velocity component case, a region
of a high amount of information becomes clear. This area is immediately before the
stagnation boundary, indicating complex dynamics starting at the bottom and dragging
upwards. It is a signature that one could attribute to the small secondary vortex that
grows and develops until detachment, followed by its upward convection by the main
ground vortex. Another noteworthy observation in both maps is the low informature
values in the downstream region of the stagnation boundary, as expected due to the
presence of the relatively uniform undisturbed flow. In contrast to the maps in Figures
3.4 and 3.5, the informature maps reveal a more faithful view of the structures that
induce diversity to the flow field.

Figure 3.7: Obtained informature map regarding the v-velocity component (top) u-velocity component
(bottom) and the corresponding calculated streamlines.

Fig. 3.8 illustrates a case where the mutual informature value does not converge
due to the non-stabilization of the v-velocity component’s informature compared to the
u-velocity component, and thus it emphasizes the calibration value of the infosensor.
Therefore, for the aforementioned successful calibration, the mutual informature map in
Fig. 3.9 exhibits sufficiently high values, via two high informational regions crossing the
boundary defined by the streamlines confluence, allowing to conclude that both velocity
components are related, particularly in those regions. This highlights the importance
of measuring simultaneously both velocity components in this type of study, as they
are not independent.
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Figure 3.8: Evolution of the informature, HI,e, relative to the velocity component u, v, and the mutual
informature, mHI,e(u, v), as the data sample size, N , grows, by Panão (2024).

One of the possible meanings for a high u, v mutual informature is the indication
of coherent structures associated with substantial changes in the flow. The region
surrounding the peak on the upstream side of the confluence line and the region on the
upper part of the downstream side are regions where one expects higher momentum
transfer from the original direction of each flow (jet and boundary layer) and the new
direction defined by the resulting ground vortex. Such intense momentum exchanges
point to stronger correlations between the u and v velocity components of the flow
captured by the mutual informature map plotted from infodynamic measurements of
the raw data.

Figure 3.9: Mutual informature map between the horizontal, u, and vertical, v, velocity components.

The last section considers a possible infodynamic insight related to the turbulence
intensity assessment, especially when the average velocity is low and close to stagnation.

3.3. Turbulence Intensity Infotropy
Turbulence Intensity (TI) measures the degree of disturbance in a flow. Under-

standing the levels of turbulence intensity has significant implications across various
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fields. In aeronautics, the drag on an airfoil is related to TI, directly affecting fuel
efficiency and, in extreme cases, aircraft stability (Yap et al., 2001). Similarly, in the
automobile industry, TI measurements are crucial for evaluating the aerodynamics of
auto body designs (Passaggia et al., 2021). In chemical processes, high TI can be ben-
eficial for promoting intentional mixing. Still, it can also be detrimental, as excessive
TI at the face of a chemical fume hood may lead to unwanted spillage of chemical
fumes into a laboratory (Tseng et al., 2010). These examples underscore the diverse
and critical roles that turbulence intensity plays in engineering, safety, efficiency, and
comfort across various industries. Its definition is equivalent to the statistical param-
eter, Coefficient Of Variation (COV), using the mean of the velocity fluctuation as
the parameter expressing the “variation” and comparing it to the mean velocity of the
flow. Assuming an isotropic turbulent flow, the turbulence intensity of the u-velocity
component would be

TIu =

√
u′2

|u|
(3.1)

with |u| as the mean of the absolute velocity in the x direction. The velocity v would
have a similar formulation. The reason for considering the absolute value of each
velocity is to avoid the canceling effect on the average exerted by velocity values in
opposite directions. Fig. 3.10 presents the TI maps for the vertical (v on the left) and
horizontal (u on the right) velocity components superimposed with the average velocity
streamlines, similarly to previous maps.

Figure 3.10: Obtained results regarding turbulence intensity for the v-velocity component (left) and
for the u-velocity component (right), and the corresponding calculated streamlines.

The v-velocity component turbulence intensity map (TIv) depicted in Fig. 3.10
(left) shows high TI values where the boundary layer has low mean velocity because
it is the boundary layer flow region less affected, on average, by the momentum ex-
changes induced by the ground vortex. The u-velocity component turbulence intensity
TIu evidences a higher turbulence region departing from the stagnation region. This
region of high TIu values appears compatible with a mixed effect of the interaction
line between the ground vortex and the boundary layer and the “trajectory” of the
formation and detachment of the small vortex close to the stagnation point. While the
mapping of TIu is insightful, the TIv contains the challenge of evaluating turbulence
intensity in regions of low mean velocity, where the limit is obtaining a turbulence
intensity value approaching infinite. To overcome this turbulence intensity limitation,
this dissertation explores the infotropy concept described in section 2.1.2, using the
turbulence intensity to contextualize the informature. However, to keep the result
dimensionless, one uses the normalized informature defined in Eq. (2.13). The normal-
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ized informature is a measure of diversity in a system, allowing a good representation
of the system’s non-deterministic variability. Therefore, using the classic turbulence
intensity as a contextual scale, Kc = TI, Eq. (2.5) results in a turbulence intensity
relative infotropy, He,T I , defined as

Hveloc
e,T I = TIveloc ·Hn (3.2)

Fig. 3.11 depicts the infotropy results for the v (top) and u (bottom) velocity com-
ponents. While the Hu

e,TI maintains the insight already provided by the TIu map,
the vertical TI relative infotropy map now shows higher values in the region where
ground vortex, secondary vortex, and small vortex converge, revealing a high degree of
informational transformation, and providing meaningful insights on the contribution
of the vertical velocity component turbulence intensity to the turbulent flow develop-
ment. Thus, it overcomes the shortcomings of low mean velocity values. It would be
interesting to apply this infodynamic approach to other boundary layer flows near the
wall to evaluate further its explanatory potential.

Figure 3.11: Obtained results regarding turbulence intensity infotropy for the v-velocity component
(top) and for the u-velocity component (bottom), and the corresponding calculated streamlines.

The maps analyzed for each velocity direction provide directional insight into the
anisotropic character of this turbulent flow. However, one can also perform a combined
analysis of turbulence intensity using both velocity components to capture an overall
turbulence level. Considering the experimental setup of Barata et al. (2008) (see also
A), the experimentally simulated turbulent flow was essentially 2D. Therefore, one

20 2024



Turbulence Infodynamics

neglects a third velocity component. In this sense, the overall mean velocity in each
location with N data samples available corresponds to

U =
1

N

N∑
i=1

√
u2
i + v2i (3.3)

Then, the overall velocity fluctuation of each measurement i would be U ′
i =

√
u2
i + v2i −

U , implying an overall RMS of

URMS =

√√√√ 1

N

N∑
i=1

(U ′
i)

2 (3.4)

Finally, the overall turbulence intensity is given by

TI =
URMS

U
(3.5)

The overall turbulence intensity would be particularly useful to compare different op-
erating conditions, of which there is no data for this case. Nonetheless, the purpose
here is to establish the grounds from an infodynamic approach one should apply in
other cases. Fig. 3.12 depicts the mapping of the overall turbulence intensity where it
is possible to identify the likely location of the small vortex upstream of the stagnation
point, as argued in Silva et al. (2017), and a second peak at what could be the central
region of the ground vortex, on average, with a low-velocity.

Figure 3.12: Obtained results regarding the global turbulence intensity and the corresponding calcu-
lated streamlines.

For the corresponding overall turbulence intensity infotropy, considering the rele-
vance of both velocity components, if the information part depended on the distribution
of Ui =

√
u2
i + v2i , the map would be similar to the TI map. Instead, one decided to

contextualize the mutual informature, defining the overall turbulence intensity relative
infotropy as

HTI
e = TI ·

(
mHI,e(u, v)

2Hmax,e

)
(3.6)

considering that the maximum informature of u and v is equal. Fig. 3.13 highlights
the region of a higher overall degree of transformation above the stagnation point,
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suggesting the location of highly coherent structures that depend on a strong correlation
between u and v.

Figure 3.13: Obtained results regarding the overall turbulence intensity infotropy and the correspond-
ing calculated streamlines.

On the right side is the identification of the structure present in the visualizations,
linked with the main region of growth, development, and detachment of a secondary
vortex formed on the wall. This result also emphasizes that an infodynamic analysis of
turbulent flows is not an alternative to more conventional analysis, for example, based
on the turbulence intensity, but shows an additional perspective, where the explorations
made in this dissertation are only the first step.

A final comment regards the practical significance of the infodynamic analysis com-
pared to a conventional statistical analysis or those based on the conservation of mass,
momentum, and energy. The essential element in infodynamics is information. Fur-
thermore, similarly to a thermocouple that measures temperature through the Seebeck
effect, an infosensor measures informature through the relative frequencies obtained
statistically. It is important to note that there is no competition between all the sta-
tistical analyses done so far of turbulent flows and the infodynamic analysis. Also,
infodynamics includes information as a fourth element besides mass, momentum, and
energy used to describe and understand turbulent flows. However, while some analyses
map the structures based on estimations of Reynolds stresses, vorticity, or energy spec-
tra, infodynamics identifies structures from the stochasticity inside the raw data treated
statistically to obtain relative frequencies. In a sense, there is still some creative phase
space in how one expresses the relative frequencies of turbulent flow characteristics.
For example, a binarization of the velocity signal with the value of 1 for dϕ/dt > 0 and
0 for dϕ/dt ≤ 0 would produce a different message retrieved for a turbulent flow. The
ongoing work on defining messages and corresponding relative frequencies for further
infodynamic analysis holds great promise for the future.
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4. Conclusions and Future Work

The nature of a turbulence flow is its indeterminacy. While typical analysis of
turbulence include the conservation of mass, momentum, and energy, this disserta-
tion explores a fourth less known perspective: information. In information theory, the
amount of information of a non-deterministic system is the average degree of surprisal
measured through the relative frequencies of all possible values for a certain charac-
teristic of this system. Given the stochastic nature of turbulence, the objective of this
dissertation is to apply an infodynamic analysis to study the informational content of
physical phenomena in turbulent flows. In this sense, one uses the studied case of a
vertical/short take-off and landing aircraft, where the collision between a wall jet and a
boundary layer results in an upwards-curved flow to investigate its informational con-
tent. This turbulent flow was associated with losses by instabilities originating from
three main structures: a ground vortex, a small vortex, and a secondary vortex.

After clarifying the principles from information theory adapted to a novel practi-
cal engineering-orientated lexicon, the infodynamic analysis evaluates whether or not
information offers a fresh perspective in the analysis of the pre-explained physical
phenomena. The introduced terms like informature, which quantifies the amount of
information in a physical system with a non-deterministic nature, as well as infotropy
which contextualised informature, and infosensor, an instrument or measurement tech-
nique able to capture enough information to measure informature through statistical
analysis principles, where all used to innovatively measure the transformations within
the flow field under analysis.

The infodynamic analysis revealed behaviours of turbulent structures that a clas-
sical time-integrated statistical analysis, using mean values and mean velocity fluctua-
tions, is unable to capture. The informature maps not only reveal the position of high
variability related to the epicenter of the ground vortex, but also the area affected by
the rupture of the increasing vorticity resulting from the growth and development of a
small vortex into a secondary one, followed by its detachment and convection by the
main ground vortex. Additionally, the mutual informature map shows that the vertical
and horizontal components of velocity are related, highlighting the importance of their
simultaneous measurement in the study of this type of turbulent flows. It is also ob-
served that when infotropy is contextualized by turbulence intensity, the existence of
the secondary vortex is confirmed in a region of high degree of transformation above the
stagnation point. In this way, the limitations of turbulence intensity by the intensify-
ing the effect of low mean velocities are overcome. These results suggest the turbulence
intensity relative infotropy as a better or complementary metric to turbulence intensity.

Overall, this study demonstrates the effectiveness of the novel information theory
lexicon applied to engineering physical systems. By providing new and significant in-
sights into the investigated flowfield, this approach offers a transformative perspective
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for understanding complex engineering processes that encompass both deterministic
and non-deterministic elements. Therefore, its broader application in future studies
is recommended. To further our understanding of turbulence and the behaviours of
this new information theory lexicon, which is still in its early stages of development,
an experimental setup is already being designed. This experimental setup will ana-
lyze the stochastic nature of turbulence in a two-phase flow (ultrasonic spray plume)
by processing the informational content of the flow before and after different object
shapes.
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A. Laser Doppler Velocimetry System Details

All details can be found in Barata et al. (2008). The wind tunnel facility was designed
in accordance with the recommendations outlined in Mehta and Bradshaw (1979) for
open circuit wind tunnels, with a specific focus on the boundary layer aspect of the
flow. Fig. 3.1 illustrates the main elements of the ground vortex flow. A fan of 15 kW
nominal power drives a maximum flow of 3000 m3/h through the boundary layer and
the wall jet tunnels with exit sections of 300 × 400 mm and 15 × 400 mm, respectively.

A Laser Doppler Velocimetry (LDV) non-intrusive technique characterized the ve-
locity distribution. The LDV system is a DANTEC Flow Lite dual-beam, backscatter
laser anemometer, sensible to the flow direction provided by light-frequency shifting
from acoustic-optic modulation - the Dantec Flowlite 2D. This device comprises a 10
mW He-Ne and a 25 mW diode-pumped frequency-doubled Nd:YAG lasers, with a
fs = 40 MHz frequency shifting induced by Bragg cell in one of the two laser beams to
distinguish the velocity direction in the Doppler signal emitted by the light scattering
from the seeding particles. The transmission and backward-scattered light collection
is made with a focal lens of 400 mm. A half-angle between the beams was set to 2.8◦

and the calculated dimensions of the axis of the measuring ellipsoid volume at the e−2

intensity locations are 135×6.54×6.53 µm and 112×5.46×5.45 µm, for the He-Ne and
Diode lasers, respectively. The principal characteristics of the LDV are summarized in
Table A.1.

Table A.1: Principal characteristics of the Laser-Doppler Velocimeter

Laser He-Ne Diode Laser
Wavelength, λ [nm] 633 532
Focal length of focusing lens, f [mm] 400 400
Beam diameter at e−2 intensity, [mm] 1.35 1.35
Beam spacing, s [mm] 38.87 39.13
Calculated half-angle of beam intersection, θ 2.78◦ 2.8◦

Fringe spacing, δf [µm] 6.53 5.45
Velocimeter transfer constant, K [MHz/(ms−1)] 0.153 0.183

The horizontal, U , and vertical, V , mean and turbulent velocities together with the
shear stress, u′v′ were determined by a two-velocity channel Dantec BSA F60 processor.
To visualize the flow and perform the LDV measurements, glycerin particles of 0.1 to
5 µm produced with medical atomizers operating at 1.5 bar were used to seed the flow.
The transmitting and collecting optics are mounted on a three-dimensional transverse
unit, positioning the control volume within ±0.1 mm.
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A. Laser Doppler Velocimetry System Details

Figure A.1: Photograph of the experimental rig by Barata et al. (2008).
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