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Dissertação no âmbito do Mestrado de Engenharia Biomédica, no ramo de

Informática Cĺınica e Bioinformática, orientada pelo Professor Lúıs Miguel
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Resumo

Esta tese explora o panorama da inteligência artificial aplicada aos dados de saúde, extraindo

conhecimentos de diversos conjuntos de dados. Os dois primeiros conjuntos de dados, adquiridos

no Kaggle, centram-se no domı́nio cŕıtico da triagem de emergência. O terceiro conjunto de

dados, proveniente do UC Irvine Machine Learning Repository, centra-se nas doenças card́ıacas.

Cada conjunto de dados apresenta desafios únicos e exemplifica cenários do mundo real cruciais

para aplicação nos cuidados de saúde.

Foi implementada uma estrutura que integra classificadores baseados na incerteza, especifica-

mente regressão loǵıstica e random forest, individualmente ou combinados. É de notar que esta

estrutura obtém resultados notáveis, pois ultrapassa o limiar de precisão de 95% e alcança bons

valores em várias métricas de desempenho, quando configurada com parâmetros espećıficos. A

investigação estendeu-se além das métricas convencionais para demarcar a imperatividade da

transparência e explicabilidade do modelo. A aplicação de Local Interpretable Model-agnostic

Explanations (LIME) fornece informações cruciais sobre os processos de decisão de modelos

machine learning complexos.

Além disso, desdobra-se um estudo robusto que compara e contrapõe estratégias de aprendizagem

passiva e ativa, revelando assim a eficácia da estrutura para atingir um desempenho excecional

com apenas 10% do conjunto de dados inicial. Estes resultados, obtidos através de consultas

estratégicas, sublinham o potencial da estrutura para ultrapassar os desafios da escassez de

dados nos domı́nios da saúde.

À medida que a inteligência artificial continua a redefinir as práticas de saúde, esta tese contribui

com perspetivas detalhadas, oferecendo assim informações para profissionais, investigadores e

legisladores.

Palavras-chave: Inteligência Artificial, Aprendizagem Ativa, Explicabilidade, Incerteza na

Amostragem, Escassez de Dados, Aplicações nos Cuidados de Saúde

ix



Resumo

x



Abstract

This thesis navigates the landscape of Artificial Intelligence (AI) applied to health data, drawing

insights from diverse datasets. The first two datasets, acquired from Kaggle, center around the

critical domain of emergency triage. The third dataset, sourced from the UC Irvine Machine

Learning Repository, focuses on heart diseases. Each dataset presents unique challenges and

reflects real-world scenarios that are crucial for healthcare applications.

The framework deployed integrates uncertainty-based classifiers, specifically Logistic Regres-

sion (LR) and Random Forest (RF), either individually or combined (LR + RF). Notably, the

framework attains remarkable results, surpassing the 95% accuracy threshold and achieving

good values across various performance metrics, when configured with specific parameters. The

investigation made extends beyond conventional metrics so as to embrace the imperative of

model transparency and explainability. The application of LIME provides some insights into

the decision-making processes of Machine Learning (ML) models.

Additionally, a robust study comparing passive vs active learning strategies unfolds, revealing

the framework’s efficacy in achieving exceptional performance with a mere 10% of the initial

dataset. These results, which were achieved through strategic queries, underscore the frame-

work’s potential to overcome data scarcity challenges in health domains.

As AI continues to redefine healthcare practices, this thesis contributes nuanced perspectives,

offering insights for practitioners, researchers, and policymakers alike.

Keywords: Artificial Intelligence, Active Learning, Explainability, Uncertainty Sampling, Data

Scarcity, Healthcare Applications
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1

Introduction

1.1 Motivation and Context

The integration of AI into the healthcare domain is motivated by the immense potential to

revolutionize patient care, medical diagnosis, and treatment. The capabilities of AI, such as

rapid data analysis, real-time monitoring, and predictive modeling, can significantly augment

the capabilities of healthcare professionals. The collaborative synergy between AI algorithms

and human clinicians, embodies a future where intelligent machines assist healthcare providers

in making more informed decisions. However, the translation of AI success in other domains to

healthcare is impeded by challenges such as the scarcity of data, particularly in critical medical

areas. This scarcity accentuates the need for innovative approaches, such as AL, to intelligently

select and acquire the most informative data for efficient model training.

In the health domain, where decisions directly impact human well-being, the significance of AI

transparency and explainability cannot be neglected. While advanced ML algorithms, including

deep learning and RF, exhibit exceptional accuracy, they often lack transparency, hindering

their widespread acceptance and deployment in critical healthcare settings. The inability to

understand and interpret the decision-making process of these algorithms is a barrier to trust

and acceptance. This challenge gains further prominence in light of regulatory frameworks,

such as the General Data Protection Regulation (GDPR), which grants individuals the right

to question AI systems about their decisions. Thus, the motivation to bridge the gap between

AI’s power and its transparent, ethical application in healthcare forms the cornerstone of this

research.

1.2 Objectives and Approach

The primary objectives of this study are designed to address key challenges in the intersection

of ML, healthcare, and model interpretability.

Firstly, an AL framework was designed - and then implemented - to create an innovative tool

specifically tailored to healthcare applications. This framework aims to optimize the training

process of ML models in health scenarios where labeled data is limited, particularly focusing on

emergency triage datasets.

1
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Then, after creating the framework, it was time to test and analyze the performance of machine

learning models, particularly LR and RF classifiers, under varying conditions. This includes

exploring different estimators’ sizes and query strategies within the AL framework.

In order to enhance the transparency and interpretability of the ML models employed in health-

care decision-making, LIME was integrated.

In addition, a comparative study between active and passive learning was approached to eluci-

date the efficiency and effectiveness of the proposed active learning framework by exploring the

percentage of the dataset required for active learning to approximate passive learning bench-

marks.

Finally, the developed framework was applied to three healthcare datasets, including not only

the emergency triage datasets but also a heart disease dataset, to validate its generalizability

and effectiveness across distinct medical domains.

1.3 Contributions

This thesis adds contributions to the field of ML, especially when it comes to model inter-

pretability and healthcare applications, through the combination of different configurations when

creating the model. The following sums up the main contributions:

• A framework for AL was created and thoroughly tested, demonstrating that it can greatly

improve model performance even with little labeled data. This framework demonstrates

the potential to optimize resource utilization while maintaining high predictive accuracy.

It is specifically designed to address the challenges posed by data scarcity healthcare.

• A comprehensive analysis of performance metrics was conducted. The results illustrate

the robustness and reliability of the active learning framework across various scenarios,

emphasizing its adaptability to different datasets and classifier configurations.

• By applying the LIME model into the framework, healthcare professionals and patients

can benefit from insights like identifying the most influential features influencing predic-

tion outcomes, gaining confidence in the model’s recommendations and facilitating better-

informed decision-making.

1.4 Document Structure

This document is organized as follows:

• Chapter 2 - Background Knowledge and State of Art: Lays the groundwork by

providing essential background knowledge, covering fundamental concepts, theories, and

existing practices relevant to the research topic. Simultaneously, explores the current state

of the art in the field, reviewing the latest advancements, methodologies, and technologies

pertinent to the thesis topic.

2



1. Introduction

• Chapter 3 - Material and Methods: Delves into the specifics of the framework design,

materials used, and the methodologies employed. Provides a detailed account of datasets,

ML algorithms, and the experimental setup.

• Chapter 4 - Results and Discussion: Presents the central findings of the research.

The discussion section interprets these results in the context of the research questions,

highlighting key insights and trends.

• Chapter 5 - Conclusion and Future Work: Summarizes key findings and insights

from the study, draws conclusions based on the results, and outlines potential avenues for

future research.

3
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2

Background Knowledge and State of

the Art

This section gives a overview of the history of AI, showing how it progressed from theoretical

conceptions to real-world applications across a range of industries, with an emphasis on its

importance in healthcare. In addition, it addresses the difficulties and possibilities that come

with using AI, such as the lack of data, the interpretability of models, ethical issues, and legal

frameworks.

2.1 Artificial Intelligence

The human imagination has always been a source of invention, inspiring us to realize our most

improbable fantasies. We have pushed the boundaries of what is possible in our never-ending

search for knowledge. At the center of this quest is the unwavering pursuit of understanding

and mimicking human-like intelligence in non-biological entities, which gave rise to the field of

AI.

The origins of AI can be traced back to the 1940s [1], notably 1942, when American science

fiction writer Isaac Asimov released his short story Runaround [2]. The story introduces for the

first time these rules:

1. A robot may not injure a human being or, through inaction, allow a human being to come

to harm.

2. A robot must obey the orders given it by human beings except where such orders would

conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Laws.

In the year after, 1943, the first instance of an AI model was proposed. Warren McCulloch

and Walter Pitts introduced a network of artificial neurons, a foundational concept for neural

networks [3].

The Turing Test was developed to offer a sufficient operational definition of intelligence. It

was first presented by Alan Turing in 1950 [4]. Turing’s theoretical construct posits a scenario

5
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wherein an evaluator, referred to as ”C,” interacts with two entities hidden from view—a human,

designated as ”A,” and an artificial agent or machine, referred to as ”B.” The objective of

this exercise is for the evaluator to ascertain which of the two entities is human and which is

artificial solely through textual or oral exchanges. Basically, if a human interrogator cannot

identify whether the written responses are from a person or a machine after asking some written

questions, the computer has passed the test [3].

Critically, the Turing Test pushes beyond the conventional yardstick of machine intelligence,

which historically relied on mere computations and algorithmic problem-solving capabilities.

Instead, it delves into the realm of understanding, contextual interpretation, and linguistic flu-

ency—attributes indicative of human-like thought processes. In doing so, Turing’s Test advances

the notion that true artificial intelligence must embody not just logical reasoning but also an

ability to exhibit human-like conversational skills.

[5] In 1956, the Dartmouth Conference played a pivotal role in introducing the concept of

AI, effectively marking its inception. This period witnessed a surge in international academic

interest and collaboration in the field of AI. However, as the 1960s unfolded, predominant

paradigms such as connectionism and rule-based systems faced declining popularity, causing a

setback in the progress of intelligent technologies. The 1970s saw the emergence of research

into backpropagation algorithms. Additionally, the rising cost and expanding computational

capabilities of computers presented challenges for the research and implementation of expert

systems [5]. Progress in AI encountered challenges, but it continued to advance. By the 1980s,

backpropagation neural networks gained widespread recognition, leading to rapid algorithmic

advancements in artificial neural networks. Simultaneously, computer hardware capabilities

experienced significant growth. However, the proliferation of the Internet during this era posed

some challenges for the further evolution of AI, primarily concerning data privacy and security.

With the increasing interconnectedness of systems and the exponential growth of online data,

safeguarding sensitive information became a paramount concern [5]. The field of AI comprises

diverse fields like computer vision, natural language processing, and ML, all of which add to its

complex terrain. Therefore, the following subsection introduces the field of ML.

The quick development of AL has made it possible to tackle categorization challenges in a variety

of fields, including medicine, with creative methods. Understanding the current state of Explain-

able Artificial Intelligence (XAI) and AL is essential to developing the proposed framework for

classification tasks in medicine as the healthcare sector continues to adopt AL technology.

Chen et al [6] investigated the potential of AL in enhancing the development of high-throughput

phenotyping techniques based on supervised MLalgorithms that are generalizable. The main

objective of the study is to apply AL to phenotyping algorithms for data from electronic health

records. In order to overcome the issue of requiring a large number of annotated samples, which

are costly and time-consuming to investigate, this study combines an uncertainty sampling AL

approach with support vector machine-based phenotyping algorithms. Using annotated illness

cohorts including venous thromboembolism, colorectal cancer, and rheumatoid arthritis, the

project’s goal is to evaluate AL’s performance and compare its effectiveness to a passive learning
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technique based on random sampling. They aimed to create effective and precise phenotyping

algorithms that could be used for a variety of diseases and traits, accelerating the use of data from

electronic health records for clinical and translational research and advancing medical research

in the process. The results show that AL may efficiently minimize the number of annotated

samples required for excellent classification performance, lowering the cost and time required

for manual chart inspection.

2.1.1 Machine Learning

ML is a branch of AI that focuses on creating statistical models and algorithms that let computers

learn from data in order to become better at a given task without having to be explicitly

programmed [7, 8]. Natural language processing, computer vision, speech recognition, and

many more industries can all benefit from ML, which is a fundamental technology. It is essential

for giving AI systems the ability to carry out activities that call for learning from data and

adjusting to new knowledge [7, 8].

2.1.2 Machine Learning Classification models

A key component of data analysis and interpretation are classification models. These models

facilitate decision-making in a variety of industries, including healthcare, by predicting the

categorical consequence of a given input. The AL system employs the following algorithms to

classify instances, similar to a conventional ML system. However, in instances where uncertainty

arises, the system solicits guidance or assistance from an oracle.

2.1.2.1 Decision Trees

A decision tree is a sequential model that is used to create regression or classification models

in data mining and ML [9]. Decision trees are composed of nodes and branches, where each

node represents a test on an attribute, each branch represents the outcome of the test, and each

leaf node represents a class label. The tree is constructed by recursively splitting the data into

subsets based on the values of the attributes until a stopping criterion is met [9, 10].

Because of their transparency and ease of use, decision trees are preferred in machine learning.

However, they do not come without obstacles. One common problem is that they are prone to

overfitting, which occurs when the model overfits and fails to properly generalize to new data

by capturing noise in the data. Furthermore, decision trees may not be as robust when exposed

to various data distributions due to their high sensitivity to changes in the dataset. Pruning

techniques and ensemble methods are required to overcome these obstacles and improve their

performance in real-world scenarios [9, 10].

2.1.2.2 Random Forest

A RF is a collection of decision trees, each of which is trained using a random subset of the

training data and a random subset of the features. The combined projections of all the forest’s

trees lead to the final conclusion [11].
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Figure 2.1: A standard RF architecture [12].

Due to the fact that the effects of noisy data in individual trees average out over the forest, RF

are resistant to overfitting and noisy data [11]. Since there are not many instances available for

training in AL, this is particularly advantageous. RF is also a good classification technique to

deal with imbalanced datasets and also outperformed other ML techniques in terms of accuracy

and other metrics [13].

2.1.2.3 Logistic Regression

LR classifier is a model that has seen increased use in ML applications over the last decade [14].

The method works by estimating a set of weights that can be used to calculate the probability

of the outcome being true for each data point. These weights are learned from the training data

using maximum likelihood estimation. Once the weights are estimated, the LR model can be

used to predict the probability of the outcome for new data points with similar predictor values

[15].

The LR equation 2.1 in AL is given by:

P (y = 1|x,w) =
1

1 + exp(−(wTx))
(2.1)

In this equation, x represents the input feature vector, w denotes the weight vector, and wTx

represents the dot product of the weight vector and the feature vector. The sigmoid function,

denoted by 1
1+exp(−(wTx))

, maps the linear combination of features to a value between 0 and 1,

representing the estimated probability of the positive class.

Only LR and RF models are presented, although there are several others like Support Vector

Machines (SVM), working by finding the hyperplane that best separates different classes in the

feature space, Naive Bayes Classifier, that are based on Bayes’ theorem with the assumption

of independence between features, and many others beside those. Decision trees were also

mentioned because they are important to understand how RF models work.

8



2. Background Knowledge and State of the Art

2.1.3 Active Learning

In the statistics literature, AL, also known as query learning or optimal experimental design,

is an area of ML and, more broadly, AI [16]. AL is a ML approach that involves an iterative

process of selecting and labeling the most informative samples from an unlabeled dataset. The

goal of AL is to train a model with high accuracy while minimizing the amount of labeled data

required [17]. To achieve this, it first determines which examples are the most instructive based

on the model’s current understanding, then asks a human oracle or an already-existing, labeled

dataset for the correct labels.

A large labeled dataset is often required in classical ML to adequately train a model. Obtaining

tagged data, on the other hand, might be costly, time-consuming, or difficult in some sectors.

Instead of depending entirely on a pre-labeled dataset, AL allows the model to actively query

the labels for the most informative occurrences.

Figure 2.2: A schematic representing the three primary AL possibilities. Adapted from [16].

In Figure 2.2, in the first scenario, the learner creates its own instances from the underlying

dataset in membership query synthesis so that it can query the oracle of its contents. In terms

of stream-based selective sampling, the learner draws each unlabeled instance one at a time and

chooses whether or not to query it. In the last scenario, unlike stream-based selective sampling,

pool-based AL makes use of the complete pool of unlabeled cases [16]. In this configuration,

query instances are selected from the unlabeled pool, and a small number of labeled instances

are presumed to be provided with a much larger number of unlabeled instances [18].

In AL, there are numerous query strategies that can be employed, such as uncertainty sampling,

diverse sampling.

AL plays a pivotal role in addressing the critical challenge of limited labeled medical data. The

scarcity of labeled medical datasets, a common issue in healthcare applications, often hinders the

development of accurate ML models. Through this integration of active learning, a substantial

improvement is anticipated in the efficiency and cost-effectiveness of medical classification, ul-

timately benefiting patients and healthcare providers. The interplay of AL in this thesis aligns
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with the broader trend of harnessing AI techniques to assist medical professionals in making

more accurate and timely decisions.

2.1.4 Query Strategies

The techniques used to choose representative and instructive samples from an unlabeled dataset

for annotation or labeling are referred to as query strategies in AL. The purpose of query

techniques is to deliberately select examples that, when labeled, would most significantly enhance

a ML model’s performance. AL is inherently designed to make the most efficient use of the

limited labeling resources available. The query strategy that is selected has a direct effect on

how well the model can learn from a limited number of labeled instances. In a domain where

acquiring medical labels can be resource-intensive and time-consuming, optimizing the selection

of instances for labeling is crucial.

In AL, there are numerous query strategies that can be applied, including predicted model

change, query-by-committee, uncertainty sampling, diversity sampling and others.

2.1.4.1 Uncertaintly Samping

Uncertainty sampling is AL query approach that selects instances based on how confident the

model’s predictions are. Since they can produce the most informative data for improving the

model’s performance, the most ambiguous or confusing instances of the model are given prece-

dence for labeling. This query approach seeks to focus on challenging examples that the model

is least certain about by selecting instances with significant uncertainty. These occurrences have

the ability to provide useful information for improving the model’s performance in uncertain

parts of the feature space. Some of the approaches to uncertainty sampling are the following.

Least Confidence sampling

Least confidence sampling refers to the distinction between the highest level of confidence in a

prediction and complete certainty, denoting the degree of uncertainty in a given scenario. Simply

the probability of the label’s highest level of confidence makes up the fundamental equation:

ϕLC(x) = Pθ(y
∗ |x) (2.2)

Instead of relying solely on confidence levels, it proposes converting uncertainty scores to a 0–1

scale, with 1 indicating the highest uncertainty. A normalization procedure is used to do this:

the number of labels is multiplied by the confidence score, which is then subtracted from 1, and

the result is divided by the number of labels minus 1. When all labels have an equal expected

confidence, this normalization assures that the minimal confidence value is never less than 1

divided by the number of labels. This method, which is referred to as least confidence sampling

with a 0–1 range, makes it easier to assess uncertainty more precisely [19].
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ϕLC(x) = (1− Pθ(y
∗ |x)) n

n− 1
(2.3)

Entropy Sampling

AL frequently employs the query technique known as entropy sampling, in which cases with the

highest entropy are chosen for labeling. In the context of AL, entropy, a measure of uncertainty,

represents the amount of information or unpredictability connected to a label for an occurrence.

A sample’s entropy is determined using the model’s expected probabilities for various classes.

A model that has higher entropy is a good candidate for querying since it means the model is

unsure of the proper label for that particular instance. AL prioritizes the labeling of samples

that are most likely to enhance the performance of the model by choosing instances with high

entropy.

When entropy is applied to a probability distribution, the negative sum of each probability’s

logarithmic multiples is obtained [19]:

ϕENT (x) = −
∑
y

Pθ(y|x) log2 Pθ(y|x) (2.4)

and it is also possible to divide the entropy by the log of the number of predictions (labels) to

convert it to a 0–1 range:

ϕENT (x) =
−
∑

y Pθ(y|x) log2 Pθ(y|x)
log2(n)

(2.5)

Margin Sampling

Another popular query technique in AL is margin sampling, which chooses instances depending

on the degree of confidence between the model’s two top predicted classes. Instances near the

decision border, where the model is unsure of the proper label, are prioritized.

To determine how much more confident the label that the model predicted versus the next-most-

confident label, the following formula is used, already on a range of 0 to 1 [19]:

ϕMC(x) = 1− (Pθ(y
∗
1 |x)− Pθ(y

∗
2 |x)) (2.6)

2.1.4.2 Diversity Sampling

There are various approaches when using diversity sampling, like Model-based outlier, Cluster-

based sampling, Representative sampling, and others. Those approaches focus on enriching the

training dataset with diverse examples to improve model generalization.
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2.1.4.3 Query by Committee

The Query-By-Committee (QBC) framework [16] for AI involves maintaining a committee

C = {θ(1), . . . , θ(C)} of models that have all been trained on the current labeled set while

simultaneously representing possibly opposing hypotheses. Each committee member is then

allowed to vote on the labelings of query candidates. The degree of disagreement among the

committee is used to determine how unsure an instance is that has not been labeled. The

instance in which they disagree the most is considered to be the most informative query [16, 18].

The committee size can have an impact on the results of the QBC algorithm. The generalization

error lowers and the asymptotic information gain rises with committee size. Beyond a certain

point, there is a diminishing return on expanding the committee [20].The literature is divided

on the ideal committee size to employ, which can actually differ depending on the model class

or application. On the other hand, it has been demonstrated that small committee sizes, such

as two or three, actually work well [16].

Two major methods have been suggested for calculating the degree of disagreement [18]: vote

entropy and disagreement margin. Vote entropy [21], which can be considered a generalization

of entropy-based uncertainty by committee, represents degrees of disagreement on class estimate

across a committee of classifiers to evaluate uncertainty. When the class probability estimates

are equally likely, it displays the greatest value; when the estimates are unanimous, it displays

the smallest value. To calculate the vote entropy equation 2.7 is used:

fV E(x) = −
∑
y∈Y

V C(y, x)

|C|
log

V C(y, x)

|C|
, (2.7)

where y represents a class label, V C(y, x) = Pθ∈CI[hθ(x) = y] signifies the count of votes

received by label y for instance x from the hypotheses within the committee C, and |C| denotes
the size of the committee. By converting each committee’s votes to class probability estimates,

Settles [17] produced a more softly defined vote entropy:

fSV E(x) = −
∑
y∈Y

PC(y|x) logPC(y|x), (2.8)

where PC(y|x) = 1
|C|

∑
θ∈C Pθ(y|x), represents the average probability that the label of instance

x is predicted as y by the committee members.

The difference in votes between the most confident class estimate and the second most of an

instance is measured by the disagreement margin [18, 22]:

fDM(x) = V C(y∗, x)− max
y∈(Y−{y∗})

V C(y0, x), (2.9)

where argmaxy∈Y V C(y, x) = y∗. Similarly, one can utilize the difference between the proba-

bilities of the two largest classes. Disagreement margins, in contrast to vote entropy measures,
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indicate the confidence of the class estimate, therefore, their values suggest the opposite. The

margins represent the highest value when all class probability estimates are in agreement, and

the lowest value when the probability estimates are evenly distributed among classes. Conse-

quently, when a disagreement margin is employed, an additional evaluation function may be

necessary. This function would rank instances higher for selection when the classifiers are less

certain about the class of that instance [18].

On another disagreement measure, Settles [17] points the Kullback-Leibler (KL) divergence:

x∗KL = argmax
x

1

|C|
∑
θ∈C

KL
(
Pθ(Y |x)

∥∥∥PC(Y |x)
)
, (2.10)

where KL is defined to be:

KL
(
Pθ(Y |x)

∥∥∥PC(Y |x)
)
=

∑
y

Pθ(y|x) log
Pθ(y|x)
PC(y|x)

, (2.11)

where the aim is to measure disagreement as the mean divergence between the predictions made

by each committee member, represented by θ, and the consensus predictions of the committee

C.

2.2 AI in Healthcare

The pursuit of knowledge and innovation has always been a commitment in the field of medicine

and healthcare, where every choice made can mean the difference between life and death. The

advent of AI has signaled a paradigm shift for humanity as it has struggled to understand the

complexities of medical conditions and the complexity of the human body [23]. The recent

successful uses of AI in healthcare have been made possible by the expanding availability of

healthcare data and the quick development of big data analytic techniques. Vast amounts of

data contain clinically relevant information that can be unlocked by powerful AI techniques

guided by pertinent clinical questions [23].

There are various applications of AI in the medical field, as substantiated by the findings in [24].

Among those are:

• Providing online services to patients and checking patients without visiting clinics/hospitals.

• Planning treatment to achieve better results

• Developing targeted treatments, uniquely composed drugs, and personalized therapies.

• Guiding surgeons during medication, treatment, and operation

• Tracking, detecting, investigating, and controlling infections in hospitals

• Improving clinical decision-making to enhance patient outcomes
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• Acquiring information using neural networking, advanced imaging, and natural language

processing

2.3 Responsible and Trustworthy AI

2.3.1 Ethics

The application of AI in healthcare carries a number of ethical considerations. Transparency is

one of the hardest problems to solve because a lot of the AI algorithms used in image analysis

are so hard to understand or interpret [25]. Furthermore, it’s likely that AI systems will make

mistakes when diagnosing and treating patients, and it might be challenging to hold them

accountable [25]. In a recent review [26], suggests that in order to ensure that healthcare

systems are held responsible for providing high-quality, equitable, and safe care, appropriate

governance models can be developed.

As we explore the exciting world of AI in healthcare, it’s critical to acknowledge and resolve a

number of important issues that come with this development in technology.

2.3.1.1 Data Privacy

Protecting patient data is a top priority in the field of healthcare AI, which has led to a number of

data privacy issues. The data is collected by privacy-invasive social media platforms, smartphone

apps, and Internet of Things devices with countless sensors [27].

The effective operation of AI systems necessitates access to vast quantities of patient data, giving

rise to concerns regarding the collection, storage, and utilization of said data. Specifically, there

is a chance that private patient information could be accessed or misused, either by criminals

or by well-meaning but inadequately qualified medical personnel [26] .

Even with the availability of privacy-friendly methods, data privacy is still greatly concerned

about the gathering and use of personal information in AI systems [27].

2.3.1.2 Bias and Fairness

Hidden within the algorithms and data that power AI systems is the potential for bias, which

can fundamentally affect fairness and equity in healthcare outcomes.

Racial bias in predictive policing algorithms is one well-researched instance of reported bias in

AI. According to the study reported in [28], there exists prejudice in the algorithms towards

specific racial groups, which may result in unjust treatment of persons inside the criminal justice

system. In addition, there are concerns about the accountability of firms for mistakes made by

their algorithms, as well as the need for a moral codex of AI engineers [1].

One solution to these issues could be to develop commonly accepted requirements regarding

the training and testing of AI algorithms, possibly in combination with some form of warranty,

comparable to consumer and safety testing procedures for tangible goods [1]. AI may fulfill its
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greatest potential by assisting in better diagnosis and prediction while safeguarding patients if

bias is addressed [29].

2.3.1.3 Transparency

In AI, transparency pertains to the capacity to comprehend and clarify the decision-making and

action-taking processes of AI systems. It involves allowing users, stakeholders, and regulators to

see and comprehend the workings and results of AI systems. Since transparency may promote

ethical standards, accountability, and trust in the creation and application of AI systems, it is

regarded as a crucial component of trustworthy AI.

2.3.2 Explainable Learning

XAI refers to the development of artificial intelligence systems that can provide clear and under-

standable explanations of their decision-making processes to human users. The goal of XAI is to

make AI more understandable, trustworthy, and transparent so that people can have more con-

fidence in the decisions made by AI systems [30]. Nevertheless, while developing explanations, it

is necessary to strike a balance between technical correctness and understandability, as various

users will require varying levels of complexity [31]. In addition to the well-known LIME, several

other prominent XAI models have emerged, each with its unique approach to enhancing model

interpretability. For example, SHapley Additive exPlanations (SHAP) uses cooperative game

theory to distribute feature importance fairly [32]. By creating instances with modified results,

Counterfactual Explanations helps users comprehend how modifications to input data affect

model predictions [33]. On the other hand, Anchors provide consistent, rule-based explanations

for ML models [34].

In the XAI field, Khishigsuren Davagdorj et al [35] presents an XAI framework for early predic-

tion of Non-Communicable Diseases (NCD)s. It incorporates DeepSHAP-based feature selection

and it addresses the need for interpretable models in healthcare decision-making, providing clin-

icians with transparent and understandable insights to facilitate informed decisions. The frame-

work’s ability to offer explanations at both global and local levels enhances its effectiveness in

supporting clinicians in predicting NCDs.

In another study, Khodabandehloo et la. [36] delves into the application of collaborative and

transparent AI to facilitate the early detection of cognitive decline among elderly individuals.

The research introduces a sensor-driven system named HealthXAI, focused on recognizing activ-

ities, which leverages pervasive healthcare technology to identify cognitive decline symptoms and

enable timely interventions. HealthXAI is rooted in established clinical parameters and aims for

scalability and personalization. The authors conducted a user study involving healthcare pro-

fessionals and observed that HealthXAI outperforms existing AI systems in aiding clinicians in

diagnosis. Moreover, the system’s explanations were regarded as comprehensible, valuable, and

sufficiently detailed. Nevertheless, a notable constraint of the system is the absence of a compre-

hensive clinical model, a point highlighted by the authors. It was referenced that future research

should concentrate on enhancing the system’s precision by addressing subtler inefficiencies and
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considering alternative sensor infrastructures.

Also on the XAI field, this time using LIME as well, Magesh et la. [37] developed a ma-

chine learning model for the early diagnosis of Parkinson’s Disease using DaTSCAN images,

while simultaneously providing transparent and interpretable insights into the decision-making

process of the model. LIME is specifically used to highlight aberrant or diminished character-

istics in the putamen and caudate areas of non-PD patients, providing valuable insights into

classification judgments. This interpretability provided a deeper understanding of the model’s

decision-making process, enabling medical practitioners to obtain significant insights into the

model’s visual markings on the forecasts. Ultimately, the use of LIME helped to achieve the

research’s primary objective of providing an interpretable solution for the early diagnosis of

Parkinson’s Disease, allowing healthcare professionals to make informed decisions based on the

model’s transparent and explainable predictions.

2.3.3 LIME

LIME is a novel explanation technique that provides interpretable and accurate explanations

for any classifier. LIME works by using an interpretable model to locally approximate the

predictions of a black-box model. In order to achieve this, a set of perturbed instances is

created around the original instance, and these perturbed instances are used to train a local

interpretable model. The prediction made by the initial black-box model for that instance can

then be explained using the resulting interpretable model [38].

Figure 2.3: LIME Explanation adapted from [38].

Figure 2.3 depicts the process of explaining individual predictions, which is a crucial aspect

of getting humans to trust and use machine learning models effectively. The figure illustrates

an example of a doctor using a machine learning model to predict whether a patient has a

certain disease. The model provides an explanation in the form of a list of symptoms with

relative weights, where symptoms that contribute to the prediction are highlighted in green,

and symptoms that are evidence against it are highlighted in red.

The model being explained is denoted as f : Rd → R, where Rd represents the d-dimensional real

space and R represents the real numbers. The probability (or binary indicator) that x belongs

to a particular class is expressed as f(x) in classification. As a result, the model f produces a

real number that indicates the likelihood that an input instance, x, belongs to a particular class

given the input instance.

The features that are employed in datasets are frequently difficult for humans to comprehend, as
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the authors defend. Therefore, in the quest for interpretability, the authors proposed a binary

representation of feature attributes. In text-based datasets, this binary representation denotes

if a word is present or not, while in image-based datasets, it represents a super-pixel. Thus, a

binary vector was introduced x′ ∈ {0, 1}d′ as an interpretable representation of x. In simpler

terms, for any instance x that needs an explanation, there is an associated x′.

The explanation model, characterized by a domain {0, 1}d′ , is represented by g ∈ G, where G

encompasses a set of possible XAI models. To gauge the complexity of an explanation produced

by g, Ribeiro et al. [38] introduce Ω(g).

The model randomly samples instances around x′ represented as z′ ∈ {0, 1}d′ . These perturbed

instances makes it possible to recover the original values of z in Rd. These recovered values, in

turn, help determine f(z), which represents the probability of an instance belonging to a specific

class. These samples are assigned weights based on πx(z), serving as a measure of the similarity

between the original instance x and the sampled instance z. By introducing these perturbations,

the model aims to observe changes in predictions and, subsequently, identify which attributes

have the greatest impact on the model’s classifications.

It is necessary to minimize L(f, g, πx) while keeping Ω(g) low enough for human interpretation

in order to guarantee both interpretability and local fidelity.

The following Formula 2.12 provides the LIME-produced explanation:

ξ(x) = argmin
g∈G

[L(f, g, π(x)) + Ω(g)] (2.12)

2.4 Performance Evaluation

Different assessment criteria have been used to evaluate ML classification models, and in order

to choose the best one, it is important to consider the main objectives of the hospitals and

healthcare facilities where the models will be used. Additionally, it is essential to explore and

comprehend the data. For the type of data on which this project is working, there is a lot of

class imbalance. As a result, the measures selected must be appropriate for a proper assessment

in this situation.

Accuracy =
Number of correct predictions

Total number of predictions
(2.13)

Sensitivity =
True Positives

True Positives + False Negatives
(2.14)

Specificity =
True Negatives

True Negatives + False Positives
(2.15)

Balanced accuracy was also calculated due to the fact that is a machine learning error metric for
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binary and multi-class classification models. It is an improvement over the common accuracy

measure in that it has been tweaked to work better on unbalanced datasets, which is one of the

main compromises when employing the accuracy metric.

The imbalance problem occurs when one class in a dataset with two classes is significantly

underrepresented in comparison to the other class. As many techniques presuppose that the

problem classes share comparable prior probabilities, this can have a substantial impact on

learning approaches. However, this presumption is frequently broken in real-world problems, and

the ratios of prior probabilities between classes can be seriously skewed [39]. This is crucial in

situations where misclassifying examples from the minority class would be expensive. Therefore,

in order to enhance the performance of learning systems on these kinds of datasets, the imbalance

problem needs to be solved [39]. Even in cases when the classifier is not biased in favor of the

class that is more frequently observed, balanced accuracy can be employed as a general safeguard

against presenting an optimistic accuracy estimate [40].

Balanced Accuracy =
Sensitivity + Specificity

2
(2.16)

The harmonic mean of accuracy and recall for the minority positive class is used to determine

the F1 score, sometimes referred to as the F-measure or balanced F-score, which is an error

metric used to evaluate the performance of models.

As it offers accurate results for both balanced and imbalanced datasets and takes into account

the precision and recall ability of the model, it is a common statistic to employ for classification

models.

F1 Score = 2× Precision× Recall

Precision + Recall
(2.17)

2.5 Triage Scales

Triage scales in AI in healthcare refer to a set of tools and algorithms that help prioritize and

categorize patients based on the severity of their medical conditions, the urgency of their care

needs, and the available healthcare resources. These scales guarantee that patients with the most

serious conditions get the attention they need right away, which helps medical professionals make

quick decisions, especially in emergency and high-demand situations [41].

Emergency Department (ED) triage has undergone significant evolution since its introduction

in the 1950s in the United States, with the development of various triage scales designed to

guide the decision-making process for assessing patient acuity. Over time, different triage scales,

such as the Emergency Severity Index (ESI), the Manchester Triage System (MTS), and the

Canadian Triage and Acuity Scale (CTAS), have been developed and tested for reliability and

validity. The five-level triage system, developed by the American Collge of Emergency Physicians

(ACEP) and the Emergency Nurses Association (ENA) in 2005, represents the latest iteration

of ED triage. The need to guarantee that patients receive immediate and appropriate therapy
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and to prioritize patient care depending on the severity of their condition has motivated the

development of ED triage [41].

Emergency triage is a systematic process that classifies patients into distinct categories or priority

levels based on the urgency of their medical condition. Below are some of the typical categories

used in emergency triage [42]:

1. Critical: Patients in this category require immediate medical attention. They often have

life-threatening conditions or severe injuries that demand rapid intervention. Examples

include cardiac arrest, severe trauma, or respiratory distress.

2. Emergent/Urgent: These patients have serious medical conditions that require imme-

diate attention. Delays could cause their diseases to worsen, even though they may not

be immediately life-threatening. Chest pain, fractures, or serious infections are a few

examples.

3. Non-Urgent/Non-Emergent: Patients in this group have less severe conditions that

can be managed with less urgency. They typically experience less discomfort or distress.

Some of the examples are minor injuries, rashes, or mild respiratory infections.

2.5.1 CTAS Triage Scale

CTAS is a widely adopted triage system used in ED across Canada and abroad. It is designed

to prioritize patient care based on the severity of their condition and the resources required to

manage it. The CTAS assigns patients to one of five triage categories based on a set of criteria,

including the patient’s presenting complaint, vital signs, level of consciousness, and other clinical

indicators. The five triage categories range from level 1 (resuscitation) to level 5 (non-urgent),

with each level corresponding to a specific set of clinical criteria and recommended response

times. In order to help nurses assign appropriate acuity levels while accounting for aspects like

age, mobility, and pain, the CTAS also includes a set of modifiers [43].

2.5.2 KTAS Triage Scale

The Korean Triage and Acuity Scale (KTAS) triage scale, which has five levels, was created

in 2012 and is based on the CTAS but has been adjusted to fit the needs of South Korean

healthcare. KTAS is a classification system focused on symptoms that is used to assess patients

[44, 45]. Emergency nurses evaluate the primary considerations, such as vital signs, pain score,

hemorrhagic disease, mechanism of injury, and secondary concerns, such as blood glucose level

and degree of dehydration, to establish the triage level following the critical first-look evaluation

[44, 45]. The patient waiting period before being evaluated by an ED doctor and the appropriate

medical treatment price are both determined by the KTAS score given by the emergency nurses

(emergency, KTAS 1-3 level, or non-emergency, KTAS 4-5 level) [44, 45].
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2.5.3 Challenges in Triage and the Role of AI

Manual triage plays a crucial role in the initial assessment and prioritization of patients in emer-

gency departments, providing the foundation for timely and appropriate medical care. This

essential component of emergency medicine doesn’t come without difficulties, though. Because

it depends on the assessment and classification of patients by medical professionals according

to their perceived level of acuity, the manual triage process is fundamentally subjective. Sub-

jectivity can lead to differences in how triage levels are assigned, which may have an impact on

patient outcomes. Bijani et al. [46] identified several challenges that affect the quality of triage

in emergency departments, including a lack of clinical competency and psychological capabil-

ities among triage nurses, inadequate staffing, high workload, inadequate training, and poor

communication and collaboration among healthcare providers.

Additionally, the exigencies of time constraints in busy emergency settings demand rapid decision-

making, leaving limited opportunity for thorough assessment. For example, the implementation

of AI virtual assistants in healthcare systems globally [47] presents both potential benefits and

challenges. On the one hand, such technology has the potential to reduce costs and improve

access to healthcare in resource-poor settings. However, great care must be taken to ensure

that algorithms are fair and generalize to different subsets of the population. In particular, it is

important to ensure that the AI system is able to service the needs of patients in diverse regions

and segments of the population, as explained before at 2.3.1.2.

AI in emergency triage has the potential to improve decision-making processes’ speed and accu-

racy, resulting in the prompt delivery of critical care to the most vulnerable. This combination

of AI and emergency medical services not only highlights AI’s adaptability but also suggests a

possible paradigm shift in the way urgent medical interventions are handled.

According to their investigation, Marta Fernandes et al. [48], the goal of the study was to create

models that predict the likelihood of ICU admission during emergency department triage in two

hospitals, one in Portugal and one in the US. The patient’s primary complaint and a variety of

clinical characteristics were used to create the models. The study employed machine learning

methods such as decision tree boosting with random undersampling, random forest regression,

and regularized logistic regression.

In their study, Dror Zmiri et al. [49] examined the viability of grading the severity of emergency

department patients using data mining techniques. The goal of the project was to develop Naive

Bayes and C4.5 classifiers from patient data into severity grades. The outcomes of the classifiers

were then compared with the medical professionals’ opinions, a classifier chosen at random, and

a classifier that chose the class with the highest prevalence.

Jamie Miles et al. [50] did a systematic review that evaluates the efficacy of machine learning

techniques for first triaging incoming patients according to their level of acuity. Four phases

of screening based on inclusion and exclusion criteria were used in the study selection process,

and the included papers were too heterogeneous to allow for a thorough meta-analysis. As

discrimination was the most frequently reported summary statistic of model performance, a
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narrative synthesis was carried out. The included models were divided into subgroups based on

the method and the outcome, and the median and IQR were used to show how widely distributed

the C-statistics were for each method.

In another study, Hong et al. [51] aimed to develop a machine learning model to predict hospital

admission at emergency department ED triage using patient history and triage information. The

study used retrospective data from three EDs covering the period of March 2013 to July 2017,

including a level I trauma center, a community hospital-based department, and a suburban, free-

standing department. The study employed gradient boosting and deep neural networks, two of

the best performing algorithms in classification tasks, to model the nonlinear relationships among

the variables. The study also identified variables of importance using information gain as the

metric and presented a low-dimensional model amenable to implementation as clinical decision

support. The results showed that the model achieved high accuracy, sensitivity, and specificity

in predicting hospital admission at ED triage. However, the study acknowledged the limitations

of using the ED provider’s prior decision as the true label and the need for further research

into a gold-standard metric for hospital admission. The study also highlighted the importance

of analyzing methods of implementation and their effect on patient outcomes. Overall, this

study provides valuable insights into the use of machine learning models for predicting hospital

admission at ED triage and lays the groundwork for future research in this area.
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Material and Methods

3.1 Pipeline Overview

Data selection, pre-processing, defining query strategies, and performance assessment are ex-

amples of steps that are commonly included in a typical AL framework. In addition to these

steps, this thesis also includes an application of the LIME model, in order to apply explanations

into the framework. To asset the performance evaluation various performance metrics were

calculated to each combination of classifiers, query strategies and number of estimators.

The experimental framework is designed to systematically explore and enhance the performance

and interpretability of the ML model. The process goes through a number of crucial phases:

• Data Pre-processing: The initial phase involves enhancing the quality of the data

through preprocessing steps. This includes tasks such as cleaning, normalization, and

feature engineering to ensure the dataset is suitable for subsequent modeling.

• AL Model: The core of the framework involves the application of ML techniques. An en-

semble model is formed using learners with different configurations, classifiers like LR, RF,

and their combination. These models are iteratively queried and updated, incorporating

uncertainty measures from diverse perspectives.

• XAI Model: This step involves generating explanations for the model’s predictions,

providing insights into the decision-making process of the AI system.

• Performance Evaluation: The final step focuses on evaluating the performance of the

AL model. Various evaluation metrics, including accuracy, sensitivity, specificity, balanced

accuracy, and F1 score, are employed to comprehensively assess the model’s effectiveness

in the classification task.

3.2 Datasets

3.2.1 KTAS Dataset

The first dataset was used to identify emergency department triage accuracy using the KTAS

and evaluate the causes of mistriage.
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The data for this cross-sectional retrospective analysis came from 1267 carefully chosen records

of adult patients admitted to two emergency rooms between October 2016 and September 2017.

Chief complaints, vital signs recorded in the first nursing records, clinical outcomes, and other

factors were among the twenty-four that were evaluated. The actual KTAS was determined by

three triage experts: a qualified emergency nurse, a KTAS provider and instructor, and a nurse

who was highly recommended based on her exceptional emergency department experience and

skill [52].

Table 3.1: Features of the KTAS dataset.

Variables Description

Sex Sex of the patient

Age Age of the patient

Arrival mode Type of transportation to the hospital

Injury Whether or not the patient is hurt

Chief Complain The patient’s complaint

Mental The mental state of the patient

Pain Whether the patient has pain

NRS Pain Nurse’s assessment of pain for the patient

SBP Systolic Blood Pressure

DBP Diastolic Blood Pressure

HR Heart Rate

RR Respiratory Rate

BT Body Temperature

3.2.1.1 Preprocessing of KTAS dataset

A number of operations were carried out to enhance and change the dataset during the pre-

processing stage. To make the data more understandable, categorical variables were reclassified

to create more relevant labels. Data cleaning methods were used to manage ’?’-denoted in-

valid entries, preserving the consistency of the data. To develop new features that accurately

represented crucial components of the data, including age groups, risk levels, and disease clas-

sifications, feature engineering approaches were used. These additional features helped arrange

the data for the following experiments and offered insightful information about various danger

levels.
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Figure 3.1: Age distribution of the dataset’s patients

3.2.2 Patient Priority Dataset

The Patient Priority dataset is a comprehensive collection focused on the urgent prioritization of

medical care based on patient symptoms. The dataset amalgamates three distinct datasets, each

addressing urgent illnesses or injuries, and combines their features to discern the most critical

symptoms for each condition. The primary objective is to identify severe symptoms and allocate

patients to predesignated care areas, ensuring a prioritized and swift initiation of diagnostic and

therapeutic measures [53].

Triage serves as a critical mechanism for efficient emergency response, necessitating the rapid and

accurate prioritization of patients based on their medical conditions. The dataset incorporates

the following categories for prioritization:

• Red: Immediate attention for critical, life-threatening injuries or illnesses.

• Yellow: Serious injuries requiring prompt attention, often prioritized for transport due

to their potential for recovery.

• Green: Less serious or minor injuries that are non-life-threatening, allowing for delayed

transport.

• Black: Deceased or mortally wounded, signifying a lower priority for those beyond help.

• White: No injury or illness (optional category, not universally used).
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Table 3.2: Features of the Patient Priority Dataset.

Feature Description

age Age of the individual

gender Gender of the individual

chest pain type Type of chest pain

blood pressure Blood pressure of the individual

cholesterol Serum cholesterol level

max heart rate Maximum heart rate achieved

exercise angina Exercise-induced angina

plasma glucose Plasma glucose level

skin thickness Skin thickness

insulin Insulin level

bmi Body Mass Index (BMI)

diabetes pedigree Diabetes pedigree function

hypertension Presence of hypertension

heart disease Presence of heart disease

Residence type Type of residence

smoking status Smoking status

triage Triage level

3.2.3 Heart Disease Dataset

The Heart Disease dataset is a compilation of data from four databases: Cleveland, Hungary,

Switzerland, and the VA Long Beach. This multivariate dataset is characterized by its relevance

to the field of health and medicine, specifically tailored for classification tasks related to heart

diseases [54].
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Table 3.3: Features of the Heart Disease Dataset.

Variable Name Description

age Age of the patient

sex Sex of the patient

cp Chest pain type

trestbps Resting blood pressure (on admission to the hospital)

chol Serum cholesterol

fbs Fasting blood sugar (> 120 mg/dl)

restecg Resting electrocardiographic results

thalach Maximum heart rate achieved

exang Exercise induced angina

oldpeak ST depression induced by exercise relative to rest

slope Slope of the peak exercise ST segment

ca Number of major vessels colored by fluoroscopy

thal Thalassemia type

num Diagnosis of heart disease

The purpose of this final dataset [54] is to examine how the framework performs in a different

medical context by stepping back from the patient emergency triage area slightly.

3.3 Project’s Framework

Algorithm 1 Active Learning Framework

Require: Xtrain, Xtest, ytrain, ytest
1: Convert Xtrain and Xtest to NumPy arrays
2: for all nestimators in {1, 2, 3, 4, 5, 10, 50} do
3: for all Learner configurations do
4: for all Query strategies in {entropy sampling, margin sampling, uncertainty sampling}

do
5: Define learner with specified classifiers and estimators
6: Initialize ActiveLearner with learner, query strategy, and training data
7: Query and update the model iteratively
8: for all Number of Queries do
9: Evaluate and store performance metrics

10: Remove queried instance from the pool
11: end for
12: Generate and save explanations for model predictions
13: end for
14: end for
15: end for
16: return =0

Algorithm 1 provides the AL framework aimed for ML model improvement. The approach is

designed to take advantage of AL principles, with the goal of improving model performance
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through the careful selection of cases for annotation. The training and testing datasets, la-

beled as Xtrain, Xtest, ytrain, and ytest, are converted into NumPy arrays for computational

efficiency during initialization. The framework is designed to be adaptable, allowing for the

investigation of alternative learner structures and query methodologies. The framework sys-

tematically explores learner configurations across a range of estimators sizes (n estimators),

examining combinations of LR, RF, and a hybrid of both, building learners compositions. While

LR is not traditionally considered when applying different sizes for estimators, LR was used in

this framework for consistency in testing different query strategies. In each setting, the system

evaluates multiple query strategies, such as least confidence, margin, and entropy sampling. By

using these techniques, the ActiveLearner consistently finds examples that need to be annotated,

systematically enhancing the training set. The core of the framework is the ActiveLearner, ini-

tialized with the designated number of estimators, query strategy, and training data. Through

iterative querying, the model adapts by incorporating newly annotated instances. Key perfor-

mance metrics, encompassing accuracy, sensitivity, specificity, balanced accuracy, and F1-score,

are systematically assessed and stored. Furthermore, to improve interpretability at the instance

level, the framework integrates LimeTabularExplainer to produce local explanations for model

predictions.

3.3.1 Model Parameters

The variance in the number of estimators is intended to investigate the relationship between

estimators size and the AL framework’s efficacy. As was previously mentioned, research has

demonstrated that smaller estimators’ size typically result in higher model accuracy and ef-

ficiency, which can be linked to better generalization and lower complexity. A comparative

analysis is made possible by the addition of a larger number of estimators, 50 in this case, which

sheds light on the scalability and possible advantages of a larger group of estimators.

Table 3.4: Learner Configurations for Active Learning

Learner Configuration Classifiers Number of Estimators

learner1 Logistic Regression NA

learner2 Random Forest 1, 2, 3, 4, 5, 10, 50

learner3 Logistic Regression + Random Forest 1, 2, 3, 4, 5, 10, 50

This table 3.4 outlines the different learner configurations employed in the ALframework. The

framework utilizes three distinct learner configurations, each consisting of specific classifiers and

varying numbers of estimators for the RF and combined classifier.

Hyperparameters for Logistic Regression Classifier:

• random state: This is a seed for the random number generator. It ensures reproducibility

of results. Reproducibility is crucial for scientific rigor and to be possible to recreate the

exact experiments, setting a random seed helps achieve this.

• max iter: LR is an iterative algorithm, and max iter specifies the maximum number of
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iterations for the solver to converge. In this case, LR might not converge within the default

number of iterations, so increasing max iter helps ensure convergence.

Hyperparameters for Random Forest Classifier:

• n estimators: : This parameter defines the number of trees in the RF. Increasing the

number of trees generally improves performance up to a point, as it helps the model

generalize better.

• max iter: Similar to LR, it ensures that the randomization in the RF is reproducible.

3.3.2 LIME Model

In the context of this thesis, LIME is integrated into the AL framework to provide transparent

and interpretable insights into the decision boundaries of the ML models. This integration allows

for a deeper understanding of the AL process by visualizing and analyzing the regions of the

feature space that significantly influence model predictions.

To implement it, the framework employs the function LimeTabularExplainer from the LIME

library [55]. Using a perturbation-based methodology, this function modifies the input features

of a given instance slightly to produce locally faithful approximations of the model’s decision

boundaries. Then, using the perturbed instances as a basis, it builds a surrogate interpretable

model, which is typically a linear model, to explain the model’s behavior around the instance

in question.

Hyperparameters for LIME:

• mode: This parameter sets the mode of the explainer, and in this case, it’s set to ’clas-

sification’ because the framework is dealing with a classification problem. LIME is an

explainability technique, and in the context of this thesis, it helps in understanding why

the model is making certain predictions. This interpretability is crucial in healthcare

applications, where decisions need to be explainable and justifiable.

• feature names: LIME requires the names of features to provide meaningful explana-

tions. In this thesis, where medical data is being used, having feature names is crucial for

interpreting and explaining model decisions.
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Results and Discussion

4.1 KTAS Dataset Results

4.1.1 Active Learning Results

Table 4.1: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 1 estimator

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.952

Entropy RF 0.815 0.815 0.830 0.409 0.822

LR + RF 0.866 0.866 0.863 0.511 0.864

LR 0.969 0.969 0.969 0.754 0.965

Margin RF 0.815 0.815 0.830 0.409 0.822

LR + RF 0.858 0.858 0.857 0.484 0.856

LR 0.969 0.969 0.969 0.754 0.965

Least confidence RF 0.815 0.815 0.830 0.409 0.822

LR + RF 0.874 0.874 0.880 0.564 0.877

In Table 4.1, where a single classifier was employed, LR exhibited commendable results across

all query strategies. Under the entropy query strategy, LR demonstrated an impressive accuracy

of 0.961 and sensitivity/specificity of 0.961, although the balanced accuracy was comparatively

lower at 0.659. This suggests that LR excelled in making accurate classifications but faced chal-

lenges in handling imbalanced data. Conversely, the RF classifier exhibited lower performance,

with an accuracy and sensitivity/specificty of 0.815, showcasing its struggle with the inherent

characteristics of the dataset. LR + RF, a combination of classifiers, only marginally improved

over the individual RF, with an accuracy of 0.866.

When LR switched to the margin query approach, it kept up its high levels of sensitivity,

specificity and accuracy (0.969), with a minor improvement in balanced accuracy (0.754) over

the entropy technique. The fact that RF’s performance stayed close to that of the entropy

approach suggests that the margin sampling technique had little effect on RF’s performance.
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With a estimators’ size of 1, LR + RF once more produced results similar to RF, indicating

that there was no discernible benefit to merging classifiers when using the margin technique.

As the best classifier under the Least confidence query approach, LR achieved the greatest

balanced accuracy of 0.754 out of all the classifiers. With 0.815 accuracy and sensitivity, RF’s

performance was in line with the trends shown in the entropy and margin strategies. With

the greatest accuracy (0.874) and balanced accuracy (0.564), LR + RF notably demonstrated

some improvement in performance, demonstrating the combination’s efficacy, when used in

conjunction with the Least confidence sampling method.

The F1 Score for every query strategy and classifier showed excellent precision and recall balance

in the estimators’ size 1 scenario, when each classifier functioned independently. LR had the

greatest F1 Score (0.965) under the uncertaintly and margin query technique, demonstrating a

strong ability to strike a balance between precision and recall.

Table 4.2: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 2 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.951

Entropy RF 0.878 0.878 0.881 0.454 0.863

LR + RF 0.945 0.945 0.950 0.622 0.939

LR 0.969 0.969 0.969 0.754 0.965

Margin RF 0.878 0.878 0.881 0.454 0.863

LR + RF 0.965 0.965 0.963 0.752 0.961

LR 0.969 0.969 0.7969 0.754 0.965

Least confidence RF 0.878 0.878 0.881 0.454 0.863

LR + RF 0.961 0.961 0.957 0.705 0.956

estimators’ size 2 added a collaborative element that changed the performance dynamics from

estimators’ size 1, when classifiers functioned independently. As it can be seen in Table 4.2 LR

values don’t change, because the estimators’ size doesn’t affect this classifier. Meanwhile, the

combined classifier, LR + RF, where the number of voters affect the outcome results, showed an

increase in accuracy, confirming the benefit of cooperation. RF showed an improvement when

comparing estimators’ size 1, suggesting the possible advantages of a larger group of estimators.

After switching to the margin query approach, even though RF outperformed the entropy tech-

nique, its accuracy rate remained at 0.878. Surprisingly, LR + RF performed equally to the LR

classifier, attaining an almost similar accuracy (0.965) and balanced accuracy (0.752).

LR remained dominant under the Least confidence query approach, achieving 0.969 accuracy and

0.969 sensitivity. RF performed consistently with varying the number of estimators, attaining an

accuracy rate of 0.878. Under Least confidence, LR + RF outperformed solo classifiers with the
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highest accuracy (0.961) and balanced accuracy (0.705), confirming the value of collaboration.

Table 4.3: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 3 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.951

Entropy RF 0.929 0.929 0.919 0.597 0.921

LR + RF 0.953 0.953 0.955 0.698 0.947

LR 0.969 0.969 0.961 0.754 0.965

Margin RF 0.929 0.929 0.918 0.597 0.921

LR + RF 0.965 0.965 0.965 0.719 0.959

LR 0.969 0.969 0.969 0.754 0.965

Least confidence RF 0.929 0.929 0.918 0.597 0.921

LR + RF 0.969 0.969 0.969 0.720 0.963

Adding another level of classifier collaboration to estimators’ size 3 has resulted in some notable

performance variations when compared to Estimators of Size 1 and 2, which can be seen in

Table 4.3. The LR stays the best performing classifier but is worth mentioning that the RF

classifier improved every accuracy to results above 0.9 across all classifiers. This indicates that

the overall prediction accuracy is positively impacted by the additional classifiers. LR + RF

achieved better results for accuracy under the entropy and Least confidence methods, which was

a modest improvement above estimators’ size 2’s 0.945 accuracy. All F1 scores were high in this

experience, with RF classifier results being the most noticeable improvement.

Table 4.4: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 4 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.950

Entropy RF 0.906 0.906 0.894 0.572 0.895

LR + RF 0.965 0.965 0.966 0.706 0.959

LR 0.969 0.969 0.969 0.754 0.965

Margin RF 0.933 0.933 0.935 0.574 0.920

LR + RF 0.972 0.972 0.973 0.768 0.969

LR 0.969 0.969 0.969 0.754 0.965

Least confidence RF 0.937 0.937 0.938 0.622 0.928

LR + RF 0.972 0.972 0.973 0.768 0.969

Using a bigger ensemble of classifiers in estimators’ size 4, the AL framework shows interesting

results under different query tactics. In Table 4.4, it shows that LR is no longer the best
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classifier. When using entropy sampling as the query strategy, RF got worst results than before.

The major improvement in this estimators’ size 4 was LR+RF, achieving an accuracy of 0.972

on both margin and Least confidence sampling. The balance accuracy was also improved to

0.768 as well as the f1 score of 0.969, which means this is the best combination so far in this

framework results. estimators’ size 4 continues the smaller estimators number trend where LR

+ RF performs better than individual classifiers. The efficacy of the collaborative approach is

demonstrated by its accuracy, balanced accuracy, and F1 Score, underscoring its appropriateness

for AL situations with a larger number of estimators.

Table 4.5: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 5 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.951
Entropy RF 0.933 0.933 0.911 0.553 0.919

LR + RF 0.969 0.969 0.969 0.754 0.965

LR 0.969 0.969 0.969 0.754 0.965
Margin RF 0.961 0.961 0.962 0.659 0.951

LR + RF 0.969 0.969 0.969 0.720 0.963

LR 0.969 0.969 0.969 0.754 0.965
Least confidence RF 0.933 0.933 0.927 0.574 0.921

LR + RF 0.972 0.972 0.973 0.768 0.969

In estimators’ size 5 results, shown in Table 4.5, RF performs consistently but marginally worse

than LR, which retains good accuracy, sensitivity, and specificity under all query strategies. The

best accuracy, balanced accuracy, and F1 Score are constantly achieved by the ensemble LR +

RF, outperforming individual classifiers and highlighting the effectiveness of ensemble techniques

in active learning environments. The major values for this experience is the accuracy obtained

by LR+RF of 0.972 when using Least confidence sampling as a query strategy, matching the

previous results of estimators’ size 5.
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Table 4.6: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 10 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.951

Entropy RF 0.945 0.945 0.948 0.637 0.936

LR + RF 0.969 0.969 0.969 0.754 0.965

LR 0.969 0.969 0.969 0.754 0.965

Margin RF 0.965 0.965 0.966 0.673 0.956

LR + RF 0.969 0.969 0.969 0.754 0.965

LR 0.969 0.969 0.969 0.754 0.965

Least confidence RF 0.961 0.961 0.962 0.659 0.951

LR + RF 0.972 0.972 0.973 0.768 0.969

For estimators’ size 10 in Table 4.6, RF classifier improved in terms of balanced accuracy but still

falls short when comparing with the other two classifiers. The ensemble LR + RF consistently

outperforms individual classifiers, but maintaining the same pinnacle in accuracy 0.972 and

balanced accuracy 0.768 under the Least confidence sampling strategy. This suggests that,

beyond a certain estimators’ size, there might be diminishing returns in terms of classification

performance. This implies that there may be diminishing returns in terms of categorization

performance over a particular estimators’ size.

Table 4.7: KTAS Dataset Performance Metrics’ Results for all classifiers and query strategies
using 50 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.961 0.961 0.962 0.659 0.951

Entropy RF 0.976 0.976 0.977 0.782 0.973

LR + RF 0.969 0.969 0.969 0.754 0.965

LR 0.969 0.969 0.969 0.754 0.965

Margin RF 0.972 0.972 0.973 0.768 0.969

LR + RF 0.969 0.969 0.969 0.754 0.965

LR 0.969 0.969 0.969 0.754 0.965

Least confidence RF 0.976 0.976 0.977 0.782 0.973

LR + RF 0.972 0.972 0.973 0.768 0.969

The ensemble of classifiers in estimators’ size 50 performs reliably and consistently when utiliz-

ing various query methodologies. On Table 4.7, LR results finally are surpassed making it the

worst classifier in these terms. Interestingly, using either the entropy or Least confidence query

approach, the RF classifier shines out with a notable improvement, obtaining an astounding

35



4. Results and Discussion

0.976 accuracy, 0.976 sensitivity, 0.977 specificity and 0.782 balanced accuracy. This indicates a

significant improvement in RF’s ability to record both favorable and unfavorable cases, partic-

ularly when the estimators’ size is higher. Consistent performance is demonstrated by the LR

+ RF ensemble, which sustains a high degree of performance across various query strategies.

Robust and balanced precision are maintained by LR, highlighting its stability in a variety of

settings, but when the estimators’ size got larger, other classifiers managed to surpass its per-

formance. The LR + RF ensemble maintains its competitiveness, highlighting the fact that the

notable improvements seen are more particular to the features of the RF classifier.

To summarize, the data indicates that while RF performs significantly better with bigger es-

timators’ sizes, LR consistently performs well. The results show that the ensemble technique

(LR + RF) performs better than any single classifier, highlighting the usefulness of this strategy

in combining several classifiers to improve predictive power. Different classifiers have differ-

ent effects from estimators’ size, which emphasizes how crucial it is to take into account both

estimators’ size and classifier type for the best possible model performance.

4.1.2 Passive vs Active Study

In order to determine the relative effects of the Passive Learning and AL approaches on model

performance, both were compared in this next study. Initially, the best-performing classifier from

the prior AL results was trained using the complete labeled dataset through the use of passive

learning. This made it easier to set a standard for accuracy by which the Active Learning

framework that followed could be measured. By methodically applying the Active Learning

framework to different proportions of the dataset, performance metrics at various phases of data

use may be insightfully compared. By taking this approach, it was hoped to determine the point

at which the accuracy obtained by Passive Learning is approximated or converged to by AL,

providing insight into the relative effectiveness of both methods within the framework of this

healthcare-related categorization job.

Figure 4.1: Accuracy for each percentage of the KTAS Dataset and the number of queries used
in the Active Learning Framework for the LR classifier
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Figure 4.1 illustrates that the LR classifier’s acquired passive learning accuracy was 0.953. The

Active Learning Framework was run with four different initial dataset sizes, three estimators,

and LR as the classifier. It can be seen that by utilizing only 10% of the dataset and about 20

queries, so approximately 140 instances in total, it is possible to achieve the same accuracy as

the passive learning method. Using small percentages of 1% and 5%, the framework falls short

of the passive threshold.

This observation is especially relevant in the context of healthcare, where there may be critical

information shortages in some areas. Access to labeled data in the health domain is frequently

restricted because of data sensitivity, privacy concerns, or the sheer difficulty of obtaining expert

annotations. Reduced annotation burden for domain experts can be achieved by using only 10%

of the dataset to achieve accuracy levels in passive learning. Such efficiency gains can speed up

the creation of ML models for health applications in situations where expert time is a valuable

and scarce resource.

4.1.3 Explainable Results

This section proceeds with an analysis of LIME results obtained from one of the best classifier

identified within the AL framework, offering insights into the interpretability of the models in

the context of emergency triage using the KTAS dataset.

Figure 4.2: LIME graphic for random instance from the KTAS dataset using LR classifier, two
estimators and margin sampling

When analyzing Figure 4.2, one possible explanation for the graphic is that the first two features,

KTAS expert Non-Emergency and KTAS RN Non-Emergency, indicate that the expert and RN

KTAS scores for non-emergency cases are both very low. This suggests that the patient is likely

to be triaged as non-emergency. The third feature, Length of stay min >0.03, indicates that the

patient has been in the emergency department for more than 3 minutes. This could be a sign

that the patient is more likely to be triaged as high acuity, as they may have a more complex
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condition or require more resources. The fourth feature, New NRS pain Low Pain, indicates

that the patient’s new NRS pain score for low pain is very low. This suggests that the patient is

not experiencing significant pain, which is a factor that is considered in triage. The fifth feature,

Mental Unresponsiv, indicates that the patient is not mentally unresponsive. This is a good

sign, as it suggests that the patient is alert and able to communicate.

4.2 Patient Priority Dataset Results

4.2.1 Active Learning Results

Table 4.8: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 1 estimator

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.937 0.937 0.931 0.714 0.932

Entropy RF 0.954 0.954 0.957 0.913 0.955

LR + RF 0.981 0.981 0.981 0.951 0.981

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.954 0.954 0.957 0.913 0.955

LR + RF 0.960 0.960 0.960 0.904 0.960

LR 0.940 0.940 0.935 0.727 0.935

Least confidence RF 0.954 0.954 0.957 0.914 0.955

LR + RF 0.964 0.964 0.965 0.804 0.965

In Table 4.8, the results for a single estimator are presented. The LR classifier demonstrates

strong performance across all query strategies, with accuracy ranging from 0.937 to 0.940. It

maintains a good balance between sensitivity and specificity, as indicated by the balanced ac-

curacy values ranging from 0.714 to 0.738. The F1 Score, a measure of precision and recall

balance, is also consistently high for LR.

The RF classifier consistently performs well, with accuracy ranging from 0.954 to 0.964. It excels

in balanced accuracy, with values exceeding 0.9 for all query strategies. The LR + RF ensemble

consistently outperforms individual classifiers, achieving accuracy values ranging from 0.960 to

0.981. The balanced accuracy and F1 Score for LR + RF are also notably high, indicating the

effectiveness of the ensemble approach.

These results suggest that, even with a single estimator, the ensemble LR + RF is beneficial,

showcasing improved performance compared to individual classifiers.
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Table 4.9: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 2 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.936 0.936 0.931 0.713 0.932

Entropy RF 0.975 0.975 0.976 0.826 0.974

LR + RF 0.979 0.979 0.979 0.865 0.978

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.975 0.975 0.976 0.826 0.974

LR + RF 0.987 0.987 0.986 0.925 0.986

LR 0.940 0.940 0.935 0.727 0.935

Least confidence RF 0.975 0.975 0.976 0.826 0.974

LR + RF 0.984 0.984 0.985 0.908 0.984

The results are shown in Table 4.9 for a estimators’ size of 2. These results suggest that, even

with a estimators’ size of 2, the LR + RF ensemble maintains its effectiveness in improving

performance compared to individual classifiers. The RF classifier continues to show robust

performance.

Table 4.10: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using using 3 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.936 0.936 0.931 0.713 0.932

Entropy RF 0.994 0.994 0.995 0.982 0.994

LR + RF 0.986 0.986 0.985 0.912 0.985

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.994 0.994 0.995 0.982 0.994

LR + RF 0.987 0.987 0.987 0.908 0.974

LR 0.940 0.940 0.935 0.723 0.935

Least confidence RF 0.994 0.994 0.995 0.982 0.994

LR + RF 0.986 0.986 0.986 0.926 0.985

In Table 4.10, the results for a estimators’ size of 3 are presented. The RF classifier exhibits

exceptional performance with accuracy consistently at 0.994 for all query strategies. It excels in

balanced accuracy, with values consistently at 0.982 or higher, showcasing its ability to handle

imbalanced data, surpassing easily the LR classifier results. The LR + RF ensemble maintains

strong performance, showcasing accuracy values ranging from 0.986 to 0.987. All F1-scores

are high for every classifier but the RF achieves the highest. The RF classifier demonstrated

amazing results for this estimators’s size.
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Table 4.11: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 4 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.937 0.937 0.931 0.714 0.932

Entropy RF 0.990 0.990 0.990 0.938 0.989

LR + RF 0.979 0.979 0.891 0.891 0.978

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.990 0.990 0.990 0.914 0.989

LR + RF 0.987 0.987 0.986 0.929 0.986

LR 0.941 0.941 0.935 0.726 0.935

Least confidence RF 0.992 0.992 0.992 0.949 0.992

LR + RF 0.987 0.987 0.987 0.918 0.986

In general, when looking at the table 4.11, all accuracies are high and above 0.9 for this estima-

tors’s size. In terms of balanced accuracy, the LR classifier continues to fall short in comparison

to both RF and LR+RF classifiers. RF continues to be the best classifier in terms of every

performance metric and using any of the query strategies, except when using margin sampling,

the balance accuracy was slightly lower than the combined classifier LR+RF.

Table 4.12: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 5 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.937 0.937 0.931 0.713 0.923

Entropy RF 0.995 0.995 0.995 0.985 0.994

LR + RF 0.983 0.983 0.983 0.903 0.982

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.991 0.991 0.992 0.959 0.991

LR + RF 0.987 0.987 0.987 0.932 0.987

LR 0.940 0.940 0.935 0.726 0.935

Least confidence RF 0.996 0.966 0.966 0.973 0.996

LR + RF 0.985 0.985 0.985 0.923 0.984

For this results, when looking at the Table 4.12, it seems there were no major changes to the

previous commmittee’s size of 4. RF stays the best classifier, consistently achieving very high

accuracy scores, reaching 0.995 for the entropy query strategy and 0.996 for the uncertainty query

strategy. This indicates that RF performs exceptionally well in correctly classifying instances.

Also maintains a high balance accuracy, meaning it can provide a comprehensive evaluation of

classification performance.
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Table 4.13: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 10 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.936 0.936 0.931 0.714 0.932

Entropy RF 0.996 0.996 0.996 0.985 0.996

LR + RF 0.982 0.982 0.982 0.903 0.982

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.997 0.997 0.998 0.997 0.997

LR + RF 0.989 0.989 0.989 0.935 0.989

LR 0.941 0.941 0.935 0.727 0.936

Least confidence RF 0.997 0.997 0.998 0.997 0.997

LR + RF 0.988 0.988 0.988 0.932 0.988

Going into the results presented in Table 4.13, it is noticeable that the RF classifier consistently

outperforms the LR classifier in terms of accuracy, reaching scores of 0.996 and 0.997, and

especially balance accuracy. So there is no considerable chances on this estimators’s size either,

the RF maintains the status of best classifier, and LR+RF continues to get good results slightly

inferior to the RF classifier.

Table 4.14: Patient Priority Dataset Performance Metrics’ Results for all classifiers and query
strategies using 50 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.936 0.936 0.931 0.714 0.932

Entropy RF 0.997 0.997 0.997 0.997 0.997

LR + RF 0.984 0.984 0.984 0.899 0.984

LR 0.939 0.939 0.935 0.738 0.935

Margin RF 0.997 0.997 0.998 0.997 0.997

LR + RF 0.981 0.981 0.981 0.900 0.980

LR 0.940 0.940 0.935 0.727 0.935

Least confidence RF 0.997 0.997 0.998 0.997 0.997

LR + RF 0.982 0.982 0.982 0.893 0.981

For the final estimators’s size of 50 as seen in Table 4.14, the same conclusion can be applied to

this large number on the estimators’s voters. The LR continues to be the worst of the classifiers

and RF stands at the top.

Because there was no major changes on the framework results when using this large estimators’

size, it can be concluded that adding a larger number of estimators doesn’t change much past a

certain number, this case being 3 or 4, for this dataset. The LR classifier obtained good results
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when using this dataset and testing the multiple query strategies, but falls short to the other

two classifiers. RF was the classifier that got the best results when the estimators number was

bigger than 2, so for this dataset, it is possible to say that for low number of estimators, the

best option is the combined classifier LR+RF, but past two estimators, the RF classifier get the

best performance metrics results.

4.2.2 Passive vs Active

Figure 4.3: Accuracy for each percentage of the Patient Priority Dataset and the number of
queries used in the Active Learning Framework for the RF classifier

Figure 4.3 illustrates that the RF classifier’s acquired passive learning accuracy was 0.929. The

Active Learning Framework was run with four different initial dataset sizes, a single estimator,

and RF as the classifier, as the KTAS dataset. It can be seen that by utilizing only 5% of the

initial dataset and about 30 queries, making it around 357 instances in total, it is possible to

achieve the same accuracy as the passive learning method. Using a small percentage of 1% ,

the framework doesn’t reach the passive threshold. Compared to the initial KTAS dataset, this

dataset contains a larger total number of cases, therefore, although the beginning data used

(5%) is smaller in percentage terms than the prior dataset, the total amount of data used is

larger. It is still a good achievement in order to deal with the problem of scarcity of data.

42



4. Results and Discussion

4.2.3 Explainable Results

Figure 4.4: LIME graphic for random instance from the Clustering for Triage dataset using RF
classifier, five estimators and margin sampling

Figure 4.5: LIME graphic for random instance from the Clustering for Triage dataset using
LR+RF classifier, a single estimator and entropy sampling

A possible analysis for the Figure 4.4 is: If the patient has a chest pain type of 0.00 or less, it

means they don’t have any chest pain. This indicates that the patient is less likely to experience

a heart attack, which is encouraging. A plasma glucose level that falls within the normal range

is 78.70 or lower., which can indicatethat the patient is less likely to have diabetes. The range

of middle age is defined as 49.00 to 57.00. Although it is a risk factor for heart disease, this risk

factor is not as important as others, like high blood pressure or cholesterol. A person is deemed
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overweight or obese if their BMI is between 26.80 and 31.40, which poses a serious risk for heart

disease. A diabetes pedigree with a score of 0.47 or less is regarded as low. This implies that

the patient has a lower chance of developing diabetes, another heart disease risk factor.

According to the results for Figure 4.5, patients under the age of 49 are generally less likely than

older patients to have heart diseases, because that heart disease risk factors, like high blood

pressure and cholesterol, often get worse with time. A plasma glucose reading within the range

of 93.00 to 111.42 is deemed prediabetic, which indicates that this individual is more likely to

develop diabetes, increasing the risk of heart disease. This individual appears to have a normal

BMI, less than 22.0, but if underweight, people in this condition are at a slightly higher risk

of heart disease than people with a normal BMI. A chest pain type of 0.00 indicates that the

patient is experiencing no chest pain. This is a positive sign, because it suggests that the patient

is less likely to have a heart attack. For last, a blood pressure of 128.00 or higher is considered

to be elevated, being a significant risk factor for heart disease.

With this results, it is possible to say that this AL framework was successfully used in addressing

the challenge of the restricted availability of data in the emergency triage area.

4.3 Heart Disease Dataset Results

4.3.1 Active Learning Results

Table 4.15: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 1 estimator

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.794 0.631 0.794

Entropy RF 0.550 0.550 0.549 0.383 0.544

LR + RF 0.833 0.833 0.853 0.837 0.839

LR 0.800 0.800 0.792 0.618 0.787

Margin RF 0.550 0.550 0.549 0.383 0.544

LR + RF 0.850 0.850 0.859 0.704 0.841

LR 0.816 0.816 0.796 0.649 0.802

Least confidence RF 0.550 0.550 0.549 0.383 0.544

LR + RF 0.883 0.883 0.878 0.767 0.876

The performance metrics for a single estimator in relation to the Heart Disease dataset are

shown in Table 4.15. The best reliable classifier in the assessment of the Heart Disease dataset

with a estimators’ size of one is the LR + RF ensemble. This ensemble achieves substantial

accuracies and consistently beats individual classifiers under a variety of query strategies. This

means that the LR classifier won’t be the best option to this dataset when working, because the

results of the other two classifiers tend to improve when the using 1 estimator’s size increases.
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The LR + RF ensemble, for example, obtains an outstanding accuracy of 0.883 under the Least

confidence-based query method, demonstrating its usefulness in managing the difficulties of heart

disease prediction. Conversely, the RF classifier encounters difficulties with accuracies as low as

0.55. This disparity demonstrates how the model’s performance is sensitive on the classifier and

approach selected.

Table 4.16: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 2 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.632 0.794

Entropy RF 0.850 0.850 0.848 0.754 0.846

LR + RF 0.916 0.916 0.911 0.868 0.908

LR 0.800 0.800 0792. 0.618 0.787

Margin RF 0.850 0.850 0.848 0.754 0.846

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.816 0.816 0.796 0.649 0.802

Least confidence RF 0.850 0.850 0.848 0.754 0.846

LR + RF 0.883 0.883 0.878 0.833 0.877

Table 4.16 displays the results of the performance metrics for a estimators’ size of 2. The LR +

RF ensemble continues to demonstrate its dominance in the evaluation of the framework with

a estimators’ size of two, consistently outperforming individual classifiers. The ensemble is able

to identify intricate patterns linked to heart illness, as evidenced by its remarkable accuracy of

0.950 using the margin-based query technique. This significant improvement over the estimators’

size of one implies that greater predictive performance can be achieved by collaborative AI with

a larger number of estimators. The RF classifier improved considerable by adding only one

more estimator, reaching an accuracy of 0.850 and other decent results across all the metrics.

Comparing the results between estimators’ sizes, it is evident that increasing the estimators’

size positively impacts the overall results.
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Table 4.17: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 3 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.631 0.794

Entropy RF 0.916 0.916 0.913 0.892 0. 914

LR + RF 0.933 0.933 0.930 0.899 0.929

LR 0.800 0.800 0.791 0.618 0.787

Margin RF 0.916 0.916 0.913 0.892 0. 914

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.816 0.816 0.796 0.649 0.802

Least confidence RF 0.916 0.916 0.913 0.892 0. 914

LR + RF 0.950 0.950 0.953 0.906 0.945

When evaluating the results of Table 4.17 with three estimators as opposed to two, we see a

steady trend of improvement in a number of performance parameters. Remarkably, the LR +

RF ensemble still performs better than the others; accuracy under the uncertaintly-based query

technique reaches 0.950. This demonstrates how well the group collaborates to identify patterns

in the heart disease dataset, outperforming the accuracy attained with a estimators’ size of two.

The RF classifier exhibits substantial improvement achieving an accuracy of 0.916 across all

query strategies. This indicates that the inclusion of more estimators contributes to a more

robust decision-making process, enhancing the overall predictive capabilities of the classifiers.

Table 4.18: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 4 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.631 0.794

Entropy RF 0.983 0.983 0.983 0.968 0.982

LR + RF 0.933 0.933 0.930 0.899 0.929

LR 0.800 0.800 0.792 0.618 0.787

Margin RF 0.850 0.850 0.859 0.732 0.851

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.816 0.816 0.796 0.649 0.802

Least confidence RF 0.933 0.933 0.933 0.889 0.931

LR + RF 0.933 0.933 0.939 0.878 0.928

Examining the results for a estimators’ size of 4 of Table 4.18 in the evaluation of the Heart

Disease dataset, several notable trends emerge compared to the estimators’ size of 3. The

RF classifier demonstrates a substantial leap in performance under the entropy-based query
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strategy, achieving an accuracy of 0.983. This substantial improvement in accuracy signifies

the effectiveness of the RF classifier in discerning patterns within the heart disease dataset

when supported by a larger estimators number. With an accuracy of 0.983, the RF classifier

shows significant progress, especially when using the entropy-based approach. This suggests

that having more estimators increases the decision-making process’s robustness and improves

the classifiers’ overall predictive power. Comparing the results between estimators’ sizes 3 and 4,

we observe a noteworthy improvement in the RF classifier’s accuracy under the entropy strategy,

but decreasing when using the margin sampling. This suggests that the introduction of more

diverse perspectives and decision-making processes within the learner enhances the model’s

ability to handle complex patterns in the data.

Table 4.19: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 5 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.631 0.794

Entropy RF 0.933 0.933 0.939 0.929 0.907

LR + RF 0.950 0.950 0.954 0.909 0.948

LR 0.800 0.800 0.792 0.618 0.787

Margin RF 0.950 0.916 0.947 0.945 0.924

LR + RF 0.967 0.967 0.968 0.937 0.964

LR 0.816 0.816 0.796 0.649 0.802

Least confidence RF 0.966 0.966 0.967 0.940 0.966

LR + RF 0.933 0.933 0.939 0.878 0.928

Analyzing the performance metrics for a estimators’ size of 5 present in Table 4.19, it is possible

to see that the RF classifier continues to exhibit strong performance, maintaining an accuracy

of 0.933. This continues to suggest that the RF model benefits from the increased number of

estimators, capturing more nuanced patterns in the dataset. The LR + RF ensemble also sees

a slight improvement in accuracy, reinforcing the collaborative advantage of combining LR and

RF classifiers.

When using 10 estimators for the evaluation of the Heart Disease dataset, in Table 4.20, the

RF classifier maintains its robust performance, achieving a 0.997 accuracy using the uncertainty

query strategy. The LR continues to show no improvement when adding numbers to the estima-

tors’ size. For the combined classifier, it also seems to reach its maximium performance, due to

the fact that show little to no improvement in this and the previous estimators’ size tests. These

findings suggest that, for the Heart Disease dataset, a estimators’ size of 10 might doesn’t yield

substantial gains for all classifiers, and the effectiveness depends on the specific characteristics

of the classifier and the chosen query strategy.

To complete the AI study for this dataset, using a estimators’ size of 50, as it can be seen in
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Table 4.20: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 10 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.631 0.794
Entropy RF 0.950 0.950 0.948 0.930 0.948

LR + RF 0.933 0.933 0.939 0.878 0.948

LR 0.800 0.800 0.792 0.618 0.787
Margin RF 0.983 0.983 0.983 0.968 0.982

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.816 0.816 0.796 0.649 0.802
Least confidence RF 0.997 0.997 0.997 0.997 0.997

LR + RF 0.950 0.950 0.953 0.906 0.945

Table 4.21: Heart Disease Dataset Performance Metrics’ Results for all classifiers and query
strategies using 50 estimators

QS Classifier Accuracy Sensitivity Specificity BA F1 Score

LR 0.816 0.816 0.793 0.631 0.794
Entropy RF 0.983 0.983 0.983 0.968 0.982

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.800 0.800 0.792 0.618 0.787
Margin RF 0.950 0.950 0.953 0.906 0.945

LR + RF 0.950 0.950 0.953 0.906 0.945

LR 0.816 0.816 0.796 0.649 0.802
Least confidence RF 0.997 0.997 0.997 0.997 0.997

LR + RF 0.950 0.950 0.953 0.906 0.945

Table 4.21, no major changes occur on the results when using a a larger number of estimators

in the learner.

Examining the results across all seven tables, a notable trend emerges. The RF classifier con-

sistently improves as the number of estimators increases, indicating its capability to leverage

additional diverse perspectives. As it was expected in the beginning of the showcase for the

results of this dataset, using the LR classifier as an individual voter, made that the results were

not good enough to compete with any estimators’ size used for the other two classifiers. The

LR + RF combination consistently produces good results across different estimators’ sizes and

query strategies, highlighting the effectiveness of combining classifiers to achieve robust perfor-

mance. In conclusion, these findings suggest that the optimal number of estimators depends on

the classifier and query strategy employed. While RF benefits from larger estimators’ size, LR

exhibits consistent performance. The LR + RF combination emerges as a promising approach,

offering a balance between accuracy and stability across different scenarios.
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4.3.2 Passive vs Active

Figure 4.6: Accuracy for each percentage of the Heart Disease Dataset and the number of queries
used in the Active Learning Framework for the RF classifier

Figure 4.6 illustrates that the RF classifier’s acquired passive learning accuracy was 0.600. The

Active Learning Framework was run with four different initial dataset sizes, a estimators’ size of

three, and RF as the classifier. By utilizing only 1% of the initial dataset and about 15 queries,

so approximately 18 instances in total, it is possible to achieve the same accuracy as the passive

learning method. This is an amazing result, because of the fact that this a small dataset, which

aligns with the problem of scarcity of data in the medicine area.
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4.3.3 Explainable Results

Figure 4.7: LIME graphic for random instance from the Heart Disease Dataset using RF clas-
sifier, five estimators and entropy sampling

According to the results for Figure 4.7, a thal of 7, wihch means thalassemia reversable defect,

has the most impact on the prediction. The patient is a man and also has a big impact. For the

fbs value, the patient doesn’t have a value superior to 120 mgdl and also shows no symptons

for chest pain because the value of cp is 4. The only feature not contributing for a non heart

disease result is exang, that represents exercise induced angina, meaning pain in the chest that

comes on with exercise, stress, or other things that make the heart work harder.
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Conclusion and Future Work

In conclusion, this thesis conducted an investigation into AL approaches concerning emergency

triage and heart disease. This study sought to solve important issues in the application of AI

to healthcare by utilizing a variety of healthcare related datasets.

The AL framework, augmented by the combination of different learners composed of various

classifiers and number of estimators, exhibited promising outcomes. Through meticulous varia-

tions in query strategies and number of estimators, a significant understanding of the interaction

between classifiers and medical domains emerged. The distinct behaviors of individual LR, RF,

and their amalgamation in the form of LR+RF underscored the need for tailored approaches

in different medical scenarios. Also, the framework employed in this study has proven to be a

success. The experimental results demonstrated that, even with a minimal percentage of the

dataset and a small number of queries, the AL model surpassed the performance of passive

learning. This not only attests to the efficiency of the AL strategy in selecting and utilizing

the most informative data points but also underscores its potential for optimizing the learning

process in scenarios where data scarcity is a significant challenge. The achieved performance

metrics, including accuracy, sensitivity, specificity, balanced accuracy, and F1 score, consistently

surpassed acceptable thresholds, affirming the robustness of the proposed AI framework. This

success helps future exploration and application of AI methodologies in addressing data scarcity

issues in critical domains such as healthcare. Moreover, this study delved into the imperative

realm of model explainability, leveraging LIME for interpretation. By elucidating the features

and factors contributing to individual predictions, LIME enhances the interpretability of the AI

model, rendering it more accessible and trustworthy for healthcare practitioners and end-users.
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